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1. Introduction

We denote by G2(Cm+2) the set of all complex two-dimensional linear subspaces in Cm+2.
This Riemannian symmetric space G2(Cm+2) has a remarkable geometric structure. It is
the unique compact irreducible Riemannian manifold with both a Kähler structure J and a
quaternionic Kähler structure J not containing J. Namely, G2(Cm+2) is a unique compact,
irreducible, Kähler, quaternionic Kähler manifold which is not a hyper-Kähler manifold.
Accordingly, in G2(Cm+2) we have the two natural geometric conditions for real hypersur-
faces M that the 1-dimensional distribution [ξ ] = Span{ξ} and the 3-dimensional distribu-
tion D⊥ = Span{ξ1,ξ2,ξ3} are invariant under the shape operator A of M (see [3–5]). Here
the almost contact structure vector field ξ defined by ξ = −JN is said to be a Reeb vec-
tor field, where N denotes a local unit normal vector field of M in G2(Cm+2). The almost
contact 3-structure vector fields {ξ1,ξ2,ξ3} for the 3-dimensional distribution D⊥ of M in
G2(Cm+2) are defined by ξν =−Jν N (ν = 1,2,3), where Jν denotes a canonical local basis
of a quaternionic Kähler structure J and TxM = D⊕D⊥, x ∈M.

By using two invariant conditions mentioned above and the result in Alekseevskii [1],
Berndt and Suh [4] proved the following:

Theorem 1.1. Let M be a connected real hypersurface in G2(Cm+2), m≥ 3. Then both [ξ ]
and D⊥ are invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
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(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn

in G2(Cm+2).

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under the shape
operator A. The one dimensional foliation of M by the integral manifolds of the Reeb vector
field ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface in G2(Cm+2)
if and only if the Hopf foliation of M is totally geodesic. By the formulas in Section 3 it can
be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf. When the
distribution D of a hypersurface M in G2(Cm+2) is invariant by the shape operator, we say
M is a D-invariant hypersurface.

Using Theorem 1.1, many geometers have given characterizations for hypersurfaces in
G2(Cm+2) under certain assumption for various geometrical conditions instead of the above
two invariant conditions, for example, shape operator, normal (or structure) Jacobi operator,
structure tensor, and so on. Actually, Lee and Suh [12] gave a characterization of real
hypersurfaces of Type (B) in G2(Cm+2) in terms of the Reeb vector field ξ as follows:

Theorem 1.2. Let M be a connected orientable Hopf hypersurface in complex two-plane
Grassmannians G2(Cm+2), m≥ 3. Then the Reeb vector field ξ belongs to the distribution
D if and only if M is locally congruent to an open part of a tube around a totally geodesic
HPn in G2(Cm+2), m = 2n, where the distribution D denotes the orthogonal complement of
D⊥ = Span{ξ1,ξ2,ξ3}.

On the other hand, to give some characterization of homogeneous hypersurfaces of
Type (A) and (B) in complex projective spaces CPn Kimura and Maeda [10] introduced
the notion of a η-parallel shape operator, which was defined by

(1.1) g((∇X A)Y,Z) = 0

for any vector fields X ,Y,Z orthogonal to the Reeb vector field ξ where g and ∇ denote
the induced Riemannian metric and the Levi-Civita connection, respectively. This kind of
notion was extended to Hopf hypersurfaces in complex hyperbolic space CHn by Suh [13].
As non-Hopf hypersurfaces in Mn(c) with η-parallel shape operator we can give a class
of ruled real hypersurfaces in Mn(c) (see [10] for c > 0 and [2] for c < 0, respectively).
Recently, Kon and Loo [11] gave a complete classification of real hypersurfaces in a non-
flat complex space form with η-parallel shape operator as follows:

Theorem 1.3. Let M be a real hypersurface in non-flat complex space form Mn(c), n ≥ 3.
Then M has a η-parallel shape operator if and only if it is locally congruent to a ruled real
hypersurface, or a real hypersurface of Type (A) or Type (B) from Takagi’s list or Montiel’s
list.

From such a point of view, naturally we ask the following problem:
Can we classify real hypersurfaces in a complex two-plane Grassmannian
G2(Cm+2) with η-parallel shape operator?

Corresponding to this problem, in this paper we give the following theorem:

Theorem 1.4 (Main Theorem). There does not exist any connected orientable Hopf hy-
persurface in G2(Cm+2), m ≥ 3 with η-parallel shape operator in Levi-Civita connection,
that is, g((∇X A)Y,Z) = 0 for any tangent vector fields X ,Y,Z ∈ h, where the distribution h
denotes the orthogonal complement of [ξ ] = Span{ξ}.
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Remark 1.1. Actually, in [6] the authors gave a characterization of D-invariant real hy-
persurfaces of Type (A), that is, a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) or a
ruled real hypersurface foliated by complex hypersurfaces which includes a maximal totally
geodesic submanifold G2(Cm+1) in G2(Cm+2) in terms of η-parallel shape operator.

Moreover, for a real hypersurface in a complex two-plane Grassmannian the authors
in [7] and [8] have introduced the notion of generalized Tanaka-Webster (in short, g-Tanaka-
Webster) connection ∇̂(k), where k is a non-zero real number. Then by using this connection,
we consider a η-parallel shape operator in g-Tanaka-Webster connection, that is,

(1.2) g((∇̂(k)
X A)Y,Z) = 0

for any vector fields X ,Y,Z orthogonal to the Reeb vector field ξ . We say that the shape op-
erator is generalized Tanaka-Webster η-parallel, if the shape operator A of M in G2(Cm+2)
satisfies the condition (1.2). Using this notion, we have the following corollary:

Corollary 1.1. There does not exist any connected orientable Hopf hypersurface in complex
two-plane Grassmannians G2(Cm+2), m ≥ 3 with generalized Tanaka-Webster η-parallel
shape operator.

In Section 2, we recall Riemannian geometry of complex two-plane Grassmannians
G2(Cm+2). In Section 3, the generalized Tanaka-Webster connection and some fundamental
formulas including the Codazzi equation for real hypersurfaces in G2(Cm+2) will be also
recalled. In Sections 4 and 5, we will give a complete proof of our main theorem according
to the geodesic Reeb flow satisfying ξ ∈ D⊥ or ξ ∈ D. In Section 6 we will show that
the generalized Tanaka-Webster η-parallel shape operator coincides with usual η-parallel
shape operator in G2(Cm+2). Finally, in Section 7, we will give the geometrical meaning of
the notion of η-parallel by using the relation between η-parallel and cyclic η-parallel.

2. Riemannian geometry of G2(Cm+2)

In this section, we summarize basic material about G2(Cm+2), for details we refer to [3–5].
By G2(Cm+2) we denote the set of all complex two-dimensional linear subspaces in Cm+2.
The special unitary group G = SU(m + 2) acts transitively on G2(Cm+2) with stabilizer
isomorphic to K = S(U(2)×U(m))⊂G. Then G2(Cm+2) can be identified with the homo-
geneous space G/K, which we equip with the unique analytic structure for which the natural
action of G on G2(Cm+2) becomes analytic. Denote by g and k the Lie algebra of G and
K, respectively, and by m the orthogonal complement of k in g with respect to the Cartan-
Killing form B of g. Then g = k⊕m is an Ad(K)-invariant reductive decomposition of g.
We put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since B is negative
definite on g, its negative restricted to m×m yields a positive definite inner product on m.
By Ad(K)-invariance of B this inner product can be extended to a G-invariant Riemannian
metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g such that
the maximal sectional curvature of (G2(Cm+2),g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective space CP2

with constant holomorphic sectional curvature eight. When m = 2, we note that the iso-
morphism Spin(6) ' SU(4) yields an isometry between G2(C4) and the real Grassmann
manifold G+

2 (R6) of oriented two-dimensional linear subspaces in R6. In this paper, we
will assume m≥3.
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The Lie algebra k has the direct sum decomposition k = su(m)⊕su(2)⊕R, where R de-
notes the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the center R induces
a Kähler structure J and the su(2)-part a quaternionic Kähler structure J on G2(Cm+2). If
Jν is any almost Hermitian structure in J, then JJν = Jν J, and JJν is a symmetric endomor-
phism with (JJν)2 = I and tr(JJν) = 0 for ν = 1,2,3.

A canonical local basis {J1,J2,J3} of J consists of three local almost Hermitian structures
Jν in J such that Jν Jν+1 = Jν+2 =−Jν+1Jν , where the index ν is taken modulo three. Since
J is parallel with respect to the Riemannian connection ∇̃ of (G2(Cm+2),g), there exist for
any canonical local basis {J1,J2,J3} of J three local one-forms q1,q2,q3 such that

(2.1) ∇̃X Jν = qν+2(X)Jν+1−qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).
The Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y + g(JY,Z)JX−g(JX ,Z)JY −2g(JX ,Y )JZ

+
3

∑
ν=1

{
g(JνY,Z)Jν X−g(Jν X ,Z)JνY −2g(Jν X ,Y )Jν Z

}
+

3

∑
ν=1

{
g(Jν JY,Z)Jν JX−g(Jν JX ,Z)Jν JY

}
,

(2.2)

where {J1,J2,J3} denotes a canonical local basis of J.

3. Some fundamental formulas

In this section, we introduce the generalized Tanaka-Webster connection and derive some
basic formulas including the Codazzi equation for a real hypersurface in G2(Cm+2) (see
[5, 7–9, 12]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2) with real
codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇

denotes the Riemannian connection of (M,g). Let N be a local unit normal vector field of
M and A the shape operator of M with respect to N. Now let us put

(3.1) JX = φX +η(X)N, Jν X = φν X +ην(X)N

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N denotes a
unit normal vector field of M in G2(Cm+2). From the Kähler structure J of G2(Cm+2) there
exists an almost contact metric structure (φ ,ξ ,η ,g) induced on M in such a way that

(3.2) φ
2X =−X +η(X)ξ , η(ξ ) = 1, φξ = 0, η(X) = g(X ,ξ )

for any vector field X on M. Furthermore, let {J1,J2,J3} be a canonical local basis of
J. Then the quaternionic Kähler structure Jν of G2(Cm+2), together with the condition
Jν Jν+1 = Jν+2 =−Jν+1Jν in section 1, induces an almost contact metric 3-structure (φν ,ξν ,
ην ,g) on M as follows:

φ
2
ν X =−X +ην(X)ξν , ην(ξν) = 1, φν ξν = 0,

φν+1ξν =−ξν+2, φν ξν+1 = ξν+2,

φν φν+1X = φν+2X +ην+1(X)ξν ,

φν+1φν X =−φν+2X +ην(X)ξν+1

(3.3)
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for any vector field X tangent to M. Moreover, from the commuting property of Jν J = JJν ,
ν = 1,2,3 in Section 2 and (3.1), the relation between these two contact metric structures
(φ ,ξ ,η ,g) and (φν ,ξν ,ην ,g), ν = 1,2,3, can be given by

(3.4) φφν X = φν φX +ην(X)ξ −η(X)ξν , ην(φX) = η(φν X), φξν = φν ξ .

On the other hand, as J is a Kähler structure, that is, ∇̃J = 0 and Jν a quaternionic Kähler
structure (see (2.1)), together with Gauss and Weingarten formulas it follows that

(3.5) (∇X φ)Y = η(Y )AX−g(AX ,Y )ξ , ∇X ξ = φAX ,

(3.6) ∇X ξν = qν+2(X)ξν+1−qν+1(X)ξν+2 +φν AX ,

(3.7) (∇X φν)Y =−qν+1(X)φν+2Y +qν+2(X)φν+1Y +ην(Y )AX−g(AX ,Y )ξν .

Using the above expression (2.2) for the curvature tensor R̃ of G2(Cm+2), the equation
of Codazzi is given by

(∇X A)Y − (∇Y A)X = η(X)φY −η(Y )φX−2g(φX ,Y )ξ

+
3

∑
ν=1

{
ην(X)φνY −ην(Y )φν X−2g(φν X ,Y )ξν

}
+

3

∑
ν=1

{
ην(φX)φν φY −ην(φY )φν φX

}
+

3

∑
ν=1

{
η(X)ην(φY )−η(Y )ην(φX)

}
ξν .

(3.8)

Now let us recall the g-Tanaka-Webster connection ∇̂(k) for real hypersurfaces in Kähler
manifolds as follows:

(3.9) ∇̂
(k)
X Y = ∇XY +g(φAX ,Y )ξ −η(Y )φAX− kη(X)φY

for a non-zero real number k (see [7] and [8]). In particular, if a real hypersurface sat-
isfies φA + Aφ = 2kφ , then the g-Tanaka-Webster connection coincides with the Tanaka-
Webster connection defined as the canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold.

4. Key lemma

From now on, we assume that M is a real hypersurface in G2(Cm+2) with η-parallel shape
operator with respect to Levi-Civita connection ∇. In other words, the shape operator A of
M satisfies the following condition

(4.1) g((∇X A)Y,Z) = 0

for any tangent vector fields X ,Y,Z on h where h denotes a distribution orthogonal to the
Reeb vector field ξ , that is, h = {X ∈ TxM | X⊥ξ}.

From the equation of Codazzi (3.8) and (4.1), we have
3

∑
ν=1

{
ην(X)g(φνY,Z)−ην(Y )g(φν X ,Z)−2g(φν X ,Y )ην(Z)

+ην(φX)g(φν φY,Z)−ην(φY )g(φν φX ,Z)
}

= 0

(4.2)
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for any tangent vector fields X ,Y,Z on h.
In this section, our main purpose is to show that the Reeb vector field ξ belongs to either

the distribution D or the orthogonal complement D⊥ such that TxM = D⊕D⊥ for any point
x ∈M. To show this fact, unless otherwise stated in this section, we consider that the Reeb
vector field ξ satisfies

(4.3) ξ = η(X0)X0 +η(ξ1)ξ1

for some unit X0 ∈D and ξ1 ∈D⊥ and η(X0)η(ξ1) 6= 0.
Now, under these situations, we will give the following lemma:

Lemma 4.1. Let M be a real hypersurface in complex two-plane Grassmannians G2(Cm+2),
m≥ 3 with η-parallel shape operator related to Levi-Civita connection of M. Then the Reeb
vector field ξ belongs to either the distribution D or the distribution D⊥.

Proof. Assume that a real hypersurface M has the η-parallel shape operator. From our
notation (4.3), we see that ξ2 ∈ h. Substituting Y = Z = ξ2 ∈ h in (4.2), we have

(4.4) 2η1(ξ )η1(φX) = 0, ∀X ∈ h.

Since φξ = 0, we see that the vector φX0 also belongs to distribution h. Thus putting
X = φX0 in (4.4), it follows

2η
2
1 (ξ )η(X0) = 0.

This gives a contradiction. Hence we complete the proof of our lemma.

5. The proof of main theorem

Let M be a Hopf hypersurface in G2(Cm+2) with η-parallel shape operator for Levi-Civita
connection ∇ on M. Then by Lemma 4.1 we consider the following two cases:

Case I: the Reeb vector field ξ belongs to the distribution D⊥,
Case II: the Reeb vector field ξ belongs to the distribution D.

First of all, let us consider the Case I, that is, ξ ∈D⊥. Accordingly, we may put ξ = ξ1.
Under these assumptions, we assert the following:

Theorem 5.1. There does not exist any Hopf hypersurface in G2(Cm+2), m ≥ 3, with η-
parallel shape operator for Levi-Civita connection when the Reeb vector field ξ belongs to
the distribution D⊥.

Proof. From our assumptions, the equation (4.2) can be written by

g
(
η2(X)φ2Y −η2(Y )φ2X−2g(φ2X ,Y )ξ2 +η2(φX)φ2φY −η2(φY )φ2φX

+η3(X)φ3Y −η3(Y )φ3X−2g(φ3X ,Y )ξ3 +η3(φX)φ3φY −η3(φY )φ3φX ,Z
)

= 0
(5.1)

for any tangent vectors X ,Y,Z ∈ h.
Let {e1,e2, · · · ,e4m−2,ξ} be an orthonormal basis of TxM = h⊕ [ξ ]. Let us denote by

WXY the tangent vector field on M given by

WXY = η2(X)φ2Y −η2(Y )φ2X−2g(φ2X ,Y )ξ2 +η2(φX)φ2φY −η2(φY )φ2φX

+η3(X)φ3Y −η3(Y )φ3X−2g(φ3X ,Y )ξ3 +η3(φX)φ3φY −η3(φY )φ3φX

for any tangent vectors X ,Y ∈ h.
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From the equation (5.1), the tangent vector WXY ∈ TxM becomes

WXY =
4m−2

∑
j=1

g(WXY , e j)e j +η(WXY )ξ

= g
(
η2(X)φ2Y −η2(Y )φ2X−2g(φ2X ,Y )ξ2 +η2(φX)φ2φY −η2(φY )φ2φX

+η3(X)φ3Y −η3(Y )φ3X−2g(φ3X ,Y )ξ3 +η3(φX)φ3φY −η3(φY )φ3φX ,ξ
)
ξ

= 4
{

η2(X)η3(Y )−η3(X)η2(Y )
}

ξ ,

that is,
η2(X)φ2Y −η2(Y )φ2X−2g(φ2X ,Y )ξ2 +η2(φX)φ2φY −η2(φY )φ2φX

+η3(X)φ3Y −η3(Y )φ3X−2g(φ3X ,Y )ξ3 +η3(φX)φ3φY −η3(φY )φ3φX

= 4
{

η2(X)η3(Y )−η3(X)η2(Y )
}

ξ

(5.2)

for any tangent vectors X ,Y ∈ h.
Taking the inner product with ξ2 in (5.2), we have g(φ2X ,Y ) = 0 for X ,Y ∈ h. Thus we

obtain that

(5.3) φ2X =
4m−2

∑
j=1

g(φ2X ,ei)ei +g(φ2X ,ξ )ξ = η3(X)ξ

for any tangent vector field X ∈ h where {e1 = ξ2,e2 = ξ3,e3,e4, · · · ,e4m−2} is an orthonor-
mal basis of h. Using (3.3), it follows that

(5.4) X = η2(X)ξ2 +η3(X)ξ3, ∀X ∈ h.

From this, we obtain that any vector e j is zero for j = 3,4, · · · ,4m−2. By the constitution
of tangent vector space TxM, we see that dimM = 3. But, since we consider the dimension
of M is 4m−1 where m≥ 3, we can assert our theorem.

Remark 5.1. Now, we define a new notion related to the parallelism of shape operator on a
real hypersurface M in G2(Cm+2), namely, D-parallel shape operator. That is, if the shape
operator A of M satisfies the condition (4.1) for X ,Y,Z ∈D then we say that A is D-parallel.
Furthermore, when a real hypersurface M in G2(Cm+2) has such a shape operator, M is said
to be a D-parallel hypersurface. Using the derivative formula of the shape operator for real
hypersurfaces of Type (A) in Theorem 1.1, it can be easily verified that the shape operator
of this type is D-parallel, but not η-parallel (see [5, 6]).

Next we consider the case ξ ∈ D. Then, by Theorem 1.3, we see that M is locally
congruent to a real hypersurface of Type (B) under our assumptions. Thus from now on,
let us check whether the shape operator A for real hypersurfaces of Type (B) satisfies the
condition (4.1) for any tangent vector fields X ,Y,Z ∈ h. In order to solve this problem, let
us recall the following proposition given by Berndt and Suh in [4]:

Proposition 5.1. Let M be a connected real hypersurface of G2(Cm+2). Suppose that AD⊂
D, Aξ = αξ , and ξ is tangent to D. Then the quaternionic dimension m of G2(Cm+2) is
even, say m = 2n, and M has five distinct constant principal curvatures

α =−2tan(2r), β = 2cot(2r), γ = 0, λ = cot(r), µ =− tan(r)

with some r ∈ (0,π/4). The corresponding multiplicities are

m(α) = 1, m(β ) = 3 = m(γ), m(λ ) = 4n−4 = m(µ)
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and the corresponding eigenspaces are

Tα = Rξ = Span
{

ξ
}
, Tβ = JJξ = Span

{
ξν | ν = 1,2,3

}
,

Tγ = Jξ = Span
{

φν ξ | ν = 1,2,3
}
, Tλ , Tµ ,

where
Tλ ⊕Tµ = (HCξ )⊥, JTλ = Tλ , JTµ = Tµ , JTλ = Tµ .

The distribution (HCξ )⊥ is the orthogonal complement of HCξ where

HCξ = Rξ ⊕RJξ ⊕Jξ ⊕JJξ .

Let us denote by MB hypersurface in G2(Cm+2) mentioned in Proposition A. Suppose
MB has η-parallel shape operator. From Proposition A we see that four eigenspaces Tβ , Tγ ,
Tλ and Tµ belong to the distribution h. It follows that Y ∈ h and AY = βY for any tangent
vector field Y ∈ Tβ . From this, differentiating with respect to any direction X ∈ TxMB, we
get

(∇X A)Y = β (∇XY )−A(∇XY ).

Taking the inner product with Z ∈ Tλ ⊂ h, it follows

g
(
(∇X A)Y,Z

)
= βg(∇XY,Z)−g

(
A(∇XY ),Z

)
= βg(∇XY,Z)−λg(∇XY,Z) = (β −λ )g(∇XY,Z)

(5.5)

for any tangent vector fields X ∈ TxMB, Y ∈ Tβ and Z ∈ Tλ . Now since Y ∈ Tβ , we may put
Y = ξµ (µ = 1,2,3). Then from (3.6), we have

g(∇XY,Z) = g(∇X ξµ ,Z) = g(φµ AX ,Z), µ = 1,2,3

for X ∈ TxMB, Y ∈ Tβ and Z ∈ Tλ .
On the other hand, we know that φµ Z ∈ Tλ for Z ∈ Tλ . Thus, we get

(5.6) g(∇XY,Z) =−g(Aφµ Z,X) =−λg(φµ Z,X), µ = 1,2,3

for X ∈ TxMB, Y ∈ Tβ and Z ∈ Tλ .
From (5.5) and (5.6), our assumption that MB has η-parallel shape operator implies that

(5.7) λ (λ −β )g(φµ Z,X) = 0, µ = 1,2,3

for any X ∈ h, Y ∈ Tβ and Z ∈ Tλ .
Replacing X by φµ Z ∈ Tλ ⊂ h in (5.7), we have

λ (λ −β ) = 0.

But, from Proposition 5.1, we see that λ 2− λβ = 1 for some r ∈ (0,π/4). This gives a
contradiction. So this case can not occur.

Therefore we give the following:

Lemma 5.1. The shape operator A of a real hypersurface of Type (B) in G2(Cm+2) does
not satisfy the η-parallel condition (4.1).

As mentioned before, by virtue of Theorem 1.3, when ξ ∈ D we see that M is locally
congruent to a real hypersurface of Type (B) under our assumptions. But a real hypersurface
of Type (B) does not have η-parallel shape operator (see Lemma 5.1). From these facts, we
obtain the following theorem:
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Theorem 5.2. There does not exist any Hopf hypersurface in G2(Cm+2), m ≥ 3, with η-
parallel shape operator in Levi-Civita connection, when the Reeb vector field ξ belongs to
the distribution D.

Summing up Lemma 4.1, and Theorems 5.1 and 5.2, we give a complete proof of Theo-
rem 1.4.

6. The proof of Corollary 1.1

In this section, we consider the condition of η-parallel shape operator with respect to gen-
eralized Tanaka-Webster connection defined on real hypersurfaces of complex two-plane
Grassmannians, that is,

(6.1) g
(
(∇̂(k)

X A)Y,Z
)

= 0

for any tangent vector fields X ,Y,Z ∈ h where h = {X ∈ TxM | X⊥ξ}.

Proposition 6.1. Let M be a Hopf hypersurface in G2(Cm+2), m≥ 3. If the shape operator
A of M satisfies the η-parallel shape operator for generalized Tanaka-Webster connection,
then A becomes η-parallel shape operator for Levi-Civita connection.

Proof. First, in order to prove this proposition, we introduce the following fundamental
equation for covariant derivative of shape operator with respect to generalized Tanaka-
Webster connection:

(∇̂(k)
X A)Y = (∇X A)Y +g(φAX ,AY )ξ −η(AY )φAX− kη(X)φAY

−g(φAX ,Y )Aξ +η(Y )AφAX + kη(X)AφY
(6.2)

for any tangent vector fields X ,Y on M (see [7,8]). This equation is derived from the defini-
tion of generalized Tanaka-Webster connection for a real hypersurface on Kähler manifolds,
∇̂

(k)
X Y = ∇XY +g(φAX ,Y )ξ −η(Y )φAX− kη(X)φY (see (3.9)).
Restricting X ,Y ∈ h in (6.2), it can be written by

(∇̂(k)
X A)Y = (∇X A)Y +g(φAX ,AY )ξ −αg(φAX ,Y )ξ

for X ,Y ∈ h. Taking inner product with Z ∈ h, we have

g((∇̂(k)
X A)Y,Z) = g((∇X A)Y,Z)

for X ,Y and Z ∈ h. Thus we can assert our Proposition 6.1.
From this proposition and the proof of Theorem 1.4 in Sections 4 and 5, we give a

complete proof of Corollary 1.1.

7. The geometrical meaning of η-parallel shape operator

Let M̄ be a Riemannian manifold with the Riemannian metric G and Riemannian connection
∇̄. Let M be a real hypersurface of M̄ with induced metric g and induced Riemannian
connection ∇. Since M is a real hypersurface of M̄, there exist only one normal vector field
N on M in M̄. Thus we have the following two formulae:

∇̄XY = ∇XY +g(AX ,Y )N (Gauss formula)(7.1)

∇̄X N =−AX (Weingarten formula)

for arbitrary tangent vector fields X , Y on M.
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Now, we introduce some notion for parallelism of shape operator: A real hypersurface
M is called cyclic parallel (or cyclic η-parallel, resp.) if it satisfies

SX ,Y,Zg((∇X A)Y,Z) = g((∇X A)Y,Z)+g((∇Y A)Z,X)+g((∇ZA)X ,Y ) = 0

for any tangent vector fields X ,Y,Z on M (or X ,Y,Z ∈ h, resp.).
Under these situations, for arbitrary geodesic γ on M, we assert:

Lemma 7.1. The shape operator A of M is cyclic parallel if and only if

(C1)

{
the first curvature function of γ as a curve in the ambient space M̄ is
a constant function.

Proof. Assume that the first curvature function for an arbitrary geodesic γ being considered
as a curve in M̄ is constant. It means by definition, ∇̄γ̇ γ̇ has constant length in M̄, that
is, G(∇̄γ̇ γ̇, ∇̄γ̇ γ̇) is constant on the interval I. From the Gauss formula in (7.1), we have
G(∇̄γ̇ γ̇, ∇̄γ̇ γ̇) = g(Aγ̇, γ̇)2. Hence our assumption is equivalent to the constancy of g(Aγ̇, γ̇)
on I. By differentiation and using ∇γ̇ γ̇ = 0, we obtain g((∇γ̇ A)γ̇, γ̇) = 0 on I. Therefore our
assumption is equivalent to

(7.2) g((∇X A)X ,X) = 0

for any tangent vector X of M. Using the linearity of the Riemannian connection, it follows
that

(7.3) g
(
(∇X+Y+ZA)(X +Y +Z),X +Y +Z

)
= 2SX ,Y,Zg((∇X A)Y,Z) = 0,

where we have used

g
(
(∇X+Y A)(X +Y ),X +Y

)
= g((∇X A)X ,Y )+g((∇X A)Y,X)+g((∇X A)X ,Y )

+g((∇Y A)X ,X)+g((∇Y A)X ,Y )+g((∇X A)Y,Y )

for tangent vector fields X ,Y,Z on M. Therefore, we can assert M is cyclic parallel under
our assumption. The converse is trivial if we put X = Y = Z for arbitrary tangent vector
fields X ,Y,Z ∈ TpM.

By virtue of Lemma 7.1, it can be written by

Lemma 7.2. The shape operator A of M is cyclic η-parallel if and only if

(C2)

{
every geodesic γ as a curve in M̄ has constant first curvature
where γ(0) = p ∈M and γ̇(0) = X ∈ TpM for X⊥ξ .

From now on, in order to give the geometrical meaning of η-parallel shape operator
of a real hypersurface M in G2(Cm+2), let us restrict tangent vectors X ,Y and Z to the
distribution h where h = {X ∈ TpM | X⊥ξ , p ∈ M} and put M as a real hypersurface in
G2(Cm+2) with η-parallel shape operator. From the definition of η-parallel, we know that
M naturally becomes cyclic η-parallel.

Summing up this fact and Lemma 7.2, we obtain the geometrical meaning of η-parallel
as follows:

Lemma 7.3. Let M be a real hypersurface in G2(Cm+2) with η-parallel shape operator,
m≥ 3. Then every geodesic γ of M in G2(Cm+2) satisfies the condition (C2).
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By virtue of the equation of Codazzi (3.8), we know that any cyclic η-parallel hypersur-
face in G2(Cm+2) can not be η-parallel. From such a view point, the converse of Lemma 7.3
does not hold.

Remark 7.1. As a ambient space, let us consider a complex projective space CPn. Then
from the equation of Codazzi,

(∇X A)Y − (∇Y A)X = η(X)φY −η(Y )φX−2g(φX ,Y )ξ ,

it follows that
g((∇X A)Y,Z) = g((∇Y A)X ,Z), ∀X ,Y,Z ∈ h.

Furthermore, it implies that

SX ,Y,Zg((∇X A)Y,Z) = 3g((∇X A)Y,Z)

for any tangent vectors X ,Y,Z ∈ h. Thus we assert the following facts:
(1) When M is a η-parallel hypersurface in CPn, it coincide with cyclic η-parallel ones.
(2) A real hypersurface M in CPn is η-parallel if and only if every geodesic γ has constant

first curvature where the curve γ : I→M in CPn has the initial conditions γ(0) = p∈M
and γ̇(0) = X ∈ TpM for X⊥ξ .

(3) A real hyperesurface M in CPn is locally congruent to a real hypersurface of type A or
B, or a ruled real hypersurface if and only if for every geodesic γ on M the first curvature
function of γ in CPn is a constant function (see [11]).
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