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Abstract. A boundary integral equation method for numerical evaluation of the conformal
mapping and its inverse from unbounded multiply connected regions onto five canonical slit
regions is presented in this paper. This method is based on a uniquely solvable boundary
integral equation with the adjoint generalized Neumann kernel. This method is accurate
and reliable. Some numerical examples are presented to illustrate the effectiveness of this
method.
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1. Introduction

In this paper, we present a unified method for univalent conformal mapping and its inverse of
unbounded multiply connected regions onto five canonical slit regions. Conformal mapping
plays an important role in the fields of sciences and engineering. Applications of conformal
slit maps in applied mathematics, e.g., point vortices and sources in ideal flow, Hele-Shaw
flows or Laplacian growth problems and hollow vortices have been reviewed recently in [7].

Exact conformal maps are known only for certain regions. Therefore, numerous re-
searchers have applied numerical method to overcome this limitation. Trefethen [30] has
discussed several methods for computing conformal mapping numerically. Generally, these
methods are based on expansion methods, iterative methods and integral equation methods.

There exist several classes of canonical regions with regards to conformal mapping of
multiply connected regions as listed in [3,14,15,24,34]. The famous five canonical regions
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are: disk with circular slits region Ud , annulus with circular slits region Ua, circular slits
region Uc, radial slits region Ur, and parallel slits region Up. These classes of canonical
regions have been studied by several authors for the cases of bounded or unbounded multiply
connected regions (see [1, 2, 6, 9, 10, 25–29, 32, 35]).

The multiply connected circular region (a region all of whose boundaries are circles)
is itself a canonical region region for conformal mapping of multiply connected regions
(see [5, 6, 9–11, 14, 31, 32]). Wegmann method [31] and Fornberg-like methods [5, 6] are
examples of iterative methods which can be used for computing the conformal mapping
from multiply connected circular regions to multiply connected region whose boundaries
are smooth curves (see also [12, 32]). Analytical formulae for the mapping of bounded
multiply connected circular region onto the canonical class mentioned above have been
given in [9]. These mapping functions were found in terms of a special function called the
Schottky-Klein prime function. Crowdy [8] used also the Schottky-Klein prime function to
give analytical formulae, dependent on just a finite set of so-called accessory parameters, for
the conformal mapping from a circular multiply connected domain to a bounded multiply
connected polygon. Crowdy’s formula (see [8, Equation(1.1)]) is the natural extension of
the classical Schwarz-Christoffel formula to a simply connected polygon.

Amano [1] have successfully mapped unbounded multiply connected regions onto circu-
lar slit regions and radial slit regions by means of charge simulation methods. Nasser [17,18]
managed to map bounded and unbounded multiply connected regions onto these five canon-
ical regions by reformulating the mapping function as a Riemann-Hilbert problem which is
solved by means of boundary integral equation with the generalized Neumann kernel. The
right-hand side of the integral equation involves integral with cotangent singularity which is
approximated by Wittich’s method. The integral equation was discretized by the Nyström
method with the trapezoidal rule to obtain a dense and non-symmetric linear system. The
obtained linear system was solved in [17, 18] using the Gauss elimination method of order
O((mn)3) operations where m is the multiplicity of the multiply connected region and n is
the number of nodes in the discretization of each boundary components. Hence, it is im-
possible to solve the linear system for large values of m and n. In the recent paper [19], the
linear system is solved using the generalized minimum residual (GMRES) method powered
by the fast multipole method (FMM). The new solution procedure requires only O(mn lnn)
operations. This gives the authors in [19] a fast method of boundary integral equation with
the generalized Neumann kernel to compute conformal mapping of multiply connected re-
gions of high connectivity.

The approach used in [17, 18] has been used by Nasser et al. [20] to derive a boundary
integral equation with the adjoint generalized Neumann kernel to compute numerically the
conformal mapping and its inverse from bounded multiply connected regions onto the above
five canonical slit regions. The boundary integral equation with the adjoint generalized
Neumann kernel has been derived by reformulating the mapping function as an adjoint
Riemann-Hilbert problem.

Murid and Hu [16] managed to map a bounded multiply connected region onto a unit
disk with slits via boundary integral equation method. However, the integral equation in-
volves unknown conformal moduli which lead to a system of nonlinear algebraic equation
upon discretization of the integral equation. Sangawi et al. [25–29] managed to overcome
this nonlinearity problem and later extended [16] work for numerical conformal mapping
of bounded multiply connected regions onto the above five canonical slit regions. Recently,
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Yunus et al. [35] managed to extend Sangawi et al. method [16, 25–29] to unbounded
multiply connected regions onto the above five canonical slit regions in a unified way. This
method is based on solving three linear integral equations separately before one can approx-
imate the boundary values of the mapping function. These boundary integral equations are
constructed from a boundary relationship satisfied by an analytic function on an unbounded
multiply connected region.

In this paper, we present a new method for approximating numerical conformal map-
ping of unbounded multiply connected regions onto the above five canonical slit regions
and its inverse mapping in a unified way via a boundary integral equation with the adjoint
generalized Neumann kernel. Only the right-hand side of the integral equation is different
from a canonical region to another. The plan of this paper is as follows: Section 2 presents
some notations and auxiliary materials. Section 3 presents a method for finding an un-
known function S(t) in connection with conformal mapping. In Sections 4–8, we present
the derivation for numerical conformal mapping for all five types of canonical regions. In
Section 9, we give some examples to illustrate the effectiveness of our method. Finally,
Section 10 presents a short conclusion.

2. Notations and auxiliary materials

Let Ω− be an unbounded multiply connected region of connectivity m. The boundary Γ
consists of m smooth Jordan curves Γ j, j = 1,2, . . . ,m i.e., Γ = Γ1 ∪Γ2 ∪ ·· · ∪Γm. The
boundaries Γ j are assumed to be in clockwise orientation (see Figure 1). The curve Γ j
is parameterized by 2π-periodic twice continuously differentiable complex function η j(t)
with non-vanishing first derivative, i.e.,

η ′j(t) =
dη j(t)

dt
6= 0, t ∈ J j = [0,2π] , k = 1, . . . ,m.

The total parameter domain J is the disjoint union of m intervals J1, . . . ,Jm. We define a
parameterization η of the whole boundary Γ on J by

η(t) =





η1(t), t ∈ J1 = [0,2π] ,
...

ηm(t), t ∈ Jm = [0,2π] .
(2.1)

Let Φ(z) be the conformal mapping function that maps Ω− onto U− , where U− repre-
sents any of the canonical regions mentioned above, z j is a prescribed point located inside
Γ j, j = 1,2, . . . ,m and β is prescribed point located in Ω−. In this paper, we determine the
mapping function Φ(z) by computing two unknown real functions on J, a function S(t) and
a piecewise constant real function R(t). Let H be the space of all real Hölder continuous
2π -periodic function and L be the subspace of H which contains the piecewise real constant
functions R(t). The unknown function S(t) for the function Φ(z) shall be written as

S(t) =





S1(t), t ∈ J1,
...

Sm(t), t ∈ Jm.

(2.2)
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Figure 1. An unbounded multiply connected region Ω− with connectivity m

The piecewise constant real function R(t) is written as

R(t) =





R1, t ∈ J1,
...

Rm, t ∈ Jm,

(2.3)

or briefly written as R(t) = (R1, . . . ,Rm). Let A(t) be a complex continuously differentiable
2π-periodic function for all t ∈ J. We define two real kernels formed with A as [33]

N(s, t) =
1
π

Im
(

A(s)
A(t)

η ′(t)
η(t)−η(s)

)
,

M(s, t) =
1
π

Re
(

A(s)
A(t)

η ′(t)
η(t)−η(s)

)
.

The kernel N(s, t) is known as the generalized Neumann kernel formed with a complex-
function A and η . The kernel N(s, t) is continuous with

N(t, t) =
1
π

Im
(

1
2

η ′′(t)
η ′(t)

− A′(t)
A(t)

)
.

The kernel M(s, t) has a cotangent singularity

M(s, t) =− 1
2π

cot
s− t

2
+M1(s, t),

where, the kernel M1(s, t) is continuous with

M1(t, t) =
1
π

Re
(

1
2

η ′′(t)
η ′(t)

− A′(t)
A(t)

)
.

The adjoint function Ã of A is defined by

(2.4) Ã =
η ′(t)
A(t)

.
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Then the generalized Neumann kernel Ñ(s, t) and the real kernel M̃ formed with Ã is defined
by

(2.5) Ñ(s, t) =
1
π

Im
(

Ã(s)
Ã(t)

η ′(t)
η(t)−η(s)

)
,

(2.6) M̃(s, t) =
1
π

Re
(

Ã(s)
Ã(t)

η ′(t)
η(t)−η(s)

)
.

Then,

(2.7) Ñ(s, t) =−N∗(s, t) and M̃(s, t) =−M∗(s, t),

where N∗(s, t) = N(t,s) is the adjoint kernel of the generalized Neumann kernel N(s, t). We
define the Fredholm integral operators N∗ by

N∗υ(t) =
∫

J
N∗(t,s)υ(s)ds, t ∈ J.

Throughout this paper, we shall assume the function A and Ã are given by

(2.8) A(t) = 1 and Ã(t) = η ′(t).

It is known that λ = 1 is not an eigenvalue of the kernel N and λ = −1 is an eigenvalue
of the kernel N with multiplicity m [33]. The eigenfunctions of N corresponding to the
eigenvalue λ =−1 are

{
χ [1],χ [2], . . . ,χ [m]

}
, where

χ [ j](ξ ) =
{

1, ξ ∈ Γ j,
0, otherwise, j = 1,2, . . . ,m.

We also define an integral operator J by (see [25])

(2.9) Jµ(s) :=
∫

J

1
2π

m

∑
j=1

χ [ j](s)χ [ j](t)µ(t)dt.

The following theorem [20] gives us a method for calculating the piecewise constant real
function h(t) in connection with conformal mapping later. The proof of this theorem is
reproduced for convenience.

Theorem 2.1. Let γ,µ ∈ H and h,ν ∈ L such that

(2.10) A f = γ +h+ i[µ +ν ]

are boundary values of a function f (z) analytic in Ω− with f (∞) = 0. Then the functions
h = (h1,h2, . . . ,hm) and ν = (ν1,ν2, . . . ,νm) have each element given by

h =
m

∑
k=1

(
γ,ϑ [k]

)
χ [k],(2.11)

ν =
m

∑
k=1

(
µ,ϑ [k]

)
χ [k],(2.12)

where ϑ [k] is the unique solution of the integral equation

(2.13) (I+N∗+J)ϑ [k] =−χ [k], k = 1,2, . . . ,m.
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Proof. Formula (2.11) is an extension of [21, Theorem 5]. For (2.12), the function f̂ (z) :=
−i f (z) is analytic in Ω− with f̂ (∞) = 0 and has the boundary values

(2.14) A f̂ = µ +ν + i(−γ−h).

Then (2.12) follows from [21, Theorem 5].

3. Computing the unknown function S(t)

Suppose that S(t), t ∈ J, is the unknown function in connection of conformal mapping from
Ω− onto any of the canonical regions listed above. Let ϕ(t) be the derivative of the unknown
function S(t) which shall be calculated by using the following theorem given in [20]. The
proof of this theorem is reproduced for convenience.

Theorem 3.1. Let υ ,ϕ,ψ,φ ∈H, f (z) be analytic in Ω− with f (∞) = 0 and g(z) be analytic
in Ω+ such that the boundary values of the functions f and g are given by

(3.1) Ã(t) f (η(t))+ Ã(t)g(η(t)) = υ + iϕ,

where the function Jϕ is a given function defined as

(3.2) Jϕ = h̃ = (h̃1, . . . , h̃m).

Let also the boundary values of the function g satisfy

(3.3) Ã(t)g(η(t)) = ψ + iφ .

Then the function ϕ is the unique solution of the integral equation

(3.4) (I+N∗+J)ϕ = M∗υ +2φ + h̃.

Proof. It follows from (3.1) and from (3.3) the boundary values of the function f are given
by

(3.5) Ã(t) f (η(t)) = (υ−ψ)+ i(ϕ−φ).

Then, in view of (3.5), it follows from [22, Theorem 1] that the function ϕ−φ satisfies the
integral equation

(3.6) (I+N∗)(ϕ−φ) = M∗(υ−ψ),

and from [33, Theorem 2(d)] that the function φ satisfies the integral equation

(3.7) (I−N∗)φ =−M∗ψ.

Subtracting (3.7) form (3.6) yields the integral equation

(3.8) (I+N∗)ϕ = 2φ +M∗υ .

By adding (3.2) to (3.8), we obtain (3.4).
For j = 1, . . . ,m, the functions S j(t) can be written as a summation of ϕ and ν j,

(3.9) S j(t) =
∫

ϕ(t)dt +ν j = ρ j(t)+ν j, t ∈ J j,

where ν j are undetermined real constants and shall be calculated by Theorem 2.1. The
derivative of the the unknown function S(t)i.e. ϕ(t) is 2π-periodic. Thus, the function ϕ(t)
can be represented by a Fourier series

(3.10) ϕ(t) = a[ j]
0 +

∞

∑
k=1

a[ j]
k coskt +

∞

∑
k=1

b[ j]
k sinkt, t ∈ J j.
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Hence the functions ρk(t) can be calculated by the Fourier series representation

(3.11) ρ j(t) = a[ j]
0 t +

∞

∑
k=1

a[ j]
k
k

sinkt−
∞

∑
k=1

b[ j]
k
k

coskt, t ∈ J j.

By obtaining ρ(t) and ν(t), we can have S(t) by (3.9).

4. An annulus with circular slits region

We assume that Φ maps the curve Γ1 onto the unit circle |w|= 1, the curve Γm onto the circle
|w| = Rm and the curves Γ j, j = 2,3, . . . ,m− 1, onto circular slits on the circles |w| = R j,
where R2, . . . ,Rm are undetermined real constants. The boundary values of the mapping
function Φ are given by

(4.1) Φ(η(t)) = R(t)eiS(t),

where S(t) is the boundary correspondence function of Φ(η(t)) and R(t) = (1,R2, . . . ,Rm).
Thus, by taking logarithmic differentiation on both sides of (4.1), we get

(4.2) η ′(t)
Φ′(η(t))
Φ(η(t))

= iS′(t).

The mapping function Φ(z) can be uniquely determined by assuming

(4.3) c = Φ(∞) > 0,

where c is an undetermined positive real constant. Thus the mapping function Φ(z) can be
expressed in the form

(4.4) Φ(z) = c
(

z− zm

z− z1

)
eF(z),

where z1 is a fixed point in Γ1, zm is a fixed point in Γm and F(z) is an analytic function with
F(∞) = 0. Hence by taking logarithm onto (4.4), we have

(4.5) F(η(t))+ lnc+ log
(

η(t)− zm

η(t)− z1

)
= log(Φ(η(t))).

In view of (2.8), (3.1) and (3.9), then it can be shown that (4.1) and (4.5) satisfy the boundary
values (2.10) with

(4.6) A(t)F(η(t)) = γ(t)+h(t)+ i[(ρ(t)+ µ(t))+ν(t)],

where

h(t) =(ln
1
c
, ln

R2

c
, . . . , ln

Rm

c
),

ν(t) =(c1,c2, . . . ,cm),

and the function γ + iµ is defined by

(4.7) γ(t)+ iµ(t) =− log
(

η(t)− zm

η(t)− z1

)
.

Then, by Theorem 2.1, we can find the values h j and ν j. The piecewise real constants R j
can be calculated by

(4.8) R j = eh j−h1 .
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Next, by differentiating both sides of (4.5) and using (4.2), we obtain

(4.9) η ′(t)F ′(η(t))+η ′(t)
(

1
η(t)− zm

− 1
η(t)− z1

)
= iS′(t).

The function f (z) defined in Ω− by

(4.10) f (z) = F ′(z)+
1

z− zm
− 1

z− z1

and the function g(z) defined in Ω+ with g(z) = 0 satisfy the boundary values and assump-
tions in Theorem 3.1 with

(4.11) υ(t) = 0 and ϕ(t) = S′(t).

Since the image of the curve Γ1 is counterclockwise oriented, the image of the curve Γm
is clockwise oriented and the images of the curves Γ j, j = 2, . . . ,m− 1, are slits which
are traversed-twice, we have S1(2π)− S1(0) = 2π , Sm(2π)− Sm(0) = −2π and S j(2π)−
S j(0) = 0. Hence the function h̃(t) in (3.2) is given by

(4.12) h̃(t) = Jϕ = JS′ = (1,0, . . . ,−1).

Then, by Theorem 3.1, the function S′(t) is the unique solution of the integral equation

(4.13) (I+N∗+J)S′ = h̃(t).

The function S(t) is determined from S′(t) and ν(t) by using the method described in Sec-
tion 3. Hence, by obtaining all these information, the mapping function at the boundary
points can be obtained by using (4.1). For computing the mapping functions of the interior
points z ∈Ω−, we have [13]

(4.14) w = Φ(z) = Φ(∞)+
1

2πi

∫

Γ

Φ(η)
η− z

dη = c+
1

2πi

∫

J

R(t)eiS(t)

η(t)− z
η ′(t)dt.

The function Φ−1 is analytic in the region Ua with a simple pole at w = c. Thus the function

Φ̂(w) = (w− c)Φ−1(w)

is analytic in Ua. Hence, by the Cauchy’s integral formula, we have

(4.15) z = Φ−1(w) =
1

w− c
1

2πi

∫

∂Ua

ξ − c
ξ −w

Φ−1(ξ )dξ .

By introducing ξ (t) = R(S(t))eiS(t), we obtain

(4.16) z = Φ−1(w) =
1

2π

∫

J

1
w− c

R(t)eiS(t)− c
R(t)eiS(t)−w

η(t)R(t)eiS(t)S′(t)dt.

5. A disc with circular slits region

This canonical region is the interior of the unit circle along with m− 1 circular arcs. We
assume that Φ maps the curve Γ1 onto the unit circle |w|= 1 and the curves Γ j, j = 2, . . . ,m,
onto circular slits on |w|= R j, where R1, . . . ,Rm are undetermined real constants. This class
of canonical region almost have the same geometrical meaning with the canonical region in
Section 4, the only difference is that the inner circle in Section 4 will now become a circular
slit. Then, the boundary values of the mapping function Φ are given by

(5.1) Φ(η(t)) = R(t)eiS(t),
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where S(t) is the boundary correspondence function and R(t) = (1,R2, . . . ,Rm). Thus, by
logarithmic differentiation both sides of (5.1), we obtain

(5.2) η ′(t)
Φ′(η(t))
Φ(η(t))

= iS′(t).

The mapping function Φ(z) can be uniquely determined by assuming

(5.3) Φ(∞) = 0, lim
z→∞

zΦ(z) > 0.

Thus the mapping function Φ(z) can be expressed in the form

(5.4) Φ(z) =
c

z− z1
eF(z)

where c = limz→∞ zΦ(z) is an undetermined positive real constant and F(z) is an analytic
function with F(∞) = 0. Hence

(5.5) F(η(t))+ lnc− log(η(t)− z1) = log(Φ(η(t))).

By using the same procedure as in previous section, we can show that (5.1) and (5.5) satisfy
boundary values (2.10) with

(5.6) A(t)F(η(t)) = γ(t)+h(t)+ i[(ρ(t)+ µ(t))+ν(t)],

where

h(t) = (ln
1
c
, ln

R2

c
, . . . , ln

Rm

c
),

ν(t) = (c1,c2, . . . ,cm),

γ(t)+ iµ(t) = log(η(t)− z1).

The values of h j and ν j can be obtained by using Theorem 2.1. Then, the values of R j can
be computed by

R j = eh j−h1 for j = 1,2, . . . ,m.

To determine S′(t), we begin by differentiating both sides of (5.5) and using (5.2), which
yield

(5.7) η ′(t)F ′(η(t))−η ′(t)
1

η(t)− z1
= iS′(t).

The function f (z) defined in Ω− by

(5.8) f (z) = F ′(z)− 1
z− z1

,

and the function g(z) defined in Ω+ by g(z) = 0 satisfy the assumptions and the boundary
values in Theorem 3.1 with

(5.9) υ(t) = 0 and ϕ(t) = S′(t).

Since the image of the curve Γ1 is counterclockwise oriented and the images of the curves
Γ j, j = 2, . . . ,m, are traversed-twice slits so we have S1(2π)− S1(0) = 2π and S j(2π)−
S j(0) = 0. Hence the function h̃(t) in (3.2) is given by

(5.10) h̃(t) = Jϕ = JS′ = (1,0, . . . ,0).



10 A. A. M. Yunus, A. H. M. Murid and M. M. S. Nasser

Then, by Theorem 3.1, the function S′(t) is the unique solution of the integral equation

(5.11) (I+N∗+J)S′ = h̃(t).

For the z ∈Ω−, by the Cauchy’s integral formula, we have

(5.12) w = Φ(z) = Φ(∞)+
1

2πi

∫

Γ

Φ(η)
η− z

dη =
1

2πi

∫

J

R(t)eiS(t)

η(t)− z
η ′(t)dt.

To compute the inverse mapping function, note that Φ−1 is analytic in the region Ud with a
simple pole at w = 0. Thus the function

Φ̂(w) = wΦ−1(w)

is analytic in Ud . Hence, by using the same procedure as in Section 4, we get

(5.13) z = Φ−1(w) =
1

2π

∫

J

1
w

R(t)eiS(t)

R(t)eiS(t)−w
η(t)R(t)eiS(t)S′(t)dt.

6. Circular slits region

This canonical region is the entire w-plane with m circular slits along the circles |w| =
Rk where R1, . . . ,Rm are undetermined real constants. Then, the boundary values of the
mapping function Φ are given by

(6.1) Φ(η(t)) = R(t)eiS(t),

where S(t) is the boundary corresponding function and R(t) = (R1, . . . ,Rm). Thus, by loga-
rithmic differentiation to both sides of (6.1), we obtain

(6.2) η ′(t)
Φ′(η(t))
Φ(η(t))

= iS′(t).

The mapping function Φ can be uniquely determined by assuming

(6.3) Φ(α) = 0, Φ(∞) = ∞, lim
z→∞

Φ(z)
z

= 1,

where α is a fixed point in Ω−. Then Φ can be written as

(6.4) Φ(z) = (z−α)eF(z),

where F(z) is an analytic function with F(∞) = 0. Hence

(6.5) F(η(t))+ log(η(t)−α) = log(Φ(η(t))).

Equations (6.1) and (6.5) satisfy boundary values (2.10) with

(6.6) A(t)F(η(t)) = γ(t)+h(t)+ i[(ρ(t)+ µ(t))+ν(t)],

where

h(t) =(lnR0, lnR1, . . . , lnRm),

ν(t) =(c0,c1, . . . ,cm),

γ(t)+ iµ(t) = − log(η(t)−α).

The values of h j and ν j can be obtained by using Theorem 2.1. Then, the values of R j can
be determined by

R j = eh j for j = 1,2, . . . ,m.
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Next, to find the values of the unknown functions S′(t), by differentiating both sides of (6.5)
and using (6.2), we have

(6.7) η ′(t)F ′(η(t))+η ′(t)
1

η(t)−α
= iS′(t).

The function f (z) defined in Ω− by

(6.8) f (z) = F ′(z),

and the function g(z) defined in Ω+ by

(6.9) g(z) =
1

z−α
,

satisfy the assumptions and the boundary values in Theorem 3.1 with

(6.10) υ(t) = 0 and ϕ(t) = S′(t).

Since the image of the curves Γ j, j = 1, . . . ,m are traversed-twice circular slits, we have
S j(2π)−S j(0) = 0. Hence the function h̃(t) in (3.2) is given by

(6.11) h̃(t) = Jϕ = JS′ = (0,0, . . . ,0).

Then, by Theorem 3.1, the function S′(t) is the unique solution of the integral equation

(6.12) (I+N∗+J)S′ = 2φ ,

where

φ(t) = Im[Ã(t)g(η(t))] = Im
[

η ′(t)
1

η(t)−α

]
.

From [34, p. 112], Φ(z) has the Laurent series expansion near z = ∞ as

Φ(z) = z+a0 +
a1

z
+

a2

z2 + · · · .

For computing the mapping function of the interior points z ∈ Ω−, let Φ̂(z) be an analytic
function for z ∈Ω− and be defined as

Φ̂(z) =
Φ(z)
z−α

, where lim
z→∞

Φ̂(z) = 1.

Then by the Cauchy’s integral formula [13] we have

(6.13) w = z−α +
(z−α)

2πi

∫

J

Φ(η(t))
(η(t)−α)(η(t)− z)

η ′(t)dt.

For computing the inverse maps, note that the inverse of Laurent series expansion for
Φ−1(z) near ∞ has the following representation [34, p. 114]

Φ−1(w) = w+b0 +
b1

w
+

b2

w2 + · · · .
The function G(w) defined on Uc by

G(w) =
Φ−1(w)−α

w
is analytic in Uc with G(∞) = 1. Then by the Cauchy’s integral formula, we have

G(w) = G(∞)+
1

2πi

∫

∂Uc

G(ζ )
ζ −w

dζ .
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By introducing ζ (t) = Φ(η(t)), we obtain for z ∈Ω− by

z−α
w

= 1+
1

2πi

∫

J

Φ−1(Φ(η(t))−α
Φ(η(t))(Φ(η(t))−w)

R(t)eiS(t)iS′(t)dt,

which implies

z = w+α +
w

2πi

∫

J

η(t)−α
Φ(η(t))(Φ(η(t))−w)

R(t)eiS(t)iS′(t)dt.

7. Radial slits region

This canonical region is the entire w-plane with m radial slits along the rays arg(w) = Rk,
where Rk, k = 1, . . . ,m, are undetermined piecewise real constants and S(t) is the unknown
function. The boundary values of the mapping function Φ are given by

(7.1) Φ(η(t)) = eS(t)eiR(t).

Thus, by taking logarithmic differentiation on both sides of (7.1), we have

(7.2) η ′(t)
Φ′(η(t))
Φ(η(t))

= S′(t).

The mapping function Φ can be uniquely determined by assuming

(7.3) Φ(α) = 0, Φ(∞) = ∞, lim
z→∞

Φ(z)
z

= 1,

where α is a fixed point in Ω−. Then Φ can be written as

(7.4) Φ(z) = (z−α)eiF(z),

where F(z) is an analytic function with F(∞) = 0. Hence by taking logarithm to both sides
of (7.4), we get

(7.5) −F(η(t))+ i log(η(t)−α) = i log(Φ(η(t))).

Hence (7.1) and (7.5) satisfy the boundary values (2.10) with

(7.6) A(t)F(η(t)) = γ(t)+h(t)+ i[(−ρ(t)+ µ(t))+ν(t)],

where

h(t) =(R1, . . . ,Rm),

ν(t) =(−c1, . . . ,−cm),

γ(t)+ iµ(t) = i log(η(t)−α).

Then, by differentiating both sides of (7.4) and using (7.2), we get

(7.7) η ′(t)(−F ′(η(t)))+η ′(t)
i

η(t)−α
= iS′(t).

The function f (z) defined in Ω− by

(7.8) f (z) =−F ′(z)

and the function g(z) defined in Ω+ by

(7.9) g(z) =
i

z−α
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satisfy the assumptions and the boundary values in Theorem 3.1 with

(7.10) υ(t) = 0 and ϕ(t) = S′(t).

Since the images of the curves Γ j, j = 1, . . . ,m, are traversed-twice radial slits, we have
S j(2π)−S j(0) = 0. Hence the function h̃(t) in (3.2) is given by

(7.11) h̃(t) = Jϕ = JS′ = (0,0, . . . ,0).

Then, by Theorem 3.1, the function S′(t) is the unique solution of the integral equation

(7.12) (I+N∗+J)S′ = 2φ ,

where

φ(t) = Im[Ã(t)g(η(t))] = Im
[

η ′(t)
i

η(t)−α

]
.

For approximating the mapping at the interior points, notice that Φ(z) has the Laurent
series expansion near z = ∞ as [34, p. 112]

Φ(z) = z+a0 +
a1

z
+

a2

z2 + · · · .

Let Φ̂(z) be an analytic function for z ∈Ω− defined as

Φ̂(z) =
Φ(z)
z−α

, where lim
z→∞

Φ̂(z) = 1.

Then by the Cauchy’s integral formula [13], we have

(7.13) w = z−α +
(z−α)

2πi

∫

J

Φ(η(t))
(η(t)−α)(η(t)− z)

η ′(t)dt.

For computing the inverse mapping function, observe that the inverse of Laurent series
expansion for Φ(z) near ∞ has the following representation [34, p. 114]

Φ−1(w) = w+b0 +
b1

w
+

b2

w2 + · · · .
Let G(w) be an analytic function for w ∈Uc defined as

G(w) =
Φ−1(w)−α

w
, where lim

w→∞
G(w) = 1.

Then, by using the same reasoning as in Section 6, we get

z = w+α +
w

2πi

∫

J

η(t)−α
Φ(η(t))(Φ(η(t))−w)

S′(t)eS(t)iR(t)dt.

8. Parallel slits region

This canonical region is the entire w-plane with m parallel slits on the straight lines

(8.1) Re
[
ei(π/2−θ) w

]
= R j, j = 1, . . . ,m,

where R1, . . . ,Rm are undetermined real constants and θ is the given angle of intersection
between the lines (8.1) and the real axis. The boundary values of the mapping function Φ
satisfy

(8.2) ei(π/2−θ)Φ(η(t)) = R(t)+ iS(t),
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where S(t) is the unknown function and R(t) = (R1, . . . ,Rm) is a piecewise real constant
function. Thus, by logarithmic differentiation to both sides of (8.2), we get

(8.3) ei(π/2−θ)η ′(t)Φ′(η(t)) = iS′(t).

The mapping function Φ is uniquely determined by the normalization

(8.4) Φ(∞) = ∞, lim
z→∞

(Φ(z)− z) = 0.

Thus, the function Φ can be written as

(8.5) Φ(z) = z+ e−i(π/2−θ)F(z),

where F(z) is an analytic function with F(∞) = 0. Hence

(8.6) F(η(t))+ ei(π/2−θ)η(t) = ei(π/2−θ)Φ(η(t)).

Then (8.2) and (8.6) satisfy boundary values (2.10) with

(8.7) A(t)F(η(t)) = γ(t)+h(t)+ i[(ρ(t)+ µ(t))+ν(t)],

where

h(t) =(R1, . . . ,Rm),

ν(t) =(c1, . . . ,cm),

γ(t)+ iµ(t) = − ei(π/2−S)η(t).

Next, by differentiating both sides of (8.6) and using (8.3), we have

(8.8) η ′(t)F ′(η(t))+η ′(t)ei(π/2−θ) = iS′(t).

The function f (z) defined in Ω− by

(8.9) f (z) = F ′(z)

and the function g(z) defined in Ω+ by

(8.10) g(z) = ei(π/2−θ)

satisfy the assumptions and the boundary values in Theorem 3.1 with

(8.11) υ(t) = 0 and ϕ(t) = S′(t).

Since the images of the curves Γ j, j = 1, . . . ,m, are traversed-twice parallel slits, we have
S j(2π)−S j(0) = 0. Hence the function h̃(t) in (3.2) is given by

(8.12) h̃(t) = Jϕ = JS′ = (0,0, . . . ,0).

Then, by Theorem 3.1, the function S′(t) is the unique solution of the integral equation

(8.13) (I+N∗+J)S′ = 2φ ,

where
φ(t) = Im[Ã(t)g(η(t))] = Im

[
η ′(t)ei(π/2−θ)

]
.

By obtaining all the information above, the boundary values of the mapping function can be
calculated by

Φ(η) = e−i(π/2−θ)(R(t)+ iS(t)).
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From [34, p. 102], Φ(z) has the Laurent expansion series near ∞ as

Φ(z) = z+
a1

z
+

a2

z2 +
a3

z3 + · · · .

Let Φ̂(z) be an analytic function for z ∈Ω− defined as

Φ̂(z) = Φ(z)− z, where lim
z→∞

Φ̂(z) = 0.

Then by the Cauchy’s integral formula [13], we have

(8.14) w = z+
1

2πi

∫

J

Φ(η(t))−η(t)
η(t)− z

η ′(t)dt.

For approximating the inverse mapping function, the inverse of Laurent series expansion
for Φ(z) near ∞ has the following representation [34, p. 114]

Φ−1(w) = w+
b1

w
+

b2

w2 +
b3

w3 + · · · .
Let G(w) be an analytic function in Up be defined as

G(w) = Φ−1(w)−w, where lim
w→∞

G(w) = 0.

Then by using the same procedure as in previous section, we have

z = w+
1

2πi

∫

J

η(t)−Φ(η(t))
Φ(η(t))−w

e−i(π/2−θ)iS′(t)dt.

9. Numerical examples

Since the boundaries Γ j are parameterized by η j(t) which are 2π-periodic functions, the
reliable method to solve the integral equations are by means of Nyström method with trape-
zoidal rule [4]. Each boundary will be discretized by n number of equidistant points. For
region that contains corner points, the integral equation need to be modified slightly, the
computational details are similar to [23]. The resulting linear system is then solved by
using Gaussian elimination method (see [17, 18] for more details).

In this paper, we choose test regions with connectivities three and four. The computations
were carried out on Intel processor Quad-core 2.33GHz, 4-gb DDR3 RAM using algorithms
coded in MATLAB R2011a.

Example 9.1. Consider an unbounded region Ω− bounded by three circles

Γ1(t) = 2+ e−it , 0≤ t ≤ 2π,

Γ2(t) =−1+ i
√

3+0.5e−it , 0≤ t ≤ 2π,

Γ3(t) =−1− i
√

3+1.5e−it , 0≤ t ≤ 2π.

For this example, the special points are z1 = 2,z3 =−1− i
√

3, and α = 0. Table 1 shows
the approximated values for conformal moduli for each canonical region with n = 512.
Figure 2 shows the images of conformal mapping of Ω− onto five classes of canonical
regions for n = 512. It is not possible to show the image of the whole original region Ω−
since it is unbounded. So, we have restricted the region Ω− for only the points z = x + iy
which satisfy |x| ≤ 5.5 and |y| ≤ 4. The clover-like shapes “holes” in the 2nd and 3rd
images in Figure 2 are due to the images of points z ∈ Ω− that have not been computed,
i.e., the points z = x + iy ∈ Ω− which satisfy |x| > 5.5 and |y| > 4. This example has
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been considered in [17, 35] and [1] for Uc and Ud . Table 2 and Table 3 show the error
norm for the boundary values max1≤ j≤3 ||w j − ŵ j||∞ between our method, [17] and [35].
Since [35] considered exterior unit disk with circular slits as the canonical region, we need
to change their boundary values by 1/|Φ(z)|. Table 4 shows the time comparison between
our presented method with [17,35]. For Ud , we didn’t compare the time taken for computing
the conformal mapping with [35] as they used different type of canonical region. From
Table 1 to Table 4, we can conclude that our presented method is accurate, fast and reliable.
Figures 3–7 show the inverse transformation for each canonical regions.

Table 1. The values of approximated conformal moduli in Example 1.

j Ua Ud Uc
1 1.000000000000000 1.000000000000000 2.695852404127037
2 0.351592984957793 0.337011016555280 2.912178845710424
3 0.179209929196331 0.366977372407806 2.265373694952072
j Ur Up
1 −0.235829740944631 −0.326576617247789
2 2.246730512278837 0.996414684417039
3 −2.005025892943342 −1.478338658064248

Table 2. Error norm max
1≤ j≤3

||w j− ŵ j||∞ of our method with [17] for Example 1.

n Ua Ud Uc Ur Up,π/2
32 5.208×10−07 4.264×10−07 0.0134 0.0022 4.076×10−06

64 2.378×10−12 2.401×10−12 5.219×10−05 8.841×10−06 1.528×10−11

128 8.551×10−15 5.575×10−15 2.469×10−09 4.112×10−10 1.493×10−14

256 1.601×10−14 1.113×10−14 5.795×10−14 1.194×10−13 3.688×10−14

Table 3. Error norm max
1≤ j≤3

||w j− ŵ j||∞ of our method with [35] for Example 1.

n Ua Ud Uc Ur Up,π/2
32 5.588×10−07 5.032×10−07 0.2969 0.1635 4.103×10−06

64 2.408×10−12 2.461×10−12 9.342×10−05 2.045×10−05 1.528×10−11

128 8.705×10−14 3.959×10−14 4.680×10−09 8.259×10−10 2.336×10−12

256 3.833×10−13 1.755×10−13 2.423×10−12 5.394×10−13 7.631×10−12
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Table 4. Time taken in seconds for computing the conformal mapping onto the canonical
regions for Example 1.

n Methods Ua Ud Uc Ur Up,π/2
Ours 1.115626 s 1.123708 s 1.103998 s 1.333334 s 1.325958 s

128 Arif et al. [35] 2.146316 s −−− 1.405052 s 2.525786 s 2.177692 s
Nasser [17] 2.738256 s 2.701307 s 2.727848 s 2.937508 s 2.913769 s
Ours 2.076334 s 2.071060 s 2.072290 s 2.388166 s 2.388353 s

256 Arif et al. [35] 10.539557 s −−− 4.427757 s 8.874106 s 7.293674 s
Nasser [17] 9.647205 s 9.528054 s 9.660037 s 9.920425 s 9.961381 s
Ours 4.540774 s 4.558842 s 4.536835 s 5.122694 s 5.173554 s

512 Arif et al. [35] 91.799515 s −−− 20.95380 s 49.43904 s 34.80111 s
Nasser [17] 42.275036 s 41.09918 s 42.65789 s 43.37522 s 42.53321 s
Ours 12.671643 s 12.735873 s 12.688997 s 13.79570 s 13.69144 s

1024 Arif et al. [35] 1942.2733 s −−− 168.19319 s 293.1323 s 249.0591 s
Nasser [17] 315.9718 s 269.74096 s 293.71689 s 247.7996 s 286.0053 s
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Figure 2. The original region Ω− and its canonical images with θ = π for the parallel slits region,
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Figure 3. The inverse image of the annulus with circular slits region.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 0 2 4

−2

0

2

Figure 4. The inverse image of the disk with circular slits region.

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

Figure 5. The inverse image of the circular slits region.



Numerical Evaluation of Conformal Mapping and its Inverse 19

−4 −3 −2 −1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2
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Figure 7. The inverse image of the parallel slits region.

Example 9.2. Consider an unbounded region Ω− bounded by four rectangles

Γ1(t) = {x+ iy : |x−2|6 1, |y−1|6 1},
Γ2(t) = {x+ iy : |x−2|6 1, |y+2|6 1},
Γ3(t) = {x+ iy : |x+3|6 2, |y+2|6 1},
Γ4(t) = {x+ iy : |x+3|6 2, |y−1|6 1}.

The conformal mapping for this example is closely related to the Schwarz-Christoffel
mapping. The special points are z1 = 2 + i,z4 = −3 + i, and α = 0. Figure 8 shows the
images of the conformal mapping of unbounded quadruply connected region onto the classes
of canonical slit regions for n = 512. The reasons for the appearances of the clover-like
shapes “holes” in the 2nd and 3rd images in Figure 8 are the same as in the 2nd and 3rd
images in Figure 2. The values for approximated conformal moduli are shown in Table 5 for
n = 1024. Table 6 shows the time taken for computing the conformal maps onto its canon-
ical regions. Figures 9–13 shows the images of inverse transformation for each canonical
region onto the original region.
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Table 5. The values of approximated conformal moduli in Example 2.

j Ua Ud Uc

1 1.000000000000000 1.000000000000000 3.344702632925646
2 0.517512691928356 0.479372261123766 3.961983593647091
3 0.215953410129373 0.304215660437710 4.175190764006607
4 0.142159202935490 0.328418971877769 3.705458446175335
j U r U p

π/3
1 0.363896619147592 0.569192974854135
2 −0.719493954812626 1.406334127895268
3 −2.625093020158977 −1.527412741498223
4 2.910015395960396 −2.299593756387775

Table 6. Time taken in seconds for computing the conformal mapping onto the canonical
regions for Example 2.

n Ua Ud Uc U r U p
π/3

128 1.541186 s 1.499868 s 1.521170 s 1.535602 s 1.533885 s
256 3.013458 s 2.982456 s 2.975827 s 2.992448 s 2.989267 s
512 6.993330 s 6.932142 s 6.918470 s 6.934293 s 6.940827 s

1024 21.45491 s 21.43855 s 21.06668 s 21.12070 s 21.14749 s
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Figure 8. The original region Ω− and its canonical images with θ = π/3 for the parallel slits region.
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Figure 9. The inverse image of the annulus with circular slits region.
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Figure 10. The inverse image of the disk with circular slits region.
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Figure 11. The inverse image of the circular slits region.
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Figure 12. The inverse image of the radial slits region.
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Figure 13. The inverse image of the parallel slits region.

10. Conclusion

In this paper, we have constructed a unified method for numerical conformal mappings of
unbounded multiply connected regions onto canonical slit regions. The advantages of the
presented method is that it can be used to compute the conformal mapping function as well
as its inverse. The presented method can be used even if the boundary of the original region
Ω− is a piecewise smooth boundary.

Table 4 and Table 6 show that as the number of connectivity of unbounded region Ω−
increase, the time taken for computing the conformal maps onto its canonical regions also
increase. Hence, solving the linear system obtained by discretizing our integral equations
by a fast method is certainly recommended for regions with high connectivity or when
the boundary components Γ j lie closed to each other where more discretization points are
needed. Since the kernels of the integral equation are the adjoint of the generalized Neu-
mann kernel used in [19], the fast method used in [19] can be used to solve the boundary
integral equation with the adjoint generalized Neumann kernel presented in this paper.
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