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Abstract. For a positive integer k a class of simplicial complexes, to be denoted by CM(k),
is introduced. This class generalizes Cohen-Macaulay simplicial complexes. In analogy
with the Cohen-Macaulay complexes, we give some homological and combinatorial prop-
erties of CM(k) complexes. It is shown that the complex ∆ is CM(k) if and only if I∆∨ ,
the Stanley-Reisner ideal of the Alexander dual of ∆, has a k-resolution, i.e. βi. j(I∆∨ ) = 0
unless j = ik+q, where q is the degree of I∆∨ . As a main result, we characterize all bipartite
graphs whose independence complexes are CM(k) and show that an unmixed bipartite graph
is CM(k) if and only if it is pure k-shellable. Our result improves a result due to Herzog and
Hibi and also a result due to Villarreal.
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1. Introduction

Let ∆ be a simplicial complex of dimension d−1 with the vertex set [n] := {1,2, . . . ,n}. Let
K be a field. The squarefree monomial ideal I∆ in the polynomial ring S = K[x1, . . . ,xn] is
generated by the monomials xF = ∏i∈F xi which F is a non-face in ∆.

The simplicial complex ∆ is said Cohen-Macaulay when the quotient ring K[∆] := S/I∆,
called Stanley-Reisner ring of ∆, is Cohen-Macaulay. In [18] Reisner showed that the sim-
plicial complex ∆ is Cohen-Macaulay over K if and only if, for all faces F of ∆, the ith

reduced homology group of the link of F in ∆ vanishes unless i = dim(link∆F). (This result
is known as Reisner’s criterion for Cohen-Macaulayness.) In this paper we extend the con-
cept of Cohen-Macaulayness in the language of reduced homology as shown by Reisner.
We introduce a new class of simplicial complexes, called Cohen-Macaulay simplicial com-
plexes of degree k (CM(k) for short), which generalizes the notion of Cohen-Macaulayness
for simplicial complexes. Actually, k is an integer between 1 and d and for k = 1, CM(1)-
ness coincides with Cohen-Macaulayness.

This paper is organized as follows. We begin in Section 2 by introducing CM(k) sim-
plicial complexes and discussing some of their basic properties. Next, in Section 3 we
introduce a class of monomial ideals with k-resolution. It is shown that ∆ is CM(k) if and
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only if the Alexander dual of I∆ has a k-resolution which 1≤ k≤ d (see Theorem 3.1). This
result extends [6, Theorem 3]. In Section 4, we give a class of CM(k) complexes, called
k-shellable, and prove that k-shellability is equivalent to saying that the Alexander dual of
I∆ has k-quotients (see Theorem 4.1). The notions k-shellable and k-quotients were first
introduced in [7]. In this paper, the definitions of k-shellability and having k-quotients are
a little bit different from the definitions of these notions in [7]. We also use a Theorem of
Hochster [13] and characterize all edge ideals of simple graphs which have a 2-resolution
(see Corollary 4.2). The last section is devoted to the study of the bipartite graphs whose
independence complex is CM(k). As a main result of the paper, we characterize all CM(k)
bipartite graphs which are unmixed (see Theorem 5.1). Our result generalizes [8, Theorem
2.9] and also [10, Theorem 3.4].

For all undefined terms, we refer the reader to [3, 11, 14, 20].

2. The CM(k) simplicial complexes

In this section we introduce CM(k) complexes and discuss some of their basic properties.
We also give some characterizations of CM(k) complexes, in terms of vanishing of some
relative singular homologies of the geometric realization of the complex and its punctured
space.

First, we recall some definitions related to simplicial complexes. Given a simplicial
complex ∆ on [n], the link and the deletion of F in ∆ are defined, respectively, by

link∆(F) = {G ∈ ∆ : F ∩G = /0,F ∪G ∈ ∆} and ∆\F = {G ∈ ∆ : F * G}.

Moreover, the Alexander dual of ∆ is defined as ∆∨ = {F ∈ ∆ : [n]\F 6∈ ∆}. For the subset
W of the vertex set of ∆, the restriction of ∆ on W is defined as ∆W = {F ∈ ∆ : F ⊆W}. We
say that a simplicial complex is pure if all facets have the same cardinality.

Definition 2.1. Let ∆ be a simplicial complex of dimension d−1 and 1≤ k ≤ d an integer.
We say that ∆ is Cohen-Macaulay of degree k (CM(k) for short) if, for all faces F of ∆,
H̃i−1(link∆F ;K) = 0 unless ik = dim(link∆F)+1.

Note that if k = 1, then by Reisner’s criterion, the CM(1)-ness of the simplicial complex
∆ is equivalent to Cohen-Macaulayness.

Proposition 2.1. Let ∆ be a simplicial complex of dimension d− 1 and an integer k with
1≤ k ≤ d. Suppose that ∆ is CM(k). Then:

(a) For every face F in ∆, link∆F is CM(k).
(b) k = d if and only if ∆ is disconnected.
(c) If k < d then ∆ is connected and pure. Furthermore, ∆ is connected in codimension k,

i.e. for every two facets F,G∈ ∆ there exists a sequence of facets F = F0,F1, . . . ,Fr = G
such that |Fi∩Fi+1|= d− k.

Proof. The ideas of the proofs of (a) and (c) are the same as used in proofs of Reisner’s
criterion or [11, Lemma 9.1.12]. (b) follows from the definition and the fact that the number
of connected components of ∆ coincides with dimK(H̃0(∆;K))+1.

The following result is due to Munkres which says that Cohen-Macaulayness is a topo-
logical property, i.e. if ∆ is Cohen-Macaulay and its geometric realization is homeomorphic
with geometric realization of the simplicial complex ∆′, then ∆′ is also Cohen-Macaulay.



Cohen-Macaulay Simplicial Complexes of Degree k 95

For the concept of geometric realization of a simplicial complex we refer the reader to the
books [15, 20].

Theorem 2.1. [16, Corollary 3.4] Let ∆ be a simplicial complex of dimension d−1. Suppose
that X is the geometric realization of ∆. Then the following are equivalent:
(a) ∆ is Cohen-Macaulay over K;
(b) For all p ∈ X and all i with i < d−1, H̃i(X ;K)∼= Hi(X ,X− p;K) = 0.

The following theorem shows that CM(k)-ness is a topological property and also gives
some information about how specific algebraic notion, topological notion and combinatorial
notion are related to each other.

Theorem 2.2. Let ∆ be a simplicial complex of dimension d − 1 and an integer k with
1≤ k ≤ d. Suppose that X is the geometric realization of ∆. Then the following conditions
are equivalent:
(a) ∆ is CM(k);
(b) For all p ∈ X, all faces F ∈ ∆ containing p and all i with ik 6= d− |F |+ (|F | − 1)k,

H̃i(X ;K)∼= Hi(X ,X− p;K) = 0.

Proof. By [16, Lemma 3.3], for any face F ∈ ∆ and any interior point p of F we have

Hi(X ,X− p;K)∼= H̃i−|F |(link∆F ;K).

Now the assertion follows from this fact and the definition.
Recall that, the support of a = (a1, . . . ,an) ∈ Zn denoted by supp(a) is the set of i such

that ai 6= 0. Also the ith local cohomology module of K[∆] is denoted by H i
m(K[∆]) .

Theorem 2.3. (Hochster [11]) Let Zn
− = {a ∈ Zn : ai ≤ 0 for i = 1, . . . ,n}. Then

dimH i
m(K[∆])a =

{
dim H̃i−|F |−1(link∆F ;K), if a ∈ Zn

−, where F = supp(a)
0, if a 6∈ Zn

−.

Corollary 2.1. Let ∆ be a CM(k) simplicial complex of dimension d−1. Then H i
m(K[∆]) =

0 unless i = dd− j(k−1)/ke, where j = 0,1, . . . ,d. In particular, depth(K[∆]) = dd/ke and
the projective dimension of K[∆] is n−dd/ke. (dxe means the least integer greater than or
equal to x)

Proof. For a ∈ Zn
− and F = supp(a) suppose |F | = d− j. Now using the definition and

Theorem 2.3, the assertion obtains. The second statement follows from [2, Theorem 6.2.7]
which says that depth(K[∆]) is the least integer i such that H i

m(K[∆]) 6= 0. For the projective
dimension of K[∆] we use the Auslander-Buchsbaum formula (see for example [3, Theorem
1.3.3]).

3. The ideals with k-resolution

In this section we investigate behavior of the Alexander dual of the Stanley-Reisner ideal
associated to a CM(k) complex. First we present the following more general definition.

Definition 3.1. An Nn-graded module M generated in degree b ∈ Nn with |b|= q for some
fixed q ∈ N, has a k-resolution if for all i ≥ 0 the minimal ith syzygies of M lie in degrees
b ∈ Nn with |b| = q + ik. Equivalently, βi, j(M) = 0 for each j 6= q + ik whenever 0 ≤ i ≤
proj.dim(M).
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Notice that the concepts of having linear resolution and 1-resolution coincides. Recall
from [14] that, a monomial matrix is an array of scalar entries λqp whose columns are
labeled by source degrees ap, whose rows are labeled by target degrees aq, and whose
entry λqp ∈ K is zero unless aq � ap. “a � b” means that ai ≤ bi for all i = 1, . . . ,n which
a = (a1, . . . ,an) and b = (b1, . . . ,bn).

Remark 3.1. Let k > 0 be an integer. The Nn-graded free resolution F• is a k-resolution
if and only if there is a choice of monomial matrices for the differentials of F• such that in
each matrix, |ap−aq|= k whenever the scalar λqp is nonzero.

Example 3.1. Let I = (abc,bde,b f g) be a monomial ideal in the polynomial ring K[a,b,c,
d,e, f ,g]. Then we have:

0−→ S(−7)

bde f g
abc f g
abcde

abcde f g
−1
1
1


−−−−−−−−−−−−−−−−−−−−−→S(−5)3

abc
bde
b f g

bde f g abc f g abcde
0 1 1
1 0 −1
−1 −1 0


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→S(−3)3 −→ I −→ 0

Observe that for every nonzero scalar λqp, |ap− aq| = 2 and also βi, j(I) = 0 whenever
j 6= 2i+3 for i = 0,1,2. This means that I has a 2-resolution.

Example 3.2. Let X be an r× s matrix with r < s whose entries are forms of degree k. Let
Ir(X) be the ideal generated by the r-minors of X (the determinants of r× r submatrices).
Suppose ht(Ir(X)) = s− r +1. It was shown by Eagon and Northcott [5] that minimal free
resolution of S/Ir(X) is of the form

0−→ S(−ks)βs−r+1 −→ ·· · −→ S(−k(r +1))β2 −→ S(−kr)β1 −→ Ir(X)−→ 0.

Therefore Ir(X) has a k-resolution.

In the following we present a homological property of Z-graded modules over an stan-
dard K-algebra. The first statement was proved by Römer [19] and the second by Olteanu
[17] for the special case k = 1.

Lemma 3.1. Let R be a standard graded K-algebra and

0−→M′ −→M −→M′′ −→ 0

be an exact sequence of Z-graded R-modules. Let k > 0.
(1) If M′ and M′′ both are generated in the same degree and have k-resolution, then M has

a k-resolution.
(2) If M and M′ are generated in degrees q and q + k, respectively, and have k-resolution,

then M′′ has a k-resolution.

Proof. Applying Tor(K, .) functor on the exact sequence

0−→M′ −→M −→M′′ −→ 0

one obtains

· · · −→ TorS
i (K,M′)ik+ j −→ TorS

i (K,M)ik+ j −→ TorS
i (K,M′′)ik+ j

−→ TorS
i−1(K,M′)ik+ j −→ TorS

i−1(K,M)ik+ j −→ ·· · .
Let j 6= q. Then by the definition, TorS

i (K,M)ik+ j = 0 and TorS
i−1(K,M′)ik+ j = 0. Conse-

quently, for all j 6= q, TorS
i (K,M)ik+ j = 0. Therefore M′′ has a k-resolution.
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Theorem 3.1. Let ∆ be a pure simplicial complex of dimension d−1 and an integer k with
1≤ k ≤ d. Then the following conditions are equivalent:
(a) ∆ is CM(k);
(b) I∆∨ has a k-resolution.

Proof. Let F ∈ ∆ with |F | = n− j. Let q = deg(I∆∨). It is known that I∆∨ = I(∆c) which
∆c = {[n]\F : F a facet of ∆} and I(∆c) is a monomial ideal which is generated by those
squarefree monomials xF with F a facet of ∆c. Then q = n− d and so dim(link∆F) =
d− (n− j)−1 = j−q−1. On the other hand, from [11, Corollary 8.1.4], we have

TorS
i (K, I∆)a ∼= H̃i−1(link∆∨F ;K) for all i

which a ∈ Zn is squarefree and F = [n]\supp(a). Using the above isomorphism, the condi-
tion (a) holds if and only if for all i, βi, j(I∆∨) = 0 unless ik = j−q.

Remark 3.2. For k = 1, Theorem 3.1 is the same as Eagon-Reiner’s theorem [6, Theorem
3].

Recall that, the Castelnuovo-Mumford regularity of graded S-module M is defined as

reg(M) = max{ j− i : βi, j(M) 6= 0}.

Corollary 3.1. Let ∆ be a pure simplicial complex of dimension d−1 and an integer k with
1≤ k ≤ d. If ∆ is CM(k) then reg(I∆∨) = q+(k−1)proj.dim(I∆∨), where q = deg(I∆∨). In
particular, proj.dim(K[∆]) = q+(k−1)proj.dim(I∆∨).

Proof. The first equality follows from Theorem 3.1, while the second equality follows from
[21, Corollary 1.6] and the first one.

4. A class of CM(k) complexes

In [7] the authors introduced the concepts of d-shellability and d-quotients. In this section,
we use the same notions of d-shellability and d-quotients to introduce a class of simplicial
complexes which are CM(k) and a class of monomial ideals which have k-resolution. Actu-
ally, our definitions are special cases of the definitions of [7]. We will see that the concepts
of being 1-shellable and having 1-quotients, respectively, coincide with being shellable and
having linear quotients. We refer the reader to [1] for the definition of shellability and to
[12] for the definition of ideals with linear quotients.

Definition 4.1. Let k be an integer with 1≤ k≤ d. The simplicial complex ∆ on [n] is called
k-shellable if its facets can be ordered F1, . . . ,Fr, called k-shelling order, such that for all
j = 2, . . . ,r, the subcomplex 〈Fj〉∩ 〈F1, . . . ,Fj−1〉 satisfies the following properties:

(i) It is generated by a nonempty set of proper faces of 〈Fj〉 of dimension |Fj|− k−1;
(ii) For every two disjoint facets σ ,τ ∈ 〈Fj〉∩ 〈F1, . . . ,Fj−1〉, (Fj\σ)∩ (Fj\τ) = /0.

Definition 4.2. The monomial ideal I ⊂ S has k-quotients whenever there is the ordering
u1, . . . ,ur from the minimal generators of I such that for all j = 2, . . . ,r, the minimal gener-
ators of (u1, . . . ,u j−1) : u j are of degree k and form a S-sequence.

It is easily seen that a sequence u = u1, . . . ,ur of monomials in S is a S-sequence precisely
when gcd(ui,u j) = 1 for each i 6= j. In particular, in this case if u1, . . . ,ur have the same
degree q, then the ideal (u1, . . . ,ur) has a q-resolution. Of course, this fact holds for more
general elements other than monomials. In fact if f1, . . . , fr are homogeneous elements
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of the same degree q in S which form a regular sequence, then the homogeneous ideal
( f1, . . . , fr) has a q-resolution. Moreover, for every positive integer m, the ideal ( f m

1 , . . . , f m
r )

has qm-resolution. This fact can help to produce interesting examples of k-resolutions.

Theorem 4.1. The simplicial complex ∆ of dimension d−1 for 1 ≤ k ≤ d is k-shellable if
and only if I∆∨ has k-quotients.

Proof. It is a straightforward consequence of [7, Theorem 6.8].

Lemma 4.1. Every monomial ideal with k-quotients for some k > 0 which is generated in
one degree, has a k-resolution.

Proof. We prove the claim by induction on the number of generators of the given ideal.
Suppose that I is generated in degree q and has k-quotients with respect to the ordering
u1, . . . ,ur. Set I′ = (u1, . . . ,ur−1) and I′′ = (ur). By induction hypothesis, I′ and I′′ have
k-quotients and so have k-resolution. Also, it is easily verified that I′ ∩ I′′ is generated in
degree q+ k and has k-quotients.

Now from the exact sequence

0−→ I′ −→ I′⊕ I′′ −→ I′′ −→ 0

and Lemma 3.1(1) we get that I′⊕ I′′ has k-resolution. Again, by the exact sequence

0−→ I′∩ I′′ −→ I′⊕ I′′ −→ I′+ I′′ −→ 0

and Lemma 3.1(2) we conclude that I′+ I′′ has k-resolution, as desired.

Corollary 4.1. Every pure k-shellable complex is CM(k), where k > 0.

Proof. This follows from Theorems 3.1 and 4.1 and also Lemma 4.1.
In the remaining part of this section, we are going to study the simple graphs (graphs for

short) whose edge ideal has a 2-resolution. Recall that, a graph is called chordal if for each
cycle of length four or more there is an edge joining two non-adjacent vertices in the cycle.
Fröberg [9] showed that a graph G is chordal if and only if I(Gc) has a linear resolution,
where Gc is the complementary graph of G. Actually, Fröberg’s result characterizes all
edge ideals of graphs which have a 1-resolution. Here we are interested in finding some
properties of G when I(Gc) has a 2-resolution. We start with a theorem of Hochster [13].
Before stating the theorem, we recall some notions related to simplicial complexes and
graphs.

For a graph G, let ∆(G) be the clique complex of G which is a simplicial complex on the
vertex set of G whose faces are the complete subgraphs (cliques) of G. It is easily seen that
I(G) = I∆(Gc). The independence complex of G is denoted by ∆G and F is a face of ∆G if and
only if there is no edge of G joining any two vertices of F . It is easy to see that ∆G = ∆(Gc).
If ∆G is pure, we say that G is unmixed.

Theorem 4.2. [13] Let ∆ be a simplicial complex and a ∈ Zn. Then we have:
(a) Tori(K, I∆)a = 0 if a is not squarefree;
(b) if a is squarefree and W = supp(a), then

Tori(K, I∆)a ∼= H̃|W |−i−2(∆W ;K) for all i.

Lemma 4.2. For k > 0 and the graph G, I(G) has a k-resolution if and only if H̃ j(∆(Gc)W ;
K) = 0 unless j = i(k−1) and |W |= ik +2 which i≥ 0 and W ⊆ [n].
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Proof. Let W ⊆ [n] and |W |= j. By Theorem 4.2, we conclude that

βi, j(I∆(Gc)) = 0 for j 6= ik +2⇔ ∑
W⊆[n],|W |= j

dim H̃|W |−i−2(∆(Gc)W ;K) = 0 for j 6= ik +2

⇔ H̃ j−i−2(∆(Gc)W ;K) = 0 for j 6= ik +2 and |W |= j

⇔ H̃ j(∆(Gc)W ;K) = 0 for j 6= i(k−1) and |W | 6= ik +2.

For every squarefree monomial ideal I of degree 2 there is a graph whose edge ideal is
equal to I. In the following corollary, we characterize all graphs which the edge ideal of
their complement has a 2-resolution.

Corollary 4.2. Let I be a squarefree monomial ideal generated in degree 2. If I has a
2-resolution then I has 2-quotients. In particular, it follows that if G is a graph, then G ∼=
K2,2,...,2 if and only if I(Gc) has a 2-resolution. (K2,2,...,2 is a complete r-partite graph whose
each part contains 2 elements.)

Proof. Let I = I(G) for some graph G. By Lemma 4.2, for all W ⊆ [n] and all i ≥ 0 with
|W | 6= 2i + 2 and j 6= i we have H̃ j(∆(Gc)W ;K) = 0. We need to show that the minimal
generators of G(I) are relatively prime. By relabeling the vertices of G, suppose, on the
contrary, that x1x2,x1x3 ∈G(I) and W = {1,2,3}. Then H̃0(∆(Gc)W ;K) = 0. But ∆(Gc)W =
{1,23} or ∆(Gc)W = {1,2,3}. Therefore ∆(Gc)W is disconnected, which is a contradiction.

The second statement is easily verified.

5. CM(k) bipartite graphs

In this section we study the properties of CM(k)-ness and k-shellability of bipartite graphs.
We say that the graph G is CM(k) or k-shellable if, the independence complex of G has this
property.

Let G be a bipartite graph with the vertex partition V ∪V ′ and the edge set E(G). The
following results were proved by the authors in [8, 10]:

• [8, Theorem 2.9] G is Cohen-Macaulay if and only if it is pure shellable.
• [10, Theorem 3.4] G is Cohen-Macaulay if and only if |V | = |V ′| and the vertices

V = {x1, . . . ,xn} and V ′ = {y1, . . . ,yn} can be labelled such that:
(i) xiyi ∈ E(G) for i = 1, . . . ,n;

(ii) if xiy j ∈ E(G) then i≤ j;
(iii) if xiy j,x jyk ∈ E(G) then xiyk ∈ E(G).

In the following we extend the above results to the case that G is CM(k) for some k > 0. For
a vertex x of a graph G, we denote by NG(x) the set of vertices y of G such that xy ∈ E(G).
Also, for every subset A of the vertex set of G, V (G), we set NG(A) =

⋃
x∈A NG(x) and

NG[A] =
⋃

x∈A (NG(x)∪{x}).

Theorem 5.1. Let G be a bipartite graph without isolated vertices and V ∪V ′ be a vertex
partition for G. Let V = {x1, . . . ,xm} and V ′ = {y1, . . . ,yn}.
(a) If k ≥ m and k ≥ n then the following conditions are equivalent:

(i) G is unmixed and CM(k);
(ii) m = n = k and G∼= Kk,k;

(iii) G is unmixed and k-shellable.
(b) If k < m or k < n then the following conditions are equivalent:

(i) G is CM(k);
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(ii) m = n, k|n and the elements of V and V ′ can be labelled such that:
(1) xiyi ∈ E(G) for all i = 1, . . . ,n;
(2) if xiy j,x jyl ∈ E(G), then xiyl ∈ E(G);
(3) if xiy j ∈ E(G) then either i ≤ j or there is some l ∈ {0,1, . . . ,n/k− 1} such

that n− (l +1)k +1≤ j < i≤ n− lk;
(4) for all l ∈ {0,1, . . . ,n/k−1}, the induced subgraph on the vertices xi and y j

with n− (l +1)k +1≤ i, j ≤ n− lk is complete bipartite.
(iii) G is unmixed and k-shellable.

Proof. (a) (i)⇒(ii): Since G is unmixed and 1≤ k ≤ dim(∆G)+1, we have m = n = k. In
order to see that G is complete bipartite, it suffices to show that there is no other facet,
except {x1, . . . ,xn} and {y1, . . . ,yn} in ∆G. This follows immediately from the fact that
∆G is disconnected, by Proposition 2.1(b). (ii)⇒(iii) is easily verified and (iii)⇒(i)
holds by Corollary 4.1.

(b) (i)⇒(ii): By Proposition 2.1(c), ∆G is pure, and so m = n. Now we want to show that
k|n. Since

link∆G({xn−[n/k]k+1, . . . ,xn}) = ∆G\{xn−[n/k]k+1,...,xn,yn−[n/k]k+1,...,yn},

it follows from Proposition 2.1(a) that H := G\{xn−[n/k]k+1, . . . ,xn,yn−[n/k]k+1, . . . ,yn}
is CM(k). Also, the unmixedness of G immediately implies that H is unmixed. Suppose,
on the contrary, that n− [n/k]k ≥ 1. Therefore H is a bipartite graph with the vertex
partition {x1, . . . ,xn−[n/k]k}∪ {y1, . . . ,yn−[n/k]k}. Since k ≥ n− [n/k]k, it follows from
(a) that n− [n/k]k = k, which is a contradiction.

(1) and (2) are proved exactly similar to [10, Theorems 3.3 and 3.4]. It remains to
show (3) and (4) are hold.

By Proposition 2.1, ∆G is connected in codimension k and the link of every face of ∆

is CM(k). Now because V and V ′ are both in ∆G, after a suitable change of the labeling
of variables x1, . . . ,xn and y1, . . . ,yn, the subset {y1, . . . ,yn−lk,xn−lk+1, . . . ,xn} is a facet
of ∆G for every l ∈ {0,1, . . . ,n/k− 1}. This implies that xiy j 6∈ E(G) if j ≤ n− lk < i
for every l ∈ {0,1, . . . ,n/k−1}. Consequently, for xiy j ∈ E(G) either i≤ j or i > j and
there exists some l with l = 0,1, . . . ,n/k− 1 such that i ≤ n− lk and j > n− (l + 1)k.
This proves (3).

To prove (4), we fix k and proceed by induction on the number of vertices of G.
Since link∆G({y1, . . . ,yk}) = ∆G\{x1,...,xk,y1,...,yk}, it follows that G\{x1, . . . ,xk,y1, . . . ,yk}
is CM(k). By induction hypothesis, for all l ∈ {0,1, . . . ,n/k− 2}, the induced sub-
graph on the vertices xi and y j with n− (l + 1)k + 1 ≤ i, j ≤ n− lk is complete bipar-
tite. Furthermore, link∆G({xk+1, . . . ,xn}) is (k−1)-dimensional and CM(k). Therefore
G\{xk+1, . . . ,xn,yk+1, . . . ,yn} is CM(k) with the vertex partition {x1, . . . ,xk}∪{y1, . . . ,
yk}. Now it follows from (a) that G\{xk+1, . . . ,xn,yk+1, . . . ,yn} is complete bipartite, as
desired.

(ii)⇒(iii): We use induction on the number of vertices of G. Assume that the asser-
tion holds for every bipartite graph with the vertex partition W ∪W ′ which satisfies the
condition (ii) and |W |= |W ′|< n.

Since G\{x1, . . . ,xk,y1, . . . ,yk} satisfies the condition (ii), it is k-shellable, by induc-
tion hypothesis. Hence G\{x1, . . . ,xk} is k-shellable, too, because y1, . . . ,yk are isolated.

Now we want to show that G\NG[x1, . . . ,xk] is k-shellable. First, note that if yt ∈
NG(x1, . . . ,xk) for some t > k, then xt is isolated in G\NG[x1, . . . ,xk]. Because otherwise



Cohen-Macaulay Simplicial Complexes of Degree k 101

there would exist an edge xty j in G\NG[x1, . . . ,xk]. Then, by (2), y j ∈ NG(x1, . . . ,xk),
which is a contradiction. Furthermore, if n− (l + 1)k + 1 ≤ t ≤ n− lk for some l ∈
{0, . . . ,n/k− 2}, then for every j with n− (l + 1)k + 1 ≤ j ≤ n− lk, we will have
y j ∈ NG(x1, . . . ,xk).

The above statements show that

H := (G\NG[x1, . . . ,xk])\{isolated vertices of G\NG[x1, . . . ,xk]}

satisfies the conditions in (ii). Hence H is k-shellable, by induction hypothesis. There-
fore G\NG[x1, . . . ,xk] is k-shellable.

Set G′ = G\{x1, . . . ,xk} and G′′ = G\NG[x1, . . . ,xk]. Then ∆G′ = ∆G\{x1, . . . ,xk}
and ∆G′′ = link∆G({x1, . . . ,xk}). Let F1, . . . ,Fr and G1, . . . ,Gs be k-shelling orders for
∆G′ and ∆G′′ , respectively. Then it is easily verified that

F1, . . . ,Fr,G1∪{x1, . . . ,xk}, . . . ,Gs∪{x1, . . . ,xk}

is a k-shelling order for ∆G. Therefore G is k-shellable.
(iii)⇒(i) holds by Corollary 4.1.

Remark 5.1. Theorem 5.1 provides a way to construct a CM(k + 1) bipartite graph start-
ing with a CM(k) bipartite graph. To see this, let G be a CM(k) bipartite graph with the
vertex partition V ∪V ′ which |V | = |V ′| = n. For every l ∈ {0,1, . . . ,n/k− 1}, let Kl

k,k de-
note the induced complete bipartite subgraph of G on the vertex partition {xl,1, . . . ,xl,k}∪
{yl,1, . . . ,yl,k}. To construct a CM(k + 1) bipartite graph H, we replace every subgraph
Kl

k,k by a complete bipartite graph Kl
k+1,k+1 with the vertex partition {xl,1, . . . ,xl,k+1} ∪

{yl,1, . . . ,yl,k+1} such that if xr,iys, j is an edge of G then xr,i′ys, j′ is an edge of H for all
1≤ i′, j′ ≤ k +1.

The following figure shows of two bipartite graphs G and H which satisfy the condition
(b)(ii) of Theorem 5.1. The graph G is Cohen-Macaulay, while H is constructed from G and
is CM(2).

x1

y1

x2

y2

x3

y3

x1,1 x1,2

y1,1 y1,2

x2,1 x2,2

y2,1 y2,2

x3,1 x3,2

y3,1 y3,2
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[9] R. Fröberg, On Stanley-Reisner rings in Topics in Algebra, Part 2 (Warsaw, 1988), 57–70, Banach Center
Publ., 26, Part 2 PWN, Warsaw.

[10] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22
(2005), no. 3, 289–302.

[11] J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer, London, 2011.
[12] J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl. 4 (2002), no. 2, part

2, 277–294.
[13] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, in Ring Theory, II (Proc.

Second Conf., Univ. Oklahoma, Norman, Okla., 1975), 171–223. Lecture Notes in Pure and Appl. Math., 26,
Dekker, New York.

[14] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, 227,
Springer, New York, 2005.

[15] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1984.
[16] J. R. Munkres, Topological results in combinatorics, Michigan Math. J. 31 (1984), no. 1, 113–128.
[17] A. Olteanu, Constructible ideals, Comm. Algebra 37 (2009), no. 5, 1656–1669.
[18] G. A. Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), no. 1, 30–49.
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