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1. Introduction

The generalized Tanaka-Webster connection (from now on, g-Tanaka Webster connnec-
tion) for contact metric manifolds was introduced by Tanno [16] as a generalization of the
connection defined by Tanaka in [15] and, independently, by Webster in [17]. The Tanaka-
Webster connection is defined as a canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold. A real hypersurface M in a Kähler manifold has an (integrable)
CR-structure associated with the almost contact structure (φ ,ξ ,η ,g) induced on M by the
Kähler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian.
Cho defined the g-Tanaka-Webster connection for a real hypersurface of a Kähler manifold
(see [4–6]) by

(1.1) ∇̂
(k)
X Y = ∇XY +g(φAX ,Y )ξ −η(Y )φAX− kη(X)φY

for any X ,Y tangent to M, where ∇ denotes the Levi-Civita connection on M, A is the shape
operator on M and k is a non-zero real number. In particular, if the real hypersurface satisfies
Aφ + φA = 2kφ , then the g-Tanaka-Webster connection ∇̂(k) coincides with the Tanaka-
Webster connection (see [6]). Using the g-Tanaka-Webster connection, some geometers
have studied some characterizations of real hypersurfaces in complex space forms (see [6,
12]).

Let us denote by G2(Cm+2) the set of all complex 2-dimensional linear subspaces in
Cm+2. It is known to be the unique compact irreducible Riemannian symmetric space
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equipped with both a Kähler structure J and a quaternionic Kähler structure J not contain-
ing J(see Berndt and Suh [2]). In other words, G2(Cm+2) is the unique compact, irreducible
Kähler, quaternionic Kähler manifold wich is not a hyper-Kähler manifold.

Let M be a real hypersurface in G2(Cm+2) and N a local normal unit vector field on M.
Let also A be the shape operator of M associated to N. Then we define the structure vector
field of M by ξ =−JN. Moreover, if {J1,J2,J3} is a local basis of J, we define ξi =−JiN,
i = 1,2,3. We will call D⊥ = Span{ξ1,ξ2,ξ3}.

M is called Hopf if ξ is principal, that is, Aξ = αξ . Berndt and Suh, [2] proved that if
m≥ 3, a real hypersurface M of G2(Cm+2) for which both [ξ ] and D⊥ are A-invariant must
be an open part of either (A) a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or
(B) a tube around a totally geodesic HPn in G2(Cm+2). In this second case m = 2n.

Bearing in mind this result an interesting topic is to find geometric properties that char-
acterize either type (A) or type (B) among real hypersurfaces in complex two-plane Grass-
mannians. Several results have been obtained as the characterization of type (A) real hy-
persurfaces as the unique ones for which the structure tensor φ and the shape operator A
commute, see [3], that we will use in this paper, or the characterization of type (B) real
hypersurfaces given by Lee and Suh in [14].

Jeong, Lee and Suh, [9], considered Hopf real hypersurfaces in G2(Cm+2) with g-Tanaka-
Webster parallel shape operator. That is, A satisfies (∇̂(k)

X A)Y = 0, for any vector fields X ,Y
on M. They proved the non-existence of such real hypersurfaces if m≥ 3 and α 6= 2k. Some
weaker conditions were studied in [8, 10, 11, 13].

In this paper we will study a different weaker condition. Given a tensor T of type (1,1)
on M we will say that T is of Codazzi type with respect to the g-Tanaka-Webster connection
if it satisfies (∇̂(k)

X T )Y = (∇̂(k)
Y T )X , for any X ,Y tangent to M. So we will consider real

hypersurfaces in G2(Cm+2) whose shape operator A is of Codazzi type with respect to the
g-Tanaka-Webster connection. Thus (∇̂(k)

X A)Y = (∇̂(k)
Y A)X for any X ,Y tangent to M.

From the Codazzi equation, (see Section 2), it is very easy to see that A is not of Codazzi
type for the Levi-Civita connection on M. We will prove the

Theorem 1.1. There do not exist connected orientable Hopf real hypersurfaces in G2(Cm+2),
m≥ 3, whose shape operator is of Codazzi type with respect to the g-Tanaka-Webster con-
nection if α 6= 2k.

Recently, in [7], the authors have obtained a similar result but with a further condition:
that the D-component or the D⊥-component of the structure vector field ξ is A-invariant.

2. Preliminaries

For the study of the Riemannian geometry of G2(Cm+2) see [1]. All the notations we will
use from now on are the ones in [2] and [3]. We will suppose that the metric g of G2(Cm+2)
is normalized for the maximal sectional curvature of the manifold to be eight. Then the
Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y +g(JY,Z)JX−g(JX ,Z)JY −2g(JX ,Y )JZ

+
3

∑
ν=1
{g(JνY,Z)Jν X−g(Jν X ,Z)JνY −2g(Jν X ,Y )Jν Z)}
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+
3

∑
ν=1
{g(Jν JY,Z)Jν JX−g(Jν JX ,Z)Jν JY} ,(2.1)

where J1,J2,J3 is any canonical local basis of J.
Let M be a real hypersurface of G2(Cm+2), that is, a submanifold of G2(Cm+2) with real

codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇

denotes the Riemannian connection of (M,g). Let N be a local unit normal field of M and A
the shape operator of M with respect to N. The Kähler structure J of G2(Cm+2) induces on
M an almost contact metric structure (φ ,ξ ,η ,g). Furthermore, let J1,J2,J3 be a canonical
local basis of J. Then each Jν induces an almost contact metric structure (φν ,ξν ,ην ,g) on
M. Using the above expression for the curvature tensor R̄, the Gauss and Codazzi equations
are respectively given by

R(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y +g(φY,Z)φX−g(φX ,Z)φY −2g(φX ,Y )φZ

+
3

∑
ν=1
{g(φνY,Z)φν X−g(φν X ,Z)φνY −2g(φν X ,Y )φν Z}

+
3

∑
ν=1
{g(φν φY,Z)φν φX−g(φν φX ,Z)φν φY}

−
3

∑
ν=1
{η(Y )ην(Z)φν φX−η(X)ην(Z)φν φY}

−
3

∑
ν=1
{η(X)g(φν φY,Z)−η(Y )g(φν φX ,Z)}ξν

+g(AY,Z)AX−g(AX ,Z)AY

and

(∇X A)Y − (∇Y A)X = η(X)φY −η(Y )φX−2g(φX ,Y )ξ

+
3

∑
ν=1

{
ην(X)φνY −ην(Y )φν X−2g(φν X ,Y )ξν

}
+

3

∑
ν=1

{
ην(φX)φν φY −ην(φY )φν φX

}
+

3

∑
ν=1

{
η(X)ην(φY )−η(Y )ην(φX)

}
ξν ,

where R denotes the curvature tensor of M in G2(Cm+2).
A real hypersurface of type (A) has three (if r = π/2

√
8) or four (otherwise) distinct

principal curvatures α =
√

8cot(
√

8r), β =
√

2cot(
√

2r), λ = −
√

2tan(
√

2r), µ = 0, for
some radius r ∈ (0,π/

√
8), with corresponding multiplicities m(α) = 1, m(β ) = 2, m(λ ) =

m(µ) = 2m−2. The corresponding eigenspaces can be seen in [2].
A real hypersurface of type (B) has five distinct principal curvatures α = −2tan(2r),

β = 2cot(2r), γ = 0, λ = cot(r), µ = −tan(r), for some r ∈ (0,π/4), with corresponding
multiplicities m(α) = 1, m(β ) = 3 = m(γ), m(λ ) = 4m−4 = m(µ). For the corresponding
eigenspaces see [2].
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3. Proof of the theorem

If we develop (∇̂(k)
X A)Y = (∇̂(k)

Y A)X , for X ,Y tangent to M we get

(∇X A)Y − (∇Y A)X = g(φAY,AX)ξ −g(φAX ,AY )ξ −η(AX)φAY +η(AY )φAX

− kη(Y )φAX + kη(X)φAY −g(φAY,X)Aξ +g(φAX ,Y )Aξ

+η(X)AφAY −η(Y )AφAX + kη(Y )AφX− kη(X)AφY.

(3.1)

Using the Codazzi equation, (3.1) becomes

η(X)φY −η(Y )φX−2g(φX ,Y )ξ +
3

∑
ν=1
{ην(X)φνY −ην(Y )φν X−2g(φν X ,Y )ξν}

+
3

∑
ν=1
{ην(φX)φν φY −ην(φY )φν φX}+

3

∑
ν=1
{η(X)ην(φY )−η(Y )ην(φX)}ξν

=−2g(AφAX ,Y )ξ −η(AX)φAY +η(AY )φAX− kη(Y )φAX + kη(X)φAY

+g((φA+Aφ)X ,Y )Aξ +η(X)AφAY −η(Y )AφAX + kη(Y )AφX− kη(X)AφY.

(3.2)

As we suppose M is Hopf, we write Aξ = αξ for a certain function α . We also can write
ξ = η(X0)X0 +η(ξ1)ξ1, where X0 ∈D is unit. Suppose η(X0)η(ξ1) 6= 0. Taking X = ξ in
(3.2) we obtain
(3.3)

φY +η1(ξ )φ1Y −
3

∑
ν=1

ην(Y )φν ξ +3
3

∑
ν=1

ην(φY )ξν =−αφAY + kφAY +AφAY − kAφY

for any Y tangent to M. The scalar product of (3.3) and ξ yields 4η1(ξ )g(φξ1,Y ) = 0 for any
Y tangent to M. This gives η1(ξ )φξ1 = η1(ξ )φ1ξ = η1(ξ )η(X0)φ1X0 = 0. As φ1X0 6= 0,
we have a contradiction.

Thus η(X0)η(ξ1) = 0. That means that either ξ ∈D or ξ ∈D⊥. If ξ ∈D , by [14], M is
locally congruent to a real hypersurface of type (B).

Therefore we will study the case ξ ∈ D⊥. We can write ξ = ξ1. Taking X ∈ D , Y = ξ

in (3.2) we have

(3.4) −φX−φ1X = (α− k)φAX + kAφX−AφAX

for any X ∈D . Continue taking X ∈D in (3.2). Its scalar product with ξ yields

(3.5) −2g(φX ,Y )−2g(φ1X ,Y ) =−2g(AφAX ,Y )+αg((φA+Aφ)X ,Y )

for any Y tangent to M. Thus −2φX − 2φ1X = −2AφAX + α(φA + Aφ)X for any X ∈ D .
This and (3.4) imply

(3.6) (α−2k)AφX = (α−2k)φAX

for any X ∈D . As we suppose α 6= 2k, we obtain

(3.7) AφX = φAX
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for any X ∈D . Take X = ξ2 in (3.2). This gives

−
3

∑
ν=1

ην(Y )φν ξ2−2
3

∑
ν=1

g(φν ξ2,Y )ξν +
3

∑
ν=1
{ην(φξ2)φν φY −ην(φY )φν φξ2)}

−
3

∑
ν=1

η(Y )ην(φξ2)ξν +η(Y )ξ3 +2η3(Y )ξ +φ2Y

=−2g(AφAξ2,Y )ξ +αη(Y )φAξ2− kη(Y )φAξ2

+αg((φA+Aφ)ξ2,Y )ξ −η(Y )AφAξ2 + kη(Y )Aφξ2

(3.8)

for any Y tangent to M. Taking Y = ξ and its scalar product with ξ2 we get (α−2k)g(Aξ2,
ξ3) = 0. As α 6= 2k we obtain

(3.9) g(Aξ2,ξ3) = 0.

And taking its scalar product with ξ3 we have

(3.10) 2 = (k−α)g(Aξ2,ξ2)− kg(Aξ3,ξ3)−g(AφAξ2,ξ3).

A similar reasoning taking X = ξ3, Y = ξ and the scalar product with ξ2 gives

(3.11) −2 =−(k−α)g(Aξ3,ξ3)+ kg(Aξ2,ξ2)+g(AφAξ2,ξ3).

From (3.10) and (3.11) we obtain 0 = (2k−α)g(Aξ2,ξ2)− (2k−α)g(Aξ3,ξ3). As α 6=
2k we arrive to

(3.12) g(Aξ2,ξ2) = g(Aξ3,ξ3).

From (3.9) and (3.12) we can write Aξ2 = βξ2 + γX2, Aξ3 = βξ3 + µX3, for some func-
tions β , γ , µ on M, X2 and X3 being unit vector fields in D .

If γ = µ = 0, from (3.7) we should have Aφ = φA. Thus M would be locally congruent
to a type (A) real hypersurface (see [3]).

Suppose that, at least, one among γ and µ does not vanish. From the above expressions
we have γX2 = Aξ2 − βξ2. Thus γAφX2 = AφAξ2 + β 2ξ3 + β µX3. On the other hand
γφAX2 = φA2ξ2 +β 2ξ3− γβφX2. Therefore AφAξ2 +β µX3 = φA2ξ2− γβφX2. Its scalar
product with ξ3 yields g(AφAξ2,ξ3) =−g(A2ξ2,φξ3) =−g(A2ξ2,φ3ξ1) =−g(A2ξ2,ξ2) =
−(β 2 + γ2). But g(AφAξ2,ξ3) = g(φAξ2,Aξ3) = g(βφξ2 + γφX2,βξ3 + µX3) = −β 2 +
γµg(φX2,X3). This gives

(3.13) γµg(φX2,X3) =−γ
2.

Observe that if µ = 0, γ = 0. So we have µ 6= 0.
As µX3 = Aξ3−βξ3, we can make a similar reasoning and obtain

(3.14) µγg(φX3,X2) = µ
2.

Now, if γ = 0, µ = 0. So we obtain γ 6= 0. From (3.13) and (3.14) g(φX2,X3) =−µ/γ =
−γ/µ . Thus µ2 = γ2 and g(φX2,X3) =±1. Let us see that this means φX2 =±X3. Consider
an orthonormal basis of D given by {X3,Yi}i=2,...,4m−4. We can write φX2 = g(φX2,X3)X3 +
∑

4m−4
i=2 g(φX2,Yi)Yi. As X2 is unit we have 1 = g(φX2,X3)2 +∑

4m−4
i=2 g(φX2,Yi)2. As g(φX2,

X3)2 = 1, this implies g(φX2,Yi) = 0, i = 2, ...,4m− 4 and φX2 = ±X3. Recall that Aξ2 =
βξ2 +γX2, Aξ3 = βξ3 +µX3 with γ2 = µ2 = 1. Now Aφξ2 = Aφ2ξ1 =−Aξ3 =−βξ3−µX3
and φAξ2 = βφξ2 + γφX2 = βφ2ξ1 + γφX2 = −βξ3 + γφX2. Similarly Aφξ3 = Aφ3ξ1 =
Aξ2 = βξ2 +γX2 and φAξ3 = βφξ3 +µφX3 = βφ3ξ1 +µφX3 = βξ2 +µφX3. Thus Aφξ2 =
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φAξ2 if and only if −µX3 = γφX2 and Aφξ3 = φAξ3 if and only if γX2 = µφX3. As φX2 =
±X3 and γ =±µ , we have that Aφ = φA on M and M is locally congruent to a type (A) real
hypersurface.

If M is of type (A), taking X = ξ2, Y = ξ3 in (3.1) we should obtain 1 = 2. Thus type (A)
real hypersurfaces do not satisfy our condition.

If M is of type (B), taking X = ξ2, Y ∈ Tλ , in order to (3.2) to be satisfied φ2Y = 0. This
is impossible and finishes our proof.
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