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1. Introduction

The generalized Tanaka-Webster connection (from now on, g-Tanaka Webster connnec-
tion) for contact metric manifolds was introduced by Tanno [16] as a generalization of the
connection defined by Tanaka in [15] and, independently, by Webster in [17]. The Tanaka-
Webster connection is defined as a canonical affine connection on a non-degenerate, pseudo-
Hermitian CR-manifold. A real hypersurface M in a Kéhler manifold has an (integrable)
CR-structure associated with the almost contact structure (¢,&,7,g) induced on M by the
Kihler structure, but, in general, this CR-structure is not guaranteed to be pseudo-Hermitian.
Cho defined the g-Tanaka-Webster connection for a real hypersurface of a Kahler manifold
(see [4-6]) by

(1.1) VY = VY +g(9AX, Y)E —1(Y)PAX — kn (X)9Y

for any X, Y tangent to M, where V denotes the Levi-Civita connection on M, A is the shape
operator on M and k is a non-zero real number. In particular, if the real hypersurface satisfies
AP + 9A = 2k¢, then the g-Tanaka-Webster connection V(&) coincides with the Tanaka-
Webster connection (see [6]). Using the g-Tanaka-Webster connection, some geometers
have studied some characterizations of real hypersurfaces in complex space forms (see [6,
12]).

Let us denote by G,(C™*+?) the set of all complex 2-dimensional linear subspaces in
C™*2. Tt is known to be the unique compact irreducible Riemannian symmetric space
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equipped with both a Kihler structure J and a quaternionic Kihler structure J not contain-
ing J(see Berndt and Suh [2]). In other words, G, (C"*?) is the unique compact, irreducible
Kihler, quaternionic Kihler manifold wich is not a hyper-Kéhler manifold.

Let M be a real hypersurface in G,(C™*2) and N a local normal unit vector field on M.
Let also A be the shape operator of M associated to N. Then we define the structure vector
field of M by & = —JN. Moreover, if {J;,J2,J3} is a local basis of J, we define & = —J;N,
i=1,2,3. We will call 2+ = Span{&,,&,&3}.

M is called Hopf if & is principal, that is, A& = o&. Berndt and Suh, [2] proved that if
m > 3, areal hypersurface M of Go(C™*?2) for which both [£] and 2 are A-invariant must
be an open part of either (A) a tube around a totally geodesic Go(C"*!) in G,(C"™*?), or
(B) a tube around a totally geodesic HP" in G,(C™*+?2). In this second case m = 2n.

Bearing in mind this result an interesting topic is to find geometric properties that char-
acterize either type (A) or type (B) among real hypersurfaces in complex two-plane Grass-
mannians. Several results have been obtained as the characterization of type (A) real hy-
persurfaces as the unique ones for which the structure tensor ¢ and the shape operator A
commute, see [3], that we will use in this paper, or the characterization of type (B) real
hypersurfaces given by Lee and Suh in [14].

Jeong, Lee and Suh, [9], considered Hopf real hypersurfaces in G, (Cm+2) with g-Tanaka-
Webster parallel shape operator. That is, A satisfies (@@A)Y = 0, for any vector fields X,Y
on M. They proved the non-existence of such real hypersurfaces if m > 3 and o # 2k. Some
weaker conditions were studied in [8, 10,11, 13].

In this paper we will study a different weaker condition. Given a tensor 7" of type (1,1)
on M we will say that T is of Codazzi type with respect to the g-Tanaka-Webster connection
if it satisfies (@g(k)T)Y = (@;k)T)X, for any X,Y tangent to M. So we will consider real
hypersurfaces in G, (C"*2) whose shape operator A is of Codazzi type with respect to the
g-Tanaka-Webster connection. Thus (@g(k) A)Y = (%,k) A)X for any X,Y tangent to M.

From the Codazzi equation, (see Section 2), it is very easy to see that A is not of Codazzi
type for the Levi-Civita connection on M. We will prove the

Theorem 1.1. There do not exist connected orientable Hopf real hypersurfaces in G (C™*?2),
m > 3, whose shape operator is of Codazzi type with respect to the g-Tanaka-Webster con-
nection if o # 2k.

Recently, in [7], the authors have obtained a similar result but with a further condition:
that the Z-component or the Z--component of the structure vector field £ is A-invariant.

2. Preliminaries

For the study of the Riemannian geometry of G,(C"*+?) see [1]. All the notations we will
use from now on are the ones in [2] and [3]. We will suppose that the metric g of Gz((C'”“)
is normalized for the maximal sectional curvature of the manifold to be eight. Then the
Riemannian curvature tensor R of G, (C"*?2) is locally given by

R(X,Y)Z =gV, 2)X —g(X,2)Y +g(JY,Z)JX — g(JX,Z)JY —2g(JX,Y)JZ
3
+ {g(JvYaZ)JvX*g(JvXaZ)JvY*Zg(JvXaY)JvZ)}

v=1
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3
2.1 + Z {g(WJIY,2)]yJX — g(JyJIX,Z)J,JY },
v=1
where Ji,J2,J3 is any canonical local basis of .

Let M be a real hypersurface of G»(C"*+2), that is, a submanifold of G,(C"*+?) with real
codimension one. The induced Riemannian metric on M will also be denoted by g, and V
denotes the Riemannian connection of (M, g). Let N be a local unit normal field of M and A
the shape operator of M with respect to N. The Kéhler structure J of G,(C"*?) induces on
M an almost contact metric structure (¢,&,1,g). Furthermore, let J;,J5,J3 be a canonical
local basis of J. Then each J, induces an almost contact metric structure (@y,&y,ny,g) on
M. Using the above expression for the curvature tensor R, the Gauss and Codazzi equations
are respectively given by

3
+ Z {8(0WY, Z)pvX — g(dv X, Z)vY —28(dvX,Y )Py Z}
v=1

3
+ Z 18(0v0Y,Z) 9y 90X — g(9v9X,Z) 9y PY }
- Z{n Z)ovoX —n(X)nv(Z)pv oY }

- ):{n 8(¢v0Y,Z) —n(Y)g(dv9X.Z) }Ey
+g(AY,Z)AX —g(AX,Z)AY
and

(VxA)Y — (VyA)X = n(X)¢Y —n(Y)$X —2g(¢X.Y)E

+Z{nv )OvY — 1y (Y)$vX —2g(9yX,Y)E, }

3

Z Nv(9X)dy oY — 1y (9Y) ¢V¢X}

3

Z X)nv(0Y) = n(¥)nv(9X) }&v,
where R denotes the curvature tensor of M in Go(C™"*2).

A real hypersurface of type (A) has three (if r = 7/ 24/8) or four (otherwise) distinct
principal curvatures a = /8cot(v/8r), B = \/2cot(v/2r), A = —/2tan(\/2r), u = 0, for
some radius r € (0,7/+/8), with corresponding multiplicities m (o) = 1, m(B) =2, m(1) =
m(u) = 2m—2. The corresponding eigenspaces can be seen in [2].

A real hypersurface of type (B) has five distinct principal curvatures a@ = —2tan(2r),
B =2cot(2r), y=0, A = cot(r), 4 = —tan(r), for some r € (0,7/4), with corresponding
multiplicities m(a) = 1, m(B) = 3 = m(y), m(A) = 4m —4 = m(u). For the corresponding
eigenspaces see [2].
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3. Proof of the theorem
If we develop (@g‘)A)Y = (@g,k)A)X, for X,Y tangent to M we get

(VxA)Y — (VyA)X = g(pAY,AX)E — g(9AX,AY)E — n(AX)PAY + 1 (AY)9AX
(3.1 —kn(Y)PAX +kn(X)PAY — g(PAY, X)AE + g(9AX,Y)AS
+ N (X)APAY —1(Y)APAX +kn (Y)ADX — kn (X )AQY.

Using the Codazzi equation, (3.1) becomes
nX)oY —n(Y)oX —2g(eX,Y)E + Z (v (X)dvY =y (Y)9vX —2g(9v X, Y )&y}

32 + Z{nv OX)Py9Y — 1 (9Y )Py 0X } + Z{n )Nv(9Y) —n(Y)nv(9X)}Ey
= —2g(A¢AX,Y)§ — n(AX)¢AY+n(AY)¢AX —kn( )¢AX+kn(X)q)AY
+g((¢A +A¢)X,Y)A§ + n(X)A¢AY — n(Y)Aq)AX—ch(Y)Aq)X —kn (X)Aq)Y.

As we suppose M is Hopf, we write AE = £ for a certain function or. We also can write
& =n(Xo)Xo+n(& )&, where Xo € Z is unit. Suppose 11(Xo)1(&;) # 0. Taking X = € in
(3.2) we obtain
(3.3)

oY +mi(§)d1Y — Z nv(Y)¢vE +3 Z v(9Y)E = —aPAY + k@AY +APAY — kAQY

for any Y tangent to M. The scalar product of (3.3) and & yields 41 (&)g(¢&;,Y) = 0 for any

Y tangent to M. This gives n1(§)0& = m(E)91E = m(E)N(Xo)d1Xo = 0. As ¢ Xy # 0,
we have a contradiction.

Thus 1 (Xo)n(&;) = 0. That means that either £ € Z or £ € 2. If € € 2, by [14], M is
locally congruent to a real hypersurface of type (B).

Therefore we will study the case & € 2. We can write £ = &;. Taking X € 2,Y =&
in (3.2) we have

3.4) —0X — 1 X = (ax —k)9AX + kAPX — APAX
for any X € 2. Continue taking X € 2 in (3.2). Its scalar product with £ yields
(3.5) —28(0X,Y) —28(91X,Y) = —28(AAX.Y) + ag((9A+A9)X.Y)

for any Y tangent to M. Thus —2¢X —2¢; X = —2A9AX + o.(pA+A¢)X for any X € 2.
This and (3.4) imply

(3.6) (a—2k)A9pX = (o0 — 2k)pAX
for any X € 9. As we suppose & # 2k, we obtain

3.7) APX = PAX
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for any X € 2. Take X = &, in (3.2). This gives

- Z (Y ¢v‘§2—228 &, Y)E + Z{nv &) PvPY — v (9Y)9v9S)}

(3.8) — Zn My (982)Ey +n(Y)E +2n3(Y)E + oY

= —2g(A¢A527 )€ +an(Y)pAL —kn(Y)9AS,
+ag((9A+A9)5,Y)E —n(Y)APAL, +kn(Y)ApE,

for any Y tangent to M. Taking Y = & and its scalar product with &, we get (a —2k)g(A&,,
&3) = 0. As a # 2k we obtain

3.9) 8(A&, &) =0

And taking its scalar product with &3 we have

(3.10) 2= (k—a)g(A&, &) —kg(ALs,E3) — g(APAL, &3).

A similar reasoning taking X = &3, Y = & and the scalar product with &, gives

(3.11) —2=—(k—0t)g(A&3,&) +kg(A&r, &) +8(APAE, &3).

From (3.10) and (3.11) we obtain 0 = (2k — t)g(A&,, &) — (2k— @) g (A3, E3). As a #
2k we arrive to

(3.12) 8(A&,6) = g(A&3,&).

From (3.9) and (3.12) we can write A&, = & + ¥Xa, Aé3 = B&3 + uXs, for some func-
tions f3, v, 1 on M, X, and X3 being unit vector fields in 2.

If y=pu =0, from (3.7) we should have A¢p = @A. Thus M would be locally congruent
to a type (A) real hypersurface (see [3]).

Suppose that, at least, one among ¥ and tt does not vanish. From the above expressions
we have yX, = A&, — BE,. Thus YAQX, = APAE, + B2E3 4+ BuXs. On the other hand
YOAX> = OA%E) + B2E3 — YBPXo. Therefore AQAE, + BuXs = 9A%E; — yBoX,. Tts scalar
product with &; yields g(A9A&, &) = —g(A%8r, 0&3) = —g(AEr, 9381) = —5(A%6, &) =
—(B2+ 7). But g(APAL,E) = g(9AE,AL) = g(BOE + 19Xa. BE + uXs) = —B2 +
Yug(9Xa,X3). This gives

(3.13) yug($X2,X3) = — 7.

Observe that if @ =0, y=0. So we have u # 0.
As uX; = A&; — B &3, we can make a similar reasoning and obtain

(3.14) 1yg(6X3,Xo) = p.

Now, if y=0, 4 = 0. So we obtain ¥ # 0. From (3.13) and (3.14) g(¢X,X3) = —u/y=
—y/u. Thus u? = % and g(¢X>,X3) = £1. Let us see that this means ¢ X, = +X3. Consider
an orthonormal basis of 2 given by {X3,Y;}i=2 . 4m—4. We can write ¢Xo = g(¢Xo,X3) X3+
Zf'”z 49(0X>,Y;)Y;. As X is unit we have 1 = g(¢X2,X3) +Z;‘m2 49(0X5,Y:)2. As g(0Xs,

X3)? = 1, this implies g(¢X>,Y;) =0, i =2,...,4m — 4 and ¢X, = +X3. Recall that A&, =
BEr+yXa, Als = BE+1uX; with 12 = u2 = 1. Now A@&y = Ap&) = —Al3 = — & — uXz
and 9AE; = BO& + v9Xa = B$r&i + ¥9Xo = —BE3 + y9Xo. Similarly A9E3 = A¢s&; =
A& = BE+vXy and PAE; = BOS3+ 1P X3 = BP3S1 + 1o X3 = B+ 1o X3, Thus A9, =
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PAE, if and only if —uXz = y9X, and A9p&; = PAE; if and only if yXo = Lo X3. As 9Xp =
+X3 and Y= +u, we have that Ap = ¢A on M and M is locally congruent to a type (A) real
hypersurface.

If M is of type (A), taking X = &, Y = &; in (3.1) we should obtain 1 = 2. Thus type (A)
real hypersurfaces do not satisfy our condition.

If M is of type (B), taking X = &,, Y € Tj, in order to (3.2) to be satisfied ¢,Y = 0. This
is impossible and finishes our proof.
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