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Abstract. Repeated measurements data appear in many applications of study subjects such
as correlated binary data. Most of studies often focus on the dependence of marginal
response probabilities. There is a lack of study based on joint probability distributions that
yield estimation and test procedure using conditional probabilities, marginal means and cor-
related binary data. In this paper, the quadratic exponential form model has been extended
for a Markov chain framework. This study extends the quadratic exponential model for
displaying the estimation procedure for the nature and extent of dependence among the
binary outcomes. In addition, a test procedure is extended to test for the goodness of fit of
the model as well as for testing the order of the underlying Markov chain. The proposed
model and the test procedures have been examined thoroughly with an application to elderly
population data from the Health and Retirement Study (HRS) data.

2010 Mathematics Subject Classification: 62H20, 62F03, 62F10, 62N03

Keywords and phrases: Conditional model, marginal model, repeated observations, qua-
dratic exponential form, Markov model, and dependence in outcomes.

1. Introduction

Binary Markov chain arise in various application areas such as studies of disease occur-
rence among family members, longitudinal studies and studies involving repeated measure-
ments on the study subjects. The models for correlated binary data often focus on the
dependence of marginal response probabilities on covariates and experimental conditions,
although, there is a lack of study based on joint probability distributions that contain conve-
nient estimation of marginal means and correlations for correlated binary data. The models
based on generalized estimating equations (GEE) provide very attractive and useful results
but the estimates are often inefficient [3, 8]. The classical marginal models (such as GEE)
are constrained with the selection of underlying correlation structure, which may or may
not be functions of the marginal expectations [12]. As an alternative, the subject-specific
models are proposed taking into consideration the random effects by allowing random effect
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terms in the linear predictor [2]. It has been demonstrated by Lee and Nelder [12] that con-
ditional models are fundamental and the advantages of conditional models over marginal
models are obvious because marginal predictions can be made from conditional models. At
this backdrop, logistic representations has been suggested by Cox [5] which noted a prob-
ability distribution of this quadratic exponential form can be reparameterized in terms of
marginal parameter of ready interpretation. This has been further discussed by Cox and
Wermuth [6, 7]. Zhao and Prentice [18] provided a comprehensive estimation procedure for
quadratic exponential quadratic form models and provided measures based on covariances
[16]. The quadratic exponential form models have been employed by Hudson et al. [10]
for analyzing familial aggregation of two disorders. In this paper a test procedure for asso-
ciation of order is proposed by extending the Tsiatis [15] procedure test based on quadratic
exponential model which was defined by Bahadur [1].

2. Quadratic exponential form model

According to Bahadur [1], consider Y as a specified set of all points y = (y1, . . . ,yn) with
yi = 0 or 1; with 2n points. Let P(y) be a given probability distribution on Y, such that
P(y)≥ 0 for all y and ∑(y∈Y ) P(y) = 1.

Let
pi = P(Yi = 1), i = 1, . . . ,n,

so
µi = EP (Yi) = pi, 0 < pi < 1, i = 1, . . . ,n;

where EP is expected value. Then define

Zi =
(Yi− pi)√
pi(1− pi)

, i = 1, . . . ,n

ηi j = EP (ZiZ j), i < j

ηi jk = EP (ZiZ jZk), i < j < k

· · ·
η12...n = EP(Z1Z2 · · ·Zn).

Let P[1](y1, . . . ,yn) denote the joint probability distribution of Yi ’s when Yi ’s are inde-
pendent identify distribution. i.e.,

P[1](y1, . . . ,yn) =
n

∏
i=1

pyi
i (1− pi)1−yi .

A representation of the distribution defined [1] as

P(y) = P[1](y). f (y) for every y = (y1, . . . ,yn)

where
f (y) = 1+ ∑

i< j
ηi jziz j + ∑

i< j<k
ηi jkziz jzk + · · ·+η12...nz1z2 · · ·zn.

Now, let yT
k = (yk1, . . . ,yknk),k = 1, . . . ,K be a sample of k-independent multivariate bi-

nary observation. The distribution of Yk is defined by Zhao and Prentice [18]

(2.1) Pr(yk) = ∆
−1
k exp

{
yT

k θk +wT
k λk + ck(yk)

}
,
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where

wT
k = (yk1yk2,yk1yk3, . . . ,yk2yk3, . . .),

θ
T
k = (θk1, . . . ,θknk),

λ
T
k = (λk12,λk13, . . . ,λk23, . . .)

are canonical parameters, and ∆k = ∆k(θk,λk) is a normalization constant defined by

∆k = ∑exp
{

yT
k θk +wT

k λk + ck(yk)
}
,

with summation over all 2nk possible values of Yk. If λk ≡ 0 and ck(.)≡ 0, the elements of
Yk will be statistically independent.

By fixing the functions, ck(.), for example ck(.) ≡ 0, and considering a fixed number
of canonical parameters (θk,λk), k = 1, . . . ,K, parametric inference based on Equation
(2.1) could proceed. Alternatively the response probabilities, µk = E(Yk), and pairwise
correlations can be model by µk = µk(β ) and covariances σk = (σk12,σk13, . . . ,σk23, . . .) =
σk(β ,α) in terms of parameter vectors β and α . Then can show that the transformation
from (θk,λk) to (µk,σk) has Jacobian the covariance matrix for (Y T

k ,W T
k ). Although the pa-

rameters (θk,λk) are complicated functions of the corresponding (µk,σk) values, the score
estimating equations for β and α turn out to have a particularly simple estimation proce-
dures for mean and covariance parameters.

Zhao and Prentice [18] defined the score estimating equation for β and α from Equation
(2.1), with specified the response means µk and covariances σk, written as

(2.2) K−1/2
K

∑
k=1

DT
k V−1

k fk = 0,

where

Dk =
[

∂ µk/∂β 0
∂σk/∂β ∂σk/∂α

]
, Vk =

[
var(Yk) cov(Yk,Sk)

cov(Sk,Yk) var(Sk)

]
, fk =

[
Yk−µk
Sk−σk

]
,

and where

ST
k = (Sk12,Sk13, . . . ,Sk23, . . .), Ski j = (Yki−µki)(Yk j−µk j)

is the vector of empirical pairwise covariances. And the corresponding Fisher information
matrix defines as

(2.3) W = K−1
K

∑
k=1

DT
k V−1

k Dk.

Also, expectation of Wk from (2.1) is written by

η
T
k = E

(
W T

k
)
, ηki j = σki j + µkiµk j that σki j = E[(Yki−µki)(Yk j−µk j)].

Whenever (V−1
k )12 ≡ 0, or equivalently Vk12 ≡ 0, and Dk21 = ∂σk/∂α is replaced by Dk21 ≡

0. These estimating equations will be unbiased for mean parameters in spite of whether
E(Sk) = σk.

Application of the chain rule to the log likelihood contribution

(2.4) lk = yT
k θk +wT

k λk + ck(yk)− log∆k
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gives [
∂ lk/∂β

∂ lk/∂α

]
= D̃T

k Ṽ−1
k f̃k,

where

D̃k =
[

∂ µk/∂β 0
∂ηk/∂β ∂ηk/∂α

]
, f̃k =

[
Yk−µk
Wk−ηk

]
.

Since Ṽk = E( f̃k f̃ T
k ) the corresponding information matrix contribution is D̃T

k Ṽ−1
k D̃k.

3. Quadratic exponential model for transition probabilities

Consider a single stationary process Yk = (Y1, . . . ,Yn) generated by a binary Markov chain
taking values 0 and 1. The transition matrix defines by

P =
[

1− p0t p0t
1− p1t p1t

]
where, p jt = Pr(Yt = 1|Yt−1 = j); j = 0,1, t = 1, . . . ,T .

For expanding Equation (2.1) for transition probabilities of first order Markov chain, let
n = 2. Thus, the equations can be written as [18]

yT
k = (yk1, yk2), and Pr(yk) = ∆

−1
k exp

{
yT

k θk +wT
k λk + ck(yk)

}
,

where
wT

k = (yk1yk2), θ
T
k = (θk1,θk2), λ

T
k = (λk12).

Here, λk12 is the association parameter.
In this section, a more natural way to represent the association parameter, in terms of the

underling dependence between outcome variables as well as between the outcome and ex-
planatory variables, is proposed. The proposed model for the expected value of the outcome
variables, Yk1 and Yk2, are shown in Equations (3.1) and (3.2).

Let µk = E(Yk) = (µk1,µk2)T , µk = µk(β ,α) and covariance matrix

σk =
[

σk11 σk12
σk21 σk22

]
, σk = σk(β , α).

β and α are vector parameters β = (β0,β1, . . . ,βp), α = (α12) and

µk1 = P(Yk1 = 1|xk) =
exp(β1xk)

1+ exp(β1xk)
,(3.1)

µk2 = P(Yk2 = 1|yk1, xk) =
exp(β2xk +α12yk1)

1+ exp(β2xk +α12yk1)
,(3.2)

where, the vector xk contains covariates and for the kth individual is equal to xk =(1,xk1, . . . ,xkp)
and β j = (β j0,β j1, . . . ,β jp); j = 0,1.

Let us consider

θk1 = logit(µk1) = log
µk1

1−µk1
= β1xk,

θk2 = logit(µk2) = log
µk2

1−µk2
= β2xk +α12yk1,
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and

(3.3) λk12 = log
(

µk2/(1−µk2)
µk1/(1−µk1)

)
= (β2xk +α12yk1)−β1xk = (β2−β1)xk +α12yk1.

Hence, the proposed association parameter, λk12, appears to depend on the values of (β2−
β1) and α12. In other words, if (β2− β1) = 0 and α12 = 0, then can say that there is no
dependence.

The log-likelihood function is defined

l =
K

∑
k=1

lk =
K

∑
k=1

{
yT

k θk +wT
k λk + ck(yk)− log∆k

}
=

K

∑
k=1

{
yk1 logit(µk1)+ yk2 logit(µk2)+ yk1yk2 log

(
µk2/(1−µk2)
µk1/(1−µk1)

)
− log∆k

}
=

K

∑
k=1
{yk1(β1xk)+ yk2(β2xk +α12yk1)+ yk1yk2(β2xk +α12yk1−β1xk)− log∆k} .

Here, ck(yk)≡ 0 and ∆k = ∑exp{yT
k θk +wT

k λk + ck(yk)} is a normalization constant.
For estimating means and covariance parameters let Vk11 = var(Yk), Vk12 = V T

k21 and Vk22
denote the block submatrices of Vk. In this paper is considered: Independence among the
elements of Yk implies Vk12 ≡ 0, and a diagonal Vk22 with entries var(Ski j) = σkiiσk j j, where
σkii = µki(1−µki) [13].

The first derivative can be written as[
∂ lk/∂β

∂ lk/∂α

]
= D̃T

k Ṽ−1
k f̃k,

where

D̃k =
[

∂ µk/∂β ∂ µk/∂α

∂ηk/∂β ∂ηk/∂α

]
, f̃k =

[
Yk−µk
Wk−ηk

]
.

Since Ṽk = E( f̃k f̃ T
k ) the corresponding information matrix contribution can be written as

D̃T
k Ṽ−1

k D̃k and parameters can be estimated by solving[
∂ lk/∂β

∂ lk/∂α

]
= D̃T

k Ṽ−1
k f̃k = 0.

The null hypothesis for testing order of Markov chain model in first order is H0 : α = 0; and
under true null hypothesis, the log-likelihood function is written as

l =
K

∑
k=1
{yk1(β1xk)+ yk2(β2xk)+ yk1yk2(β2xk−β1xk)− log∆k}.

By using efficient score test the test statistic is defined by

T = Z′V−1Z,

where Z is the (∂ l/∂α), and the matrix V is

V = A−BC−1B′,

where

A =
−∂ 2l

∂α∂α
, B =

−∂ 2l
∂α∂β

, C =
−∂ 2l
∂β∂β

.
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All above terms were evaluated at α = 0 and β = β̂ . Where, β̂ is the maximum likelihood
estimate of the parameters when H0 is true [14].

The Wald test statistic is written as

W = K−1(D̃T
k Ṽ−1

k f̃k
)T (

D̃T
k Ṽ−1

k D̃k
)−1(

D̃T
k Ṽ−1

k f̃k
)
.

where under true null hypothesis and β = β̂ is distributed asymptotically chi-square with
2p degree of freedom.

For testing null hypothesizes H0 : β1 = β2 = β and α12 = 0 likelihood ratio test statistics
can be used

LRT =−2(lnL0− lnL1),
where L0 is likelihood function under true null hypothesis and L1 is likelihood function
based on alternative hypothesis, which is distributed asymptotically chi-square with p + 1
degree of freedom. Also, following test statistic with asymptotic chi square distribution
with p degree of freedom,

X̂2 =
(

β̂1− β̂2

)T (
var
(

β̂1− β̂2

))−1(
β̂1− β̂2

)
.

can be used.
It is evident from Equation (3.3) that the odds ratio can be expressed as

(3.4) ORk = exp(λk12) =
µk2/(1−µk2)
µk1/(1−µk1)

= exp{(β2−β1)xk +αk12yk1}.

From the above expression, it can be stated that if β1 and β2 as well as αk12 are zero then the
odds ratio, ORk, is 1 indicating no dependence between the outcome variables. In Equation
(3.3), if αk12 = 0, then association will depend on the difference between β1 and β2. In
other words, if there is significant difference between β1 and β2, it will still indicate the
significant association between outcomes, Y1 and Y2.

4. Application

To demonstrate an application of the proposed method, we have employed the Health and
Retirement Study (HRS) data [9]. The data were collected from 1992 to 2006 by the RAND
Centre for 30,405 people in 8 waves, for considering repeated measures. In this case, only
individuals who attended to the program in 1992 and the follow up until 2006 have been
considered. The study takes into account the factors affecting depression during the elderly.
Depression (0 for no depression and 1 for depression) is considered as dependent variable,
and age (in year), gender (0 for male and 1 for female), body mass index (BMI), and drink
(0 for no drink and 1 for drink) as covariate variables. Some of variables contained missing
values because reference person did not respond to the all waves. Thus, these individuals
are dropped completely from studying if there were missing value in the covariate variables,
but were kept if the value of dependent variable (depression) was missing. For estimating
the parameters of model, S-Plus program which has been developed by Chowdhury et al.
[4], is modified and used.

Table 1 shows the results of the test for the null hypothesis H0 : α = 0 evaluated at the
maximum likelihood estimates of β1 and β2. This indicates apparently that there is no re-
lationship between the outcome variables but as the dependence between the outcome vari-
ables depend on α , β1 and β2, we need to comment on the basis of tests for all these param-
eters. It is shown by Islam et al. [11] that the dependence between the outcome variables
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may depend on their association with the explanatory variables as well. In addition, results
in Tables 2 and 3 are based on the null hypotheses H0 : β1 = β2 and H0 : β1 = β2, α12 = 0,
respectively. In Table 2, we have used the LRT. In Table 3, the LRT is employed for test-
ing H0 : β1 = β2, α12 = 0, and the efficient score and the Wald tests are performed for
H0 : α12 = 0 evaluated at β1 = β2 = β̂ . Both the extended Tsiatis and the Wald test statistics
indicate that the models are fitted well. In Table 2 we observe that the null hypothesis of
equality of parameters of the two conditional models may be rejected indicating significant
differences in the parameters. Hence, following Equation (3.4), we may conclude that there
is evidence of dependence between the two outcome variables. It appears that age and drink
are negatively associated with the previous outcome while sex is positively associated (fe-
males have higher risk). For the subsequent outcome, the role of age and drink remained
similar in terms of direction but sex does not show and significant association. The results
in Table 3 confirm the results presented in Tables 1 and 2 by all the test statistics.

Table 1. Estimates of parameters of covariate for the quadratic exponential form and testing
for the association parameter

H0 : α = 0

Covariates Estimated value s.e. p value
Constant 4.964 0.306 0.000

Age -0.098 0.004 0.000
β̂1 Sex 0.226 0.060 0.0002

BMI -0.008 0.005 0.117
Drink -0.136 0.058 0.019

Constant -1.029 0.329 0.002
Age -0.007 0.004 0.114

β̂2 Sex 0.003 0.063 0.230
BMI -0.355 0.062 0.000
Drink -0.136 0.058 0.019

α̂ α12 0.039 0.066 0.553

Tsiatis Test 0.349 p value= 0.999

Wald Test 4.80E-06 p value= 1
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Table 2. Estimates of parameters of covariate for the quadratic exponential form and testing
for the equality of parameters for the two outcome variables

H0 : β1 = β2

Covariates Estimated value s.e. p value
Constant 4.981 0.307 0.000

Age -0.098 0.004 0.000
β̂1 Sex 0.226 0.060 0.0002

BMI -0.008 0.005 0.118
Drink -0.138 0.058 0.018

Constant -0.977 0.313 0.002
Age -0.007 0.004 0.066

β̂2 Sex 0.005 0.063 0.939
BMI 0.007 0.006 0.234
Drink -0.355 0.062 0.000

LRT Test 408.141 p value=0.000

Table 3. Estimates of parameters of covariate for the quadratic exponential form and testing
for the equality of parameters for two outcome variables and the parameter for association

H0 : β1 = β2, α = 0

Covariates Estimated value s.e. p value
Constant 4.964 0.306 0.000

Age -0.098 0.004 0.000
β̂1 Sex 0.226 0.060 0.0002

BMI -0.008 0.005 0.117
Drink -0.136 0.058 0.019

Constant -1.029 0.329 0.002
Age -0.007 0.004 0.114

β̂2 Sex 0.003 0.063 0.230
BMI -0.355 0.062 0.000
Drink -0.136 0.058 0.019

α̂ α12 0.039 0.066 0.553

LRT Test 401.593 p value= 0.000

Tsiatis Test 7.71E-013 p value= 0.999

Wald Test 0.025 p value= 0.874

5. Conclusion

In analyzing repeated measures data, we have to encounter the dependence in outcome vari-
ables at different times. This has been addressed mainly by the Generalized Estimating
Equations which are marginal models and assume the dependence in outcomes. The qua-
dratic exponential form employs different covariance structures and this paper extends the
form for transitions arising from repeated measures data. The extended form takes account
of previous outcome as a covariate and thus reveals the order of dependence. This procedure
can be extended further using higher order transitions and the test for higher order depen-
dence can also be developed. The proposed extension of the quadratic exponential form
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model is illustrated with a set of depression data from elderly population and reveals first
order dependence in the depression outcome.
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