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Abstract. We introduce the concept of para-contact para-complex semi- Riemannian sub-
mersions from an almost para-contact metric manifold onto an almost para-Hermitian man-
ifold. We provide an example and show that the vertical and horizontal distributions of
such submersions are invariant with respect to the almost para-contact structure of the total
manifold. Moreover, we investigate various properties of the O’Neill’s tensors of such sub-
mersions and find the integrability of the horizontal distribution. We also obtain curvature
relations between the base manifold and the total manifold. The paper is also focused on the
transference of structures defined on the total manifold.
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1. Introduction

The theory of Riemannian submersion was introduced by O’Neill and Gray in [16] and
[9], respectively. Later, Riemannian submersions were considered between almost complex
manifolds by Watson in [19] under the name of almost Hermitian submersion. He showed
that if the total manifold is a Kähler manifold, the base manifold is also a Kähler mani-
fold. Since then, Riemannian submersions have been used as an effective tool to describe
the structure of a Riemannian manifold equipped with a differentiable structure. Presently,
there is an extensive literature on the Riemannian submersions with different conditions im-
posed on the total space and on the fibres. For instances, Riemannian submersions between
almost contact manifolds were studied by Chinea in [4] under the name of almost contact
submersions. Riemannian submersions have been also considered for quaternionic Kähler
manifolds [12] and para-quaternionic Kähler manifolds [2, 11].

In [14] Kaneyuki and Williams defined the almost para-contact structure on a pseudo-
Riemannian manifold M of dimension (2m+1) and constructed the almost para-complex
structure on M2m+1×R. On the other hand, para-complex manifolds, almost para-Hermitian
manifolds and para-Kähler manifolds were defined by Libermann [15] in 1952. In fact,
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such manifolds were arose in [18]. Indeed, Rashevskij introduced the properties of para-
Kähler manifolds when he considered a metric of signature (n,n) defined from a potential
function the so-called scalar field on a 2n-dimensional locally product manifold called by
him stratified space.

Semi-Riemannian submersions were introduced by O’Neill in his book [17]. It is known
that such submersions have their applications in Klauza-Klein theories, Yang-Mills equa-
tions, strings, supergravity. For applications of semi-Riemannian submersions, see [7].
Since para-Hermitian manifolds and para-contact manifolds are semi-Riemannian mani-
folds, one should consider semi-Riemannian submersions between such manifolds. In this
paper, we define para-contact para-complex semi-Riemannian submersions between almost
para-contact metric manifold and almost para-Hermitian manifold, and study the geometry
of such submersions. We observe that para-contact para-complex semi-Riemannian sub-
mersion has also rich geometric properties.

The paper is organized as follows. In Section 2 we collect basic definitions, some for-
mulas and results for later use. In Section 3 we introduce the notion of para-contact para-
complex semi-Riemannian submersions and give an example of para-contact para-complex
semi-Riemannian submersion. Moreover, we investigate properties of O’Neill’s tensors and
show that such tensors have nice algebraic properties for para-contact para-complex semi-
Riemannian submersions. Then we find the integrability of the horizontal distribution. In
Section 4, we obtain relations between bisectional curvatures and sectional curvatures of
the base manifold, the total manifold and the fibres of a para-contact para-complex semi-
Riemannian submersion.

2. Preliminaries

In this section we are going to recall main definitions and properties of almost para-contact
metric manifolds, almost para-Hermitian manifolds and semi-Riemannian submersions.

2.1. Almost para-contact metric manifolds

In this subsection we recall basic definitions and properties of almost para-contact mani-
folds.

Let M be a (2m+1)-dimensional differentiable manifold. Let ϕ be a (1,1)-tensor field, ξ

a vector field and η a 1-form on M. Then (ϕ,ξ ,η) is called an almost para-contact structure
on M if

(i) η(ξ ) = 1, ϕ2 = Id−η⊗ξ ,
(ii) the tensor field ϕ induces an almost para-complex structure on the distribution

D = kerη , that is, the eigendistributions D+,D− corresponding to the eigenval-
ues 1, −1of ϕ, respectively, have equal dimension m. M is said to be almost para-
contact manifold if it is endowed with an almost para-contact structure [14, 3, 21].

Let M be an almost para-contact manifold. M is called an almost para-contact metric
manifold if it is additionally endowed with a pseudo-Riemannian metric g of signature (m+
1,m) such that

(2.1) g(ϕX ,ϕY ) =−g(X ,Y )+η(X)η(Y ), X ,Y ∈ χ(M).

For such a manifold, we additionally have η(X) = g(X ,ξ ), ϕξ = 0, η ◦ϕ = 0. Moreover,
we can define a skew-symmetric 2-form Φ by Φ(X ,Y ) = g(X ,ϕY ), which is called the
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fundamental form corresponding to the structure. Note that η∧Φ is, up to a constant factor,
the Riemannian volume element of M. On an almost para-contact manifold, one defines the
(1,2)-tensor field N(1) by

(2.2) N(1)(X ,Y ) = [ϕ,ϕ](X ,Y )−2dη(X ,Y )ξ ,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ given by

(2.3) [ϕ,ϕ](X ,Y ) = ϕ
2[X ,Y ]+ [ϕX ,ϕY ]−ϕ[ϕX ,Y ]−ϕ[X ,ϕY ].

If N(1) vanishes identically, then the almost para-contact manifold (structure) is said to be
normal [21]. The normality condition says that the almost para-complex structure J defined
on M×R by

(2.4) J
(

X , f
d
dt

)
=
(

ϕX + f ξ ,η(X)
d
dt

)
is integrable.

We note that an almost para-contact metric manifold (M,g,ϕ,ξ ,η) is called
(a) normal, if Nϕ −2dη⊗ξ = 0, where Nϕ is the Nijenhuis tensor of ϕ;
(b) para-contact, if Φ = dη ;
(c) K-para-contact, if M is para-contact and ξ Killing;
(d) para-cosymplectic, if ∇Φ = 0 which implies ∇η = 0, where ∇ is the Levi-Civita

connection on M;
(f) almost para-cosymplectic, if dη = 0 and dΦ = 0;
(g) weakly para-cosymplectic, if M is almost para-cosymplectic and [R(X ,Y ),ϕ] =

R(X ,Y )ϕ−ϕR(X ,Y ) = 0;
(h) para-Sasakian, if Φ = dη and M is normal;
(j) quasi-para-Sasakian, if dΦ = 0 and M is normal [6, 20, 21].

It is known that an almost para-contact manifold is a para-Sasakian manifold if and only if
(∇X ϕ)Y =−g(X ,Y )ξ +η(Y )X , for X ,Y ∈ Γ(T M).

Lemma 2.1. [21] Let (M,ϕ,ξ ,η ,g) be an almost para-contact metric manifold. Then we
have

2g((∇X ϕ)Y,Z) =−dΦ(X ,Y,Z)−dΦ(X ,ϕY,ϕZ)−N(1)(Y,Z,ϕX)

+N(2)(Y,Z)η(X)−2dη(ϕZ,X)η(Y )+2dη(ϕY,X)η(Z),
(2.5)

where Φ is the fundamental 2-form and

(2.6) N(2)(X ,Y ) = (LϕX η)Y − (LϕY η)X ,

where L is the Lie derivative.
Moreover if M is para-contact, then we have

(2.7) 2g((∇X ϕ)Y,Z) =−N(1)(Y,Z,ϕX)−2dη(ϕZ,X)η(Y )+2dη(ϕY,X)η(Z).

For an almost para-contact metric manifold, the following identities are well known:

(2.8) (∇X ϕ)Y = ∇X ϕY −ϕ(∇XY ),

(2.9) (∇X Φ)(Y,Z) = g(Y,(∇X ϕ)Z),

(2.10) (∇X η)Y = g(Y,∇X ξ ).
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2.2. Almost para-Hermitian manifolds

In this subsection we recall basic definitions and properties of almost para-complex mani-
folds.

A (1,1)-tensor field J on an 2n-dimensional smooth manifold M is said to be an almost
product structure if J2 = I. In this case the pair (M,J) is called almost product manifold.
An almost para-complex manifold is an almost product manifold (M,J) such that the two
eigenbundles T +M and T−M associated with the two eigenvalues ±1 of J have the same
rank.An almost para-Hermitian manifold (M,g,J) is a smooth manifold endowed with an
almost para-complex structure J and a pseudo-Riemannian metric g compatible in the sense
that

(2.11) g(JX ,Y )+g(X ,JY ) = 0, X ,Y ∈ χ(M).

It follows that the metric g is neutral, i.e., it has signature (n,n) and the eigenbundles T M±

are totally isotropic with respect to g. Let e1, ...,en,en+1 = Je1, ...,e2n = Jen be an orthonor-
mal basis and denote εi = sign(g(ei,ei)) =±1,εi = 1, i = 1, ...,n,ε j =−1, j = n+1, ...,2n.
The fundamental 2-form of the almost para-Hermitian manifold is defined by

(2.12) Φ(X ,Y ) = g(X ,JY ),

it is easy to see that Φ is skew-symmetric [5, 13].
An almost para-Hermitian manifold is called

(i) para-Kähler, if ∇J = 0,
(ii) para-Hermitian, if N = 0⇔ (∇JX J)JY + (∇X J)Y = 0, where N is the Nijenhuis

tensor of J,
(iii) nearly para-Kähler, if (∇X J)X = 0,
(iv) almost para-Kähler, if dΦ = 0 [5, 10, 13].

2.3. Semi-Riemannian submersions

In this subsection, We recall basic definitions and properties of semi-Riemannian submer-
sions.

Let (M,g) and (B,g′) be two connected semi-Riemannian manifolds of index s(0 ≤
s ≤ dimM) and s′(0 ≤ s′ ≤ dimB) respectively, with s > s′. Roughly speaking, a semi-
Riemannian submersion is a smooth map π : M→B which is onto and satisfies the following
conditions:

(i) π∗p : TpM→ Tπ(p)B is onto for all p ∈M;
(ii) The fibres π−1(p′), p′ ∈ B, are semi-Riemannian submanifolds of M;

(iii) π∗ preserves scalar products of vectors normal to fibres.
The vectors tangent to fibres are called vertical and those normal to fibres are called hori-
zontal. We denote by V the vertical distribution, by H the horizontal distribution and by v
and h the vertical and horizontal projection. A horizontal vector field X on M is said to be
basic if X is π-related to a vector field X ′ on B. It is clear that every vector field X ′ on B has
a unique horizontal lift X to M and X is basic.

We recall that the sections of V , respectively H , are called the vertical vector fields,
respectively horizontal vector fields. A semi-Riemannian submersion π : M→ B determines
two (1,2) tensor field T and A on M, by the formulas:

(2.13) T (E,F) = TEF = h∇vEvF + v∇vEhF
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and

(2.14) A(E,F) = AEF = v∇hEhF +h∇hEvF

for any E,F ∈ Γ(T M), where v and h are the vertical and horizontal projections (see [1, 8]).
From (2.13) and (2.14), one can obtain

(2.15) ∇U X = TU X +h(∇U X);

(2.16) ∇XU = v(∇XU)+AXU ;

(2.17) ∇XY = AXY +h(∇XY ),

for any X ,Y ∈ Γ(H ), U ∈ Γ(V ). Moreover, if X is basic then h(∇U X) = h(∇XU) = AXU.
We note that for U,V ∈ Γ(V ), TUV coincides with the second fundamental form of the

immersion of the fibre submanifolds and for X ,Y ∈ Γ(H ), AXY = 1
2 v[X ,Y ] reflecting the

complete integrability of the horizontal distribution H . It is known that A is alternating
on the horizontal distribution: AXY = −AY X , for X ,Y ∈ Γ(H ) and T is symmetric on the
vertical distribution: TUV = TVU, for U,V ∈ Γ(V ).

We now recall the following result which will be useful for later.

Lemma 2.2. (see [8, 17]) If π : M→ B is a semi-Riemannian submersion and X ,Y basic
vector fields on M, π-related to X ′ and Y ′ on B, then we have the following properties

(1) h[X ,Y ] is a basic vector field and π∗h[X ,Y ] = [X ′,Y ′]◦π;
(2) h(∇XY ) is a basic vector field π-related to (∇′X ′Y

′), where ∇ and ∇′ are the Levi-
Civita connection on M and B;

(3) [E,U ] ∈ Γ(V ), for any U ∈ Γ(V ) and for any basic vector field E.

3. Para-contact para-complex semi-riemannian submersions

In this section, we define the notion of para-contact para-complex semi-Riemannian sub-
mersion, give an example and study the geometry of such submersions. We now de-
fine a (ϕ,J)-para-holomorphic map which is similar to the notion of a (ϕ,J)-holomorphic
map between almost contact metric manifold and almost Hermitian manifold, for (ϕ,J)-
holomorphic map see [8].

Definition 3.1. Let (M2m+1,ϕ,ξ ,η) be an almost para-contact manifold and (B2n,J) an
almost para-complex manifold, respectively. Then we say that the map π : M→ B is (ϕ,J)-
para-holomorphic if π∗ ◦ϕ = J ◦π∗.

By using the above definition, we are ready to give the following notion.

Definition 3.2. Let (M,ϕ,ξ ,η ,g) be an almost para-contact metric manifold and (B,J,g′)
be an almost para-Hermitian manifold. A semi-Riemannian submersion π : M → B is a
called para-contact para-complex semi-Riemannian submersion if it is (ϕ,J)-para-holomor-
phic, as well.

We now give an example for para-contact para-complex submersion. But we first recall
that the para-contact structure on R2m+1 is given by

ϕ =

 0 Im 0
Im 0 0
0 0 0

 , η = dz, ξ =
∂

∂ z
.
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Also the semi-Riemannian metric compatible with ϕ is

g =
m

∑
i=1

(−dxi⊗dxi +dyi⊗dyi)+η⊗η .

On the other hand, the canonical para-complex structure on R2n is given by

J(x1, ...,x2n) = (x2n,x2n−1, ...,x2,x1),

where scalar product or semi-Riemannian metric is standard inner product defined on R2n.

Example 3.1. Consider the following submersion defined by

π : R5
2 → R2

1

(x1,x2,y1,y2,z) →
(

x1 + x2√
2

,
y1 + y2√

2

)
.

Then, the kernel of π∗ is

V = Kerπ∗ = Span
{

V1 =− ∂

∂ x1
+

∂

∂ x2
,V2 =− ∂

∂ y1
+

∂

∂ y2
,ξ =

∂

∂ z

}
and the horizontal distribution is spanned by

H = (Kerπ∗)⊥ = Span
{

X =
∂

∂ x1
+

∂

∂ x2
,Y =

∂

∂ y1
+

∂

∂ y2

}
.

Hence, we have

g(X ,X) = g′(π∗X ,π∗X) =−2, g(Y,Y ) = g′(π∗Y,π∗Y ) = 2.

Thus, π is a semi-Riemannnian submersion. Moreover, we can easily obtain that π

satisfies
π∗ϕX = Jπ∗X , π∗ϕY = Jπ∗Y.

Thus, π is a para-contact para-complex semi-Riemannian submersion.
By using Definition 3.1, we have the following result.

Proposition 3.1. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion from an almost para-contact metric manifold M onto an almost para-Hermitian
manifold B, and let X be a basic vector field on M, π-related to X ′ on B. Then, ϕX is also
a basic vector field π-related to JX ′.

The following result can be proved in a standard way.

Proposition 3.2. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion from an almost para-contact metric manifold M onto an almost para-Hermitian
manifold B. If X ,Y are basic vector fields on M, π-related to X ′,Y ′ on B, Then, we have

(i) h(∇X ϕ)Y is the basic vector field π-related to (∇′X ′J)Y ′;
(ii) h[X ,Y ] is the basic vector field π-related to [X ′,Y ′].

Next proposition shows that a para-contact para-complex semi-Riemannian submersion
puts some restrictions on the distributions V and H .

Proposition 3.3. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion from an almost para-contact metric manifold M onto an almost para-Hermitian
manifold B. Then, the horizontal and vertical distributions are ϕ- invariant.
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Proof. Consider a vertical vector field U ; it is known that π∗(ϕU) = J(π∗U). Since U is
vertical and π is a semi-Riemannian submersion, we have π∗U = 0 from which π∗(ϕU) = 0
follows and implies that ϕU is vertical, being in the kernel of π∗. As concerns the horizontal
distribution, let X be a horizontal vector field. We have g(ϕX ,U) =−g(X ,ϕU) = 0 because
ϕU is vertical and X is horizontal. From g(ϕX ,U) = 0 we deduce that ϕX is orthogonal to
U and then ϕX is horizontal.

Proposition 3.4. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion from an almost para-contact metric manifold M onto an almost para-Hermitian
manifold B. Then, we have

(i) π∗Φ′ = Φ holds on the horizontal distribution, only;
(ii) ξ is a vertical vector field;

(iii) η(X) = 0, for all horizontal vector fields X ;
(iv) The fibres are invariant almost para-contact metric manifolds.

Proof. We prove only statement (i), the other assertions can be obtained in a similar way. If
X and Y are basic vector fields on M, π-related to X ′,Y ′ on B, then using the definition of a
para-contact para-complex semi-Riemannian submersion, we have

π
∗
Φ
′(X ,Y ) = Φ

′(π∗X ,π∗Y ) = g′(π∗X ,Jπ∗Y ) = g′(π∗X ,π∗ϕY )

= π
∗g′(X ,ϕY ) = g(X ,ϕY ) = Φ(X ,Y )

which gives the proof of assertion (i).
In the sequel, we show that base space is a para-Hermitian manifold if the total space is

a normal.

Proposition 3.5. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion. If the almost para-contact structure of M is normal, then the base space is a
para-Hermitian manifold.

Proof. Let X and Y be basic vector fields on M, π-related to X ′ and Y ′ on B. From (2.2), we
have

π∗(N(1)(X ,Y )) = π∗([ϕ,ϕ](X ,Y )−2dη(X ,Y )ξ ) = π∗([ϕ,ϕ](X ,Y )).

On the other hand, π∗ϕ = Jπ∗ implies that

π∗([ϕ,ϕ](X ,Y )) = π∗ϕ
2[X ,Y ]+ [ϕX ,ϕY ]−ϕ[ϕX ,Y ]−ϕ[X ,ϕY ]

= [π∗X ,π∗Y ]−η [X ,Y ]π∗ξ +[π∗ϕX ,π∗ϕY ]− Jπ∗[ϕX ,Y ]− Jπ∗[X ,ϕY ]

= [X ′,Y ′]+ [JX ′,JY ′]− J[JX ′,Y ′]− J[X ′,JY ′].

Then, we have
π∗[ϕ,ϕ](X ,Y ) = N′(X ′,Y ′) = 0

which shows that B is a para-Hermitian manifold.
We now investigate what kind of para-complex structure is defined on the base manifold,

when the total manifold has some special para-contact structures.

Corollary 3.1. Let π : M→ B be a para-contact para-complex semi-Riemannian submer-
sion. If the total space M is an almost para-contact metric manifold with (∇X ϕ)Y = 0, for
X ,Y ∈ Γ(H ), then the base space B is a para-Kähler manifold.
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Proof. Let X , Y and Z be basic vector fields on M, π-related to X ′, Y ′ and Z′ on B. Since
(∇X ϕ)Y = 0 for X ,Y ∈ Γ(H ). we get

0 = g(Z,∇X ϕY −ϕ∇XY )

for Z ∈ Γ(H ). Using (2.17) we obtain

0 = g(Z,h∇X ϕY )−g(Z,hϕ∇XY )

Then, by using π∗ϕ = Jπ∗, we get

0 = g′(Z′,∇′X ′JY )−g′(Z′,J∇
′
X ′Y
′).

Hence 0 = g′(Z′,(∇′X ′J)Y ′) which shows that B is para-Kähler manifold.
Since for a para-cosymplectic manifold (respectively, almost para-cosymplectic mani-

fold) ∇φ = 0, (resp. dφ = 0) we have the following result.

Corollary 3.2. Let π : M→ B be a para-contact para-complex semi-Riemannian submer-
sion. If the total space M is an almost para-cosymplectic manifold, then the base space B is
an almost para-Kähler manifold.

Proof. Let X ,Y and Z be basic vector fields on M, π-related to X ′,Y ′ and Z′ on B. Since M
is an almost para-cosymplectic manifold, we have dΦ(X ,Y,Z) = 0, so that we have

X(Φ(Y,Z))−Y (Φ(X ,Z))+Z(Φ(X ,Y ))−Φ([X ,Y ],Z)+Φ([X ,Z],Y )−Φ([Y,Z],X) = 0.

On the other hand, by direct calculations, we obtain

0 = g(∇XY,ϕZ)+g(Y,∇X ϕZ)−g(∇Y X ,ϕZ)−g(X ,∇Y ϕZ)+g(∇ZX ,ϕY )

+g(X ,∇ZϕY )−g([X ,Y ],ϕZ)+g([X ,Z],ϕY )−g([Y,Z],ϕX).

Then, by using π∗ϕ = Jπ∗, we get

0 = g′(∇′X ′Y
′,JZ′)+g′(Y ′,∇′X ′JZ′)−g′(∇′Y ′X

′,JZ′)−g′(X ′,∇′Y ′JZ′)+g′(∇′Z′X
′,JY ′)

+g′(X ′,∇′Z′JY ′)−g′([X ′,Y ′],JZ′)+g′([X ′,Z′],JY ′)−g′([Y ′,Z′],JX ′)

0 = X ′(Φ′(Y ′,Z′))−Y ′(Φ′(X ′,Z′))+Z′(Φ′(X ′,Y ′))

−Φ
′([X ′,Y ′],Z′)+Φ

′([X ′,Z′],Y ′)−Φ
′([Y ′,Z′],X ′)

0 = dΦ
′(X ′,Y ′,Z′).

Thus, if the total space M is an almost para-cosymplectic manifold, then the base space B is
an almost para-Kähler manifold.

Proposition 3.6. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion. If the total space M is a para-Sasakian manifold, then the base space B is a
para-Kähler manifold.

Proof. Let X and Y be basic vector fields on M, π-related to X ′ and Y ′ on B. Since M is a
para-Sasakian manifold, we have

(∇X ϕ)Y =−g(X ,Y )ξ +η(Y )X =−g(X ,Y )ξ .

Since π is a semi-Riemannian submersion, we get

π∗((∇X ϕ)Y ) =−g(X ,Y )π∗ξ = 0.

Then, by using π∗ϕ = Jπ∗, we obtain π∗((∇X ϕ)Y ) = (∇′X ′J)Y ′ = 0,which proves the asser-
tion.
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Proposition 3.7. Let π : M → B be a para-contact para-complex semi-Riemannian sub-
mersion. If the total space M is a quasi para-Sasakian manifold, then the base space B is a
nearly para-Kähler manifold.

Proof. Let X and Z be basic vector fields on M, π-related to X ′ and Z′ on B. By (2.5), we
have

2g((∇X ϕ)X ,Z) =−dΦ(X ,X ,Z)−dΦ(X ,ϕX ,ϕZ)−N(1)(X ,Z,ϕX)

+N(2)(X ,Z)η(X)−2dη(ϕZ,X)η(X)+2dη(ϕX ,X)η(Z).

Since M is a quasi-para-Sasakian manifold, we obtain

2g((∇X ϕ)X ,Z) =−2dη(ϕZ,X)η(X)+2dη(ϕX ,X)η(Z).

Since η vanishes on the horizontal distribution, we have

g((∇X ϕ)X ,Z) = 0.

Thus, we deduce that
π∗((∇X ϕ)X) = 0 = (∇′X ′J)X ′,

which shows that the base space is a nearly para-Kähler manifold.
We now check the properties of the tensor fields T and A for a para-contact para-complex

semi-Riemannian submersion, we will see that such tensors have extra properties for such
submersions.

Lemma 3.1. Let π : M→ B be a para-contact para-complex semi-Riemannian submersion
from a para- cosymplectic manifold M onto an almost para-Hermitian manifold B, and let
X and Y be horizontal vector fields. Then, we have

(i) AX ϕY = ϕAXY,
(ii) AϕXY = ϕAXY.

Proof. (i) Let X and Y be horizontal vector fields, and U vertical. Since M is a para cosym-
plectic manifold, we have

(∇X Φ)(U,Y ) = g((∇X ϕ)Y,U) = g(∇X ϕY −ϕ∇XY,U) = 0

Thus, since the vertical and horizontal distributions are invariant, from (2.17) we obtain

g(AX ϕY −ϕAXY,U) = 0.

Then, we have
AX ϕY = ϕAXY.

In a similar way, we obtain (ii).
For the tensor field T we have the following.

Lemma 3.2. Let π : M→ B be a para-contact para-complex semi-Riemannian submersion
from a para–cosymplectic manifold M onto an almost para-Hermitian manifold B, and let
U and V be vertical vector fields. Then, we have

(i) TU ϕV = ϕTUV,
(ii) TϕUV = ϕTUV.

We now investigate the integrability of the horizontal distribution H .
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Theorem 3.1. Let π : M→B be a para-contact para-complex semi-Riemannian submersion
from an almost para–cosymplectic manifold M onto an almost para-Hermitian manifold B.
Then, the horizontal distribution is integrable.

Proof. Let X and Y be basic vector fields. It suffices to prove that v([X ,Y ]) = 0, for
basic vector fields on M. Since M is an almost para–cosymplectic manifold, it implies
dΦ(X ,Y,V ) = 0, for any vertical vector V. Then, one obtains

X(Φ(Y,V ))−Y (Φ(X ,V ))+V (Φ(X ,Y ))−Φ([X ,Y ],V )+Φ([X ,V ],Y )−Φ([Y,V ],X) = 0.

Since [X ,V ], [Y,V ] are vertical and the two distributions are ϕ-invariant, the last two and the
first two terms vanish. Thus, one gets

g([X ,Y ],ϕV ) = V (g(X ,ϕY )).

On the other hand, if X is basic then h(∇V X) = h(∇XV ) = AXV, thus we have

V (g(X ,ϕY )) = g(∇V X ,ϕY )+g(∇V ϕY,X) = g(AXV,ϕY )+g(AϕYV,X).

Since, A is skew-symmetric and alternating operator, we get V (g(X ,ϕY )) = 0. This proves
the assertion.

Since for a quasi-para-Sasakian manifold dΦ = 0, applying Theorem 3.1, we have the
following result.

Corollary 3.3. Let π : M→ B be a para-contact para-complex semi-Riemannian submer-
sion from a quasi-para-Sasakian manifold M onto an almost para-Hermitian manifold B.
Then, the horizontal distribution is integrable.

Corollary 3.4. Let π : M→ B be a para-contact para-complex semi-Riemannian submer-
sion from a para–cosymplectic manifold M onto an almost para-Hermitian manifold B.
Then, the horizontal distribution is completely integrable.

Theorem 3.2. Let π : M→B be a para-contact para-complex semi-Riemannian submersion
from an almost para–cosymplectic manifold M onto an almost para-Hermitian manifold B
with dimVp ≥ 2, ∀p ∈ M. If X horizontal vector field is an infinitesimal automorphism of
ϕ-tensor field, then TV X = 0, for any V ∈ Γ(V ), if and only if η(∇XV ) = η([X ,V ]).

Proof. Let W and V be vertical vector fields on M, X horizontal. Since M is an almost
para–cosymplectic manifold, it implies dΦ = 0. Then, we obtain

dΦ(W,ϕV,X) = W (Φ(ϕV,X))−ϕV (Φ(W,X))+X(Φ(W,ϕV ))

−Φ([W,ϕV ],X)+Φ([W,X ],ϕV )−Φ([ϕV,X ],W )
= 0.

Since [W,ϕV ] is vertical and the two distributions are ϕ-invariant, the first two terms vanish.
Thus, we get

X(Φ(W,ϕV ))+Φ([W,X ],ϕV )−Φ([ϕV,X ],W ) = 0.

By direct computations, one obtains:

0 = X(g(W,V )−η(V )g(W,ξ ))+g([W,X ],V −η(V )ξ )−g([ϕV,X ],ϕW )

0 = g(W,∇V X +[X ,V ])+g(∇W X ,V )−g(ϕ[X ,ϕV ],W )−η(V )(g(∇X ξ ,W )

+g(∇W X ,ξ ))−X(η(V ))η(W ).
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Using (2.15) we derive

0 = g(TV X ,W )+g(TW X ,V )−2g(Tξ X ,W )η(V )+η(W )(η([X ,V ])

−X(η(V ))−η(V )η([X ,ξ ])).
(3.1)

Moreover, we have

η([X ,V ])−X(η(V ))−η(V )η([X ,ξ ]) =−η(∇V X)−g(∇X ξ ,V )+η(V )η(∇ξ X)

= g(TV ξ ,X)−g(∇X ξ ,V )−η(V )g(Tξ ξ ,X).

Substituting in (3.1), we obtain

0 = 2g(TV X ,W )−2g(Tξ X ,W )η(V )+η(W )(g(TV ξ ,X)

+η(V )g(Tξ X ,ξ )−g(∇X ξ ,V )).
(3.2)

Now, assume that TV X = 0, for any X ∈ Γ(V ). Then (3.2) implies g(∇X ξ ,V ) = 0, for any
V and we have

η([X ,V ]) = g(∇XV,ξ )−g(∇V X ,ξ ) = X(η(V ))−g(∇X ξ ,V )−g(TV X ,ξ ) = η(∇XV ).

On the other hand, for any X ∈ Γ(H ) and V ∈ Γ(V ), the hypothesis η([X ,V ]) = η(∇XV )
implies g(TV X ,ξ ) = g(∇V X ,ξ ) = g(∇XV +[V,X ],ξ ) = 0. So, (3.2) reduces to

0 = 2g(TV X ,W )−η(W )g(∇X ξ ,V ),

for any V,W ∈Γ(V ). Thus, for any vertical vector field W orthogonal to ξ , we get g(TV X ,W )
= 0. Since g(TV X ,ξ ) = 0, one has TV X = 0, V ∈ Γ(V ) and the proof is completed.

From Theorem 3.2, we have the following result.

Corollary 3.5. Let π : M→ B be a para-contact para-complex semi-Riemannian submer-
sion from a quasi-para-Sasakian manifold M onto an almost para-Hermitian manifold B
with dimVp ≥ 2, ∀p ∈ M. If X horizontal vector field is an infinitesimal automorphism of
ϕ-tensor field, then TV X = 0, for any V ∈ Γ(V ), if and only if η(∇XV ) = η([X ,V ]).

4. Curvature relations for para-contact para-complex semi-riemannian submersions

We begin this section relating the ϕ-para-holomorphic bisectional and sectional curvatures
of the total space, the base and the fibres of a para-contact para-complex semi-Riemannian
submersions.

Let us recall the sectional curvature of semi-Riemannian manifolds for non-degenerate
planes. Let M be a semi-Riemannian manifold and P a non-degenerate tangent plane to M
at p. The number

K(U,V ) =
g(R(U,V )U,V )

g(U,U)g(V,V )−g(U,V )2

is independent on the choice of basis U,V for P and is called the sectional curvature.
Let π be a para-contact para-complex semi-Riemannian submersion between an almost

para-contact metric manifold M and an almost para-Hermitian manifold N. We denote the
Riemannian curvatures of M,N and any fibre π−1(x) by R,R′ and R̂, respectively. For
X ,Y,Z,W ∈ Γ(H ), we have

R∗(X ,Y,Z,W ) = R′(π∗X ,π∗Y,π∗Z,π∗W )◦π.

Let π : M→N be a para-contact para-complex semi-Riemannian submersion from an al-
most para-contact manifold (M,ϕ,ξ ,η ,g) onto an almost para-Hermitian manifold (N,J,g′).
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We denote by B the ϕ-para-holomorphic bisectional curvature, defined for any pair of
nonzero nonlightlike vectors X and Y on M orthogonal to ξ by the formula:

B(X ,Y ) =
R(X ,ϕX ,Y,ϕY )
‖X‖2‖Y‖2 .

We note that if X is a nonlightlike vector field, the ϕX is also a nonlightlike vector field.
The ϕ-para-holomorphic sectional curvature is H(X) = B(X ,X) for any nonzero non-

lightlike vector X orthogonal to ξ . We denote by B′ and H ′ the ϕ-para-holomorphic bi-
sectional and ϕ-para-holomorphic sectional curvatures of B. Similarly, B̂ and Ĥ denote the
bisectional and the sectional para-holomorphic curvatures of a fibre.

The following is a translation of the results of Gray[9] and O’Neill[16] to the present
situation:

Proposition 4.1. Let π : M→N a para-contact para-complex semi-Riemannian submersion
from an almost para-contact metric manifold M onto an almost para-Hermitian manifold N.
Let U and V be nonzero nonlightlike unit vertical vectors, and X and Y nonzero nonlightlike
unit horizontal vectors orthogonal to ξ . Then, we have

(a) B(U,V ) = B̂(U,V )− εU εV [g(TUV,TϕU ϕV )−g(TϕUV,TU ϕV )];

(b) B(X ,U) = εU εX [g((∇U A)X ϕX ,ϕU)−g((∇ϕU A)X ϕX ,U)+g(AXU,AϕX ϕU)

−g(AX ϕU,AϕXU)−g(TU X ,TϕU ϕX)+g(TϕU X ,TU ϕX)];

(c) B(X ,Y ) = B′(X ′,Y ′)◦π− εX εY [2g(AX ϕX ,AY ϕY )

−g(AϕXY,AX ϕY )+g(AXY,AϕX ϕY )],

where εU = g(U,U) ∈ {±1}, εV = g(V,V ) ∈ {±1}, εX = g(X ,X) ∈ {±1} and εY = g(Y,Y )
∈ {±1}.

Using Proposition 4.1, we have the following result.

Proposition 4.2. Let π : M→ N a para-contact para-complex semi-Riemannian submer-
sion from an almost para-contact metric manifold M onto an almost para-Hermitian man-
ifold N. Let U be nonzero nonlightlike unit vertical vector, and X nonzero nonlightlike unit
horizontal vector orthogonal to ξ . Then, one has:

(a) H(U) = Ĥ(U)+‖TU ϕU‖2−g(TϕU ϕU,TUU);
(b) H(X) = H ′(X ′)◦π−3‖AX ϕX‖2.

If the total manifold is a para-cosymplectic manifold, then we have the following result
for curvature relations between M,N and π−1(x).

Theorem 4.1. Let π : M→ N be a para-contact para-complex semi-Riemannian submer-
sion from a para-cosymplectic manifold M onto an almost para-Hermitian manifold N. Let
U and V be nonzero nonlightlike unit vertical vectors, and X and Y nonzero nonlightlike
unit horizontal vectors orthogonal to ξ . Then, we have:

(a) B(U,V ) = B̂(U,V )− εU εV 2‖TUV‖2;
(b) B(X ,Y ) = B′(X ′,Y ′)◦π;
(c) B(X ,U) =−εU εX [2‖TU X‖2−2η(TU X)2].

Proof. (a) From Proposition 4.1(a), we have

B(U,V ) = B̂(U,V )− εU εV [g(TUV,TϕU ϕV )−g(TϕUV,TU ϕV )].
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Using Lemma 3.2, we get
g(TU ϕV,TϕUV ) = g(ϕTUV,ϕTUV )

=−g(TUV,TUV )+η(TUV )η(TUV ) =−‖TUV‖2.
(4.1)

Using again Lemma 3.2, we get

g(TϕU ϕV,TUV ) = g(ϕ2TUV,TUV )

= g(TUV −η(TUV )ξ ,TUV ) = ‖TUV‖2.(4.2)

From (4.1) and (4.2), we have (a).
(b) Since M is a para-cosymplectic manifold and the distribution H is integrable we

have A = 0. Then using Proposition 4.1(c), we have B(X ,Y ) = B′(X ′,Y ′)◦π.
(c) Since M is a para-cosymplectic manifold and A = 0, then using Proposition 4.1(b) we

have
B(X ,U) =−εU εX [g(TU X ,TϕU ϕX)−g(TϕU X ,TU ϕX)].

On the other hand, using Lemma 3.2, we have

(4.3) g(TU X ,TϕU ϕX) = g(TU X ,TU X)−η(TU X)2

and

(4.4) g(TϕU X ,TU ϕX) =−g(TU X ,TU X)+η(TU X)2

From (4.3) and (4.4), we have (c).
As a result of Theorem 4.1, we have the following result.

Corollary 4.1. Let π : M→ N be a para-contact para-complex semi-Riemannian submer-
sion from a para-cosymplectic manifold M onto an almost para-Hermitian manifold N. Let
U be nonzero nonlightlike unit vertical vector, and X nonzero nonlightlike unit horizontal
vector orthogonal to ξ . Then, one has

(a) H(U) = Ĥ(U)−2‖TUU‖2;
(b) H(X) = H ′(X ′)◦π.
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