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Abstract. In this paper, the first integral method is proposed to solve the Kolmogorov-
Petrovskii-Piskunov equation. New exact travelling wave solutions of the Kolmogorov-
Petrovskii-Piskunov equation are obtained that illustrate the efficiency of the method.

2010 Mathematics Subject Classification: 35K57
Keywords and phrases: Kolmogorov-Petrovskii-Piskunov equation, first integral method.

1. Introduction

The nonlinear reaction-diffusion equations play fundamental role in a great number of var-
ious models of reaction-diffusion processes, mathematical biology, chemistry, genetics and
so on. Thus, one of this diffusion equation is the Kolmogorov-Petrovskii-Piskunov (KPP)
equation [14]. The Cauchy problem of the Kolmogorov-Petrovskii-Piskunov

(1.1) Uy —u; = f(u), fnonlinear, f(0)=0,

has been extensively investigated both by analytic techniques [3, 12], and by probabilistic
methods [4, 17], and the existence of traveling wave solutions with various velocities has
been also proved.

In this paper, we consider the following Kolmogorov-Petrovskii-Piskunov equation [14,
16]

(1.2) uxx—u,+au+[3u2+7u3:0,

where o, 3, y are three real constants. Notice that various equation belongs to the Kolmogorov-
Petrovskii-Piskunov type. The Kolmogorov-Petrovskii-Piskunov equation (1.2) contains
the various equations with a + 8 + ¥ = 0, for which there is always the condition A =
B% —4ay = (ot —y)?> > 0 and thus has five explicit solutions, such as the Fisher equation.
The nonintegrable Newell-Whitehead equation and the FitzHugh-Nagumo equation (see for
instance [2, 5, 10, 11, 13, 15, 18, 19]). Our purpose is to look for new exact travelling wave
solutions for the general case of (1.2) by the first integral method.
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The first integral method was first proposed by Feng [7] in solving Burgers-KdV equa-
tion. Recently, this useful method is widely used by many such as in [1, 8, 9, 20] and by the
reference therein.

The remaining structure of this article is organized as follows: Section 2 is a brief intro-
duction to the first integral method for finding exact travelling wave solutions of nonlinear
equations. In Section 3, we illustrate this method in detail with the KPP equation. In Section
4, some conclusions are given.

2. The first integral method

In [20], the first integral method is summarized by Raslan as follows.

Step 1: Consider a general nonlinear PDE in the form
2.1 P(uvutvumuttauxx»“txv“xxxv~~~) =0.

Using the wave variable & = x — ct, we can transform Eq. (2.1) into the following
ordinary differential equation (ODE)

2.2) o, U,u"U",..)=0.

where the prime denotes the derivative with respect to &.
Step 2: Assume that the solution of ODE (2.2) can be written as follows

(2.3) u(x,1) = f(S)-
Step 3: We introduce new independent variables
(2.4) X(&)=r(S), Y(&) =/e(S),
which change (2.2) to a system of ODEs
X(&)=/(S),
22 LY = Fate veen

Step 4: By the qualitative theory of ODEs [6], if we can find the integrals to (2.5) un-
der the same conditions, then the general solutions to (2.5) can be solved directly.
However, in general, it is really difficult for us to realize this even for one first in-
tegral, because for a given plane autonomous system, there is no systematic theory
that can tell us how to find its first integrals, nor is there a logical way for telling us
what these first integrals are. We will apply the Division Theorem to obtain one first
integral to (2.5) which reduces (2.2) to a first order integrable ordinary differential
equation. An exact solution to (2.1) is then obtained by solving this equation. Now,
let us recall the Division Theorem:

Theorem 2.1. Suppose that K(w,z), H(w,z) are polynomials in C|w,z] and K(w,z) is ir-
reducible in Clw,z]. If H(w,z) vanishes at all zero points of K(w,z), then there exists a
polynomial G(w,z) in C[w,z] such that

(2.6) H(w,z) = K(w,2)G(w,z).
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3. Exact solutions for KPP equation

Let us consider the KPP equation as the following

3.1 uxx—u,+au+ﬁu2+yu3:0.
Using the wave variable & = x — ¢t carries (3.1) into an ODE as follows
(3.2) W’ +cu' + au+ Bu® +yu’ =0,

where prime denotes the derivative with respect to the same variable &.
By selection in (2.4), equation (3.2) is transformed to the following system of ODEs

(3.3) { X =rie), 2 3

Y(§) = —c¥(§) —aX(5) — BX (&) —¥X(§)".
Now, we apply the Division Theorem to look for the first integral to (3.3). Suppose that
X (&) and Y () are the nontrivial solutions to (3.3), and

(3.4) pX,Y) =Y a;j(X)Y/,
j=0
is an irreducible polynomial in C[X,Y] such that
(3.5) p(X(8).Y(8) = Y a;(X ()Y (&) =0,
j=0

where a;(X), (j =0,1,...,m) are polynomials of X and all relatively prime in C[X,Y],
am(X) # 0. Eq. (3.5) is also called the first integral of (3.3). Note that p(X(&),Y(&)) is a
polynomial in X and Y, and dp/d¢& implies (dp/d§)|:3.4) = 0. By the Division Theorem,
there exists a polynomial H(X,Y) = (h(X)+ g(X)Y) in C[X,Y] such that

06 Gl = (g v g ) o0 = (000N E 0001

Case I: Assume the m = 1, form (3.6) we have
1 1

Y GOV Y jai ()Y (v (§) — ax(§) - BX(§)* - 1X(§)?)
(3.7 =0 =0

= (h(X) +g(X)Y)(ao(X) + a1 (X)Y),

and by equating the coefficients of Y/ (j = 0, 1,2) on both sides of Equation (3.7), we obtain

(3.8) ay(X) = g(X)ai (X),
3.9) ap(X) —car (X) = h(X)ai (X) + g(X)ao(X),
(3.10) a1(X)(—aX(§) = BX(£)* —yX(&)’) = h(X)ao(X).

Since a(X),(j = 0,1) are polynomials, then from (3.8) we conclude that a;(X) is constant
and g(X) = 0. For simplicity, let us take a;(X) = 1. Balancing the degrees of 2(X) and
ap(X), we conclude that deg(h(X)) = 1 only. Assume that h(X) = AX + B, where A # 0,
then

1
(3.11) ap(X) = 5AX2+(B+C)X+D.
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Substituting a¢(X), a;(X) and A(X) in Equation (3.10) and setting all the coefficients of
powers of X equal to zero, then we obtain a system of nonlinear algebraic equations such as

2

3 A
B>+Bc+AD = —q, 5A/3+Ac:—ﬁ, — =1 BD=0,

and using Mathematica solving them, we obtain

(3.12)D—0,B—i(_[3+rvfj L R c—i(_ﬁ+32fvfyz —4a7)
(3.13) D:O,B:i(ﬁ+v\f%/_4a7), A=i\/2, c:—i(ﬁHg\/ﬁ%_M”,

G.14) D=0p=_'B+ v\f%/—‘lay), A=—i\/2y, c= i(ﬁ+3zvf%_4a7),
(3.15) D—o,B—i(_B”L\Fny2 —49Y i/, C_i(_ﬁHzfvfj —4an).
(3.16) D:—%, B=0, A=—i\/2y, c:—\j%,

(3.17) D:\/‘;ﬁ, B=0, A=./2y, c= ’gy.

Using (3.12) into (3.11) and (3.5), we have

(3.18) Y_iX(ﬁ+2Xy+\/l32—4ay)
. - 2m b

combining (3.18) with (3.3), we obtain the exact solution of KPP Equation (3.2) can be

written as
(B+\/ﬁ2—4ay) (iV2E+4/78y)
e w7 (B+vB>=4ar)
(ﬁ+\//32—4ay> (iV2E+478) ’
—1+2e W Y
where & is an arbitrary constant. Thus the travelling wave solution of KPP Equation (3.1)
can be written as

ur () =—

(ﬁ+\/[TW) (2iﬁxﬂ+r (B—S\/ﬁz—Tay) +3y§0)
‘ ” (B-+ VB> —doy)

(B+\/[m) (Ziﬁ,\‘\/?ﬂ (373M>+sy§0)
—1+42e 8y Y

Similarly, for the case of (3.13)-(3.17), the exact travelling wave solutions are

6ray+tB\/ﬁ2_4ay+i\4@xﬂq/{32_4a7+4l37§()( BJF\/W

7 - — ay)

sroy+1B/ B2 —day+ivan 7y B dar+4BrEy
4y

up(x,t) =—

e

ur(x,t) =
(x,2) 1B2+iV2xB +4yy/ B2 —dardy
4y

e +2e

Y
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B (zfﬁxﬂ+z <3+3\ /[32—4a7) +87§0)
e 5 (-8 + VB day)

I = ,
. (X ) vV ﬁ274ay<2i\/§x\/7+t(ﬁ+3«/ﬁ2—4a7>+8}/§0) ﬁ( it +£>
e i 26 \ BTy
e(ﬁJ’M)‘SO (ﬁ"‘M)
us(x,t) = — :
iV2ey7( B/ B2—4ay )+ ~6ay+B( B+/B2—4ay
» y( Y) 4(7 v ( 7)) +2e(ﬁ+\/m)§oy
—p? - iv2x
B+ /—B+daytan [ B iy fmm)]
us(x,1) = 2y )
B+ /B + daytan [W@yﬂxm&o)}
Ue (x7[) - 2y .

The solutions are new exact solutions. _
Case II: Assume the m = 2, by equating the coefficients of Y/(j = 0,1,2,3) on both sides
of Equation (3.6), we have

(3.19) ay(X) = g(X)ar (X),
(3.20) ay(X) —2cay(X) = h(X)ax(X) + g(X)ai (X),
(321)  ay(X)—cai(X)+2ay(X)(—aX — BX? —yX3) = h(X)a1(X) + g(X)ao(X),

(3.22) a1 (X)(—aX — BX? —yX?) = h(X)ap(X).

Since az(X) is a polynomial of X, then from (3.19) we deduce that a»(X) is constant and
g(X) = 0. For simplicity, take a(X) = 1. Balancing the degrees of h(X), a; (X) and ao(X),
we conclude that either deg(h(X)) = 0 or deg(h(X)) = 1.

Case II (i): Taking deg(h(X)) = 0, and suppose that #(X) = A, then we obtain a;(X) and
aop(X) as

(3.23) a1(X) =B+ (A+20)X,
A? 3 ) , 2X3B X%y
(3.24) ao(X):D+(AB+Bc)X+(7+§Ac+c +(x>X + 5+

where B and D are constants. Substituting ~(X), ap(X) and a;(X) in (3.22) and setting all
the coefficients of powers of X equal to zero, then we have a system of nonlinear algebraic
equations and using Mathematica solving them with respect to D, B, A, o, 3, we obtain

2ic?\/2 4c¢ 4¢?

3.25 D=0 B—_-CVe 4__%¢ _ i /3
( ) 9 9\/7 1) 37 (04 9 ) ﬁ lcﬁ?

2ic*\/2 4c 4c?
3.26 D=0, B=2YZ 2_-_T¢ __ — i /2
(3.26) : 577 T a=—— B=icy2y,

4 2c?

(3.27) D=0, B=0, A=—— a=-22 pg=o,
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Using (3.25) into (3.23), (3.24) and (3.5), we obtain

(3.28) y = Sx 4 V202
3 2
2iv/2¢? NN
(3.29) Y= —cX - YLIx?
WY V2

Combining (3.28) with (3.3), we obtain the two exact solutions of (3.2) and then the two
exact solutions of KPP equation (3.1) can be written as

\/ECQ%C(X7CZ+6(:0)
—1-— 3ie§c(x—cr+6:§0)ﬁ’
V2e
ug (x,1) = o Felert ) _3; 3
and also for (3.29), we obtain the exact solution of KPP Equation (3.1) as the following
ic (=3 +tanh [c (x—ct +18i,/7&0)])
3v2\/7
Similarly, the exact travelling wave solutions of (3.26) are
ﬁce%c(x—ct-‘r&;‘o)

ug(x,t) =

ug(x,t) = —

,l = )
uio(x,1) ) +3ie%c(x—ct+6§0)\/»)7
V2e
M]l(x,t) = T - )
e—;c(x—ct-‘rééo) + 31\/7
ic (—3+tanh [te (x—cr — 18i/¥))])
bl]z(x,t) = )
3V2/7
and for (3.27), using (3.23), (3.24) and (3.5), we obtain
1 1
(3.30) Y =—JeX —5iy 0.
1 1. 2
(3.31) Y:—ch—i—Eh/ZyX ,

where from (3.30) and (3.31), we have the exact travelling wave solutions given in the
following pages.
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(e (/AL = (r039-410-2)5) (105010

¥)o?2¢? — NAm\m\ShN + Qowoiul%wv Qomoiu\bumwcu\/vm\_ (1—)+

¢/1(z(z/MLT+ (1099-+10-x)27) ccwfmw%mmou\/ + (g/AMLT — (10594 10—1)9?) 1059+ 10—1)0? ¢ —) Ao 26-) (g/eMLTH (10994 10—1)9?) — (428
A\\h\/cowoLlu\xvumNQM\mNc}Clvmv €/1 9/1¢C
AAM\%AN\&\NPN T (1099+10—x)0 VTCMOJEQ x)2 mmb - NAN\M\SBNAT GowoLlu\&umv Qowcglu\kvummob\/vm\wg|v -
¢/1(¢(g/eMLTH+ (10994 10—1)?) cowotgl%%ou\/ + (g/ALT = (10594 10—1)9?) 1959+ 10—1)0? ¢ —) Ao 76-) (2/eALT + (19994 10—1)07) _ (%)
A/ (1039101197275 /2Co/(1)€) g 9/1€
AAM\ﬂAAN\m\SN\N - A.Nowcn_.slkvo%v QOMOAIUIRVQNMQ - NAN\M\:N\N + A.NOMOATBIKVQNV QoM@:TGluQuNNOU\/V -
¢/1(2(e/eMLT+ (1999+10-3)0) (1999+10-x)229 /> + (2/eMLT = (1099-+10-2)0) 1959+ 1031077 —) Lo 26-) (g/eMILT+ (1099+10-)7) _ (143)91n
(A (03911020070 /TIE) e 9/1C
(¢/1((e/eILTH (1059 +10-2)07) (1099 4102077 — 2(¢/eAILT = (1099+10-2)5) %woi?%%%\/ NEM=1=)g/ T+
¢/1((2/eMLT+ (1059+10-2)92) (1999+ 119257 — g/ MLT = (1039 +10-2)2) (1999 + 01192797 /) +4o7081) (erebtLe = woagrn-0p2)0) _ (14x)S1n
@/ Qowoi,o\éommwﬁm\( nT.Qo\mva 1
e/t ((/eMLTF (039-110-x)92) (109941020077 — 2lg/ehtLT — Eﬁixmv@@t_r%%%\/x@ +H)onT+
/1 AAN\m\ShNLﬁ (1099+10—x umv (1099410—x)02 g2 — Am\m\?hm .Nowcioldomvoowo...tlkvummob\/v IT\SQ(MW: AAm\m\Shml Qowotul%mvmv — (1) "n
A\\n\/choLlu\éummuo\mﬁmlv@v 1
M\H N\M\TN\NIT EM@L.LU R V NCMOATE Rv 2 b - AN\M\TN\N .NCMOAIQ\QQUNV QCMOLﬁNQ\RVUNNOQ\/V +
m\_AAN\m\QhN + Qowo+3\50wv (1099+10—x)22 ¢ — NAN\m\ShN — Qowo+3\5@mv Cowo+3\$ummcw\/v |\SM\_NOV Am\m\ShN — chc+3\xvumv (1)

A/ (1099-+10-x)27¢ /TIE)

9/1C
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A/ (1999-10-x)2227¢ /2TE) 9/1€
AAN\QSBN + Qowo\%\éwwv cho\a\éum J— ¢/1 ANAN\m\ﬁCowcmNhN - Nmu\kum.v chmﬁ\%\éummou\/XM\/N - ﬁ|vo\ﬁN +
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(g/hiLe = (099-0-92)0) _ iz
Ml

¢/1 AN ( N\m\ﬁ 1005921LC — NNQ\RQMV (10971 —10—x)0g29? /¥ + AN\m\SBN + Qowo\ﬁ\xvuwv Qowc\t\xvuwmblv

A\SﬁowolsléummuAM\/ +.Nvo\mmmv
(/1 ((g/et1T+ (1039-1-x)22) (039-10-x)27¢? — el c/ehio0ge?ILT — iémv%wsélﬁw%\/ JEA+1)g/ T+

+497A81)

¢/1(2(/eh1003921LT = 10-x02) Qowsl?summ%\/ + (¢/eMLT+ (1099-10-2)2) (1999 10-2)227 ) Aoz ps1) ((/eM1LT — (1099-10-207)T) _ (3x)0tn
A\Ah\/ QowoltlkvuwNUo\mmmlvov 1—

(/i ((rdILT+ (059 10-)07) (1039102022 — 2/ ek 1009971LT — N%Lawv%NT?%%%\/ )+

m\_ANAN\m\Fuowow;N\Nmulﬁwvﬁowolﬁléumwcu +Am\m\ShN+ QowolalbumvQowoltlkvuwmu\v Q11T+ (1050 jo—x)9?—
\/ \\SQHNQA% : (1999—10-3)07 ) = (1%)6In

A%\/ Qowo\t\kvuMme\NN.va o\ﬁN
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Now, if we solve system of nonlinear algebraic equations with respect to D, B, c, &, Y, we
obtain other solutions

A3 A? 5A

32 D= = B=— - _ _ _
(33) 07 ,y 07 9ﬁ? a 67 c 67
(3.33) D=0, y=0, B=0, a=—, c=——

where the exact travelling wave solutions are

A2 (1 P X o +3Aﬁ§0>
M25()C,[) = y M26(X,t) = ’
6 (_1 = +'§Aﬁ50) B 6 (1 +eA("g"')+3Aﬁ-§o)2[3
A263Aﬁ50 (_ZEA(ng) +e3Aﬁ!§0) AZe3Aﬁ:§0 (26A(X <)
3 MZS(xat) =

6(6@—63/*3‘50)2[3 6( Al +e3Aﬁ§0) B

A7 (1426%5 455

3Aﬁ~§0)

u27(x7t) =

and

A2 3AL—cr+35) (1 —2iv/GesAl—ct+3%) VB - 68M+A§Oﬁ)
upg(x,t) = )

(1 +6e™ +AEO[i)

A2p3AL—cr+35) ( +21\[66Ax ct+3&)) \f 6e Aeen) g ﬁ)
u3o(x,t) = )

(l 465 +A‘gf’ﬁ)

respectively.
Case II (ii): Taking deg(h(X)) = 1, and suppose that #(X) = Ax+ B and A # 0, then we
obtain a; (X) and ap(X) as

2c A

(c(—B+2c+Bc2) (=B*>+2Bc+B*c®> —AD +Ac’D)

cD
ao(X):R+(BD+_1+CZ>X+ i )
a ) Ac A(=3B+4c+3B)\ 5 (A% B A
* —1+c2>X +<6(71+62) * 6(—1+c?) ) <8 +2(71+c2))x ’

where D and R are constants. Substituting 2(X), ao(X), a;(X) and a(X) in (3.22) setting
all the coefficients of powers of X equal to zero, then we obtain a system of nonlinear
algebraic equations another and using Mathematica solving them, we can obtain several
new exact solution other. We emphasize that our results can be found to have potentially
useful applications in mathematical physics and applied mathematics including numerical
simulation.

4. Conclusion

The first integral method described herein is not only efficient but also has the merit of be-
ing widely applicable. we described this method for finding some new exact solutions for
the KPP equation, that it contains the various equations. So, the proposed method can be
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extended to solve the nonlinear problems which arise in the soliton theory and other areas.
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comments.
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