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Abstract. We are concerned with the multiplicity of semiclassical solutions of the follow-
ing Schrödinger system involving critical nonlinearity and magnetic fields. Under proper
conditions, we prove the existence and multiplicity of the nontrivial solutions to the per-
turbed system.
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1. Introduction

This paper is motivated by some works that have appeared in recent years concerning the
nonlinear Schrödinger equation with electromagnetic fields and critical nonlinearity of the
form

(1.1) ih̄
∂ψ

∂ t
=− h̄2

2m
(∇+ iA(x))2

ψ +W (x)ψ−K(x)|ψ|2∗−2
ψ−h

(
x, |ψ|2

)
ψ,

where h̄ is Planck’s constant, i is the imaginary unit, 2∗ is the critical exponent, 2∗ =
2N/(N− 2), for N ≥ 3, A(x) = (A1(x),A2(x), . . . ,AN(x)) : RN → RN is a real vector po-
tential and W (x) is a scalar electric potential. Knowledge of the solutions for the elliptic
equation

(1.2) −(∇+ iA(x))2u(x)+λ (W (x)−E)u(x) = λK(x)|u|2∗−2u+λh
(
x, |u|2

)
u

has a great importance in the study of standing-wave solutions of (1.1) i.e. the solutions of
the type

ψ(x, t) = exp
(
− iEt

h̄

)
u(x),

where λ−1 = h̄2/2m. The transition from quantum mechanics to classical mechanics can
be conducted by making h̄→ 0. Therefore, the existence and multiplicity of solutions for h̄
small has important physical interest.
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The problem in the case A(x)≡ 0 has been explored by many authors including del Pino
and Felmer [17, 18], Floer and WeinStein [22], Oh [24] and Wang [29]. For more results,
we refer the reader to [1, 2, 4–6, 9, 10, 14–16, 25] and the reference therein.

As for as the Equation (1.2) in the case of A(x) 6= 0 is concerned, we recall Lions [21],
Arioli and Szulkin [3], Cingolani [12] and the works of [7, 11, 13, 20, 26–28]. Among the
works mentioned above, the corresponding authors have done a great deal of work and
obtained many valuable results. Especially, many results have only been established in
subcritical case by using various methods.

Motivated by the results just described, a natural question is whether the existence and
multiplicity of results occur for the following perturbed Schrödinger system with critical
nonlinearity and electromagnetic fields

(1.3)
{
−(ε∇+ iA(x))2u+V (x)u = Hs

(
|u|2, |v|2

)
u+K(x)|u|2∗−2u, x ∈ RN ,

−(ε∇+ iB(x))2v+V (x)v = Ht
(
|u|2, |v|2

)
v+K(x)|v|2∗−2v, x ∈ RN .

To my knowledge, it seems there is a few work on the existence of solutions to (1.2), but to
the system (1.3), there is almost no work on the existence and multiplicity of solutions. By
using the similar idea or method of [19, 30] we will establish the two main results to (1.3).

Firstly, we make the following assumptions throughout the paper:
(V0) V ∈C(RN ,R), V (0) = infx∈RN V (x) = 0 (this is referred as critical frequency and

first appeared in [9, 10]), and there is a constant b > 0 such that the set νb = {x ∈
RN : V (x) < b} has finite Lebesgue measure (the measure condition was first used
in [4–6]);

(A0) A(x),B(x) ∈C(RN ,RN),A(0) = B(0) = 0;
(K0) K(x) ∈C(RN), 0 < infK ≤ supK < ∞;
(H1) H ∈C1(R+×R+,R), Hs(s, t), Ht(s, t) = o(1) as |s|+ |t| → 0;
(H2) there exist 2 < α < 2∗ and C > 0 such that

|Hs(s, t)|, |Ht(s, t)| ≤C
(

1+ s
α−2

2 + t
α−2

2

)
;

(H3) there exist a0 > 0, p,q > 2, θ ∈ (2,2∗) such that H(s, t)≥ 2a0(|s|p/2 + |t|q/2) and

0 <
θ

2
H(s, t)≤ sHs(s, t)+ tHt(s, t) for all s > 0, t > 0.

We can give the example of the nonlinearity H as follows:

H(s, t) = |s|
β

2 + |t|
β

2 ,4 < 2β < 6 = 2∗ =
2N

N−2
, for N = 3.

Next, we follow the two main results:

Theorem 1.1. Assume that (V0),(A0),(K0) and (H1)–(H3) hold. Then for any σ > 0, there
exists εσ > 0 such that ε ≤ εσ , the perturbed Schrödinger system (1.3) has one least energy
solution (uε ,vε) satisfying

(1.4)
θ −2

2θ

∫
RN

ε
2(|∇|uε ||2 + |∇|vε ||2

)
+V (x)

(
|uε |2 + |vε |2

)
≤ σε

N .

Theorem 1.2. Let (V0),(A0),(K0) and (H1)-(H3) be satisfied. Moreover, assume that H(u,v)
is even in (u,v), then for any m ∈ N and σ > 0, there is εmσ > 0 such that ε ≤ εmσ the
system (1.3) has at least m pairs of solutions (uε ,vε) which satisfy the estimate (1.4).
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These theorems extend the results in [19]. Observe that though the method used in our
paper is similar to the one of [19], the procedure of the main results is not trivial. We must
face our problem with complex-valued functions, at the same time, we need much more
delicate estimates for the appearance of magnetic potentials A(x) and B(x).

This paper is organized as follows: in Section 2, we describe some preliminaries. Section
3 contains the behavior of (PS) sequences and technical Lemmas. Section 4 includes the
proofs of the main results.

2. Preliminaries

Let λ = ε−2. We think about the following equivalent problem

(2.1)
{
−(∇+ i

√
λA(x))2u+λV (x)u = λHs

(
|u|2, |v|2

)
u+λK(x)|u|2∗−2u, x ∈ RN ,

−(∇+ i
√

λB(x))2v+λV (x)v = λHt
(
|u|2, |v|2

)
v+λK(x)|v|2∗−2v, x ∈ RN .

In order to prove Theorem 1.1 and Theorem 1.2, we need only prove the following result.

Theorem 2.1. Assume that (V0),(A0),(K0) and (H1)–(H3) hold. Then for σ > 0, there exists
Λσ > 0 such that if λ ≥ Λσ , the system (2.1) has at least one least energy solution (uλ ,vλ )
which satisfies

θ −2
2θ

∫
RN

(
|∇|uλ ||2 + |∇|vλ ||2 +λV (x)

(
|uλ |2 + |vλ |2

))
≤ σλ

1−N
2 .

Theorem 2.2. Let (V0),(A0),(K0) and (H1)–(H3) be satisfied. Moreover, assume that H(u,v)
is even in (u,v), then for any m ∈ N and σ > 0, there is Λmσ > 0 such that λ ≥ Λmσ the
system (1.3) has at least m pairs of solutions (uλ ,vλ ) which satisfy the estimate (1.4).

For the convenience, we quote the following notations. Let ∇Au = (∇+ i
√

λA)u, ∇Bv =
(∇ + i

√
λB)v, Eλ ,A(RN) = {u ∈ L2(RN) : ∇Au ∈ L2(RN)} and Eλ ,B(RN) = {v ∈ L2(RN) :

∇Bv ∈ L2(RN)}. It is obvious that Eλ ,A is the Hilbert subspace under the scalar product

(u,v)λ ,A = Re
∫

RN

((
∇Au,∇Av

)
+λV (x)uv

)
,

the norm induced by the product (·, ·) is

‖u‖2
λ ,A =

∫
RN

(
|∇Au|2 +λV (x)|u|2

)
.

It is easily known that Eλ ,A is the closure of C∞
0 (RN ,C). For Eλ ,B ,there exists the similar

results to Eλ ,A .

Remark 2.1. We have the following diamagnetic inequality(see [21]):

|∇Au(x)| ≥ |∇|u(x)|| u ∈ Eλ ,A(RN)

and
|∇Bv(x)| ≥ |∇|v(x)|| v ∈ Eλ ,B(RN).

Indeed, since A, B is real-valued, we have

|∇|u(x)||=
∣∣∣∣Re
(

∇u
ū
|u|

)∣∣∣∣= ∣∣∣∣Re
(
∇u+ i

√
λAu

) ū
|u|

∣∣∣∣≤ ∣∣∇u+ i
√

λAu
∣∣= |∇Au(x)|
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and

|∇|v(x)||=
∣∣∣∣Re
(

∇v
v̄
|v|

)∣∣∣∣= ∣∣∣∣Re
(
∇v+ i

√
λBv

) v̄
|v|

∣∣∣∣≤ ∣∣∇v+ i
√

λBv
∣∣= |∇Bv(x)|

(the bar denotes complex conjugation). These facts mean if u ∈ Eλ ,A(RN), v ∈ Eλ ,B(RN),
then |u|, |v| ∈ H1(RN) and therefore u,v ∈ Lp(RN) for any p ∈ [2,2∗) i.e. if un ⇀ u in Eλ ,A
(vn ⇀ v in Eλ ,B), then un → u in Lp

loc(R
N) for any p ∈ [2,2∗) (vn → v in Lp

loc(R
N)) and

un→ u a.e. in RN(vn→ v a.e. in RN).

Remark 2.2. In general, Eλ ,A(RN) * H1(RN) and H1(RN) * Eλ ,A(RN). However, it was
proved by Szulkin [3] that if Ω is a bounded domain with regular boundary, then Eλ ,A(Ω)
and H1(Ω) are equivalent, where Eλ ,A(Ω) = {u ∈ L2(Ω) : ∇Au ∈ L2(Ω)} with the norm

‖u‖2
Eλ ,A(Ω) =

∫
Ω

(
|∇Au|2 + |u|2

)
.

From Remark 2.1, for each p ∈ [2,2∗), there is cp > 0 (independent of λ ) such that, if
λ > 1, we have(∫

RN
|u|p
) 1

p

≤ cp

(∫
RN
|∇|u||2

) 1
2
≤ cp

(∫
RN
|∇Au|2

) 1
2
≤ cp‖u‖Eλ ,A .

Set Eλ = Eλ ,A×Eλ ,B and ‖(u,v)‖2
λ

= ‖u‖2
λ ,A +‖v‖2

λ ,B for (u,v)∈Eλ . The energy functional
associated with (2.1) is defined by

Jλ (u,v) =
1
2

∫
RN

(
|∇u+ i

√
λAu|2 + |∇v+ i

√
λBv|2 +λV (x)

(
|u|2 + |v|2

))
−λ

∫
RN

G(x,u,v)

=
1
2
‖(u,v)‖2

λ
−λ

∫
RN

G(x,u,v) for (u,v) ∈ Eλ ,

where G(x,u,v) = (K(x))/2∗(|u|2∗ + |v|2∗)+1/2H(|u|2, |v|2).
Under the assumptions of Theorem 2.1, standard arguments [30] indicate that Jλ ∈

C1(Eλ ,R) and the critical points of Jλ are weak solutions of (2.1).

3. Technical lemmas

Similar to the proof of Lemma 3.1 in [19], the following result can be obtained.

Lemma 3.1. Assume that the assumptions of Theorem 2.1 hold and {(un,vn)} is a (PS)c
sequence for Jλ . Then c≥ 0 and {(un,vn)} is bounded in Eλ .

Proof. By (H3), we have

Jλ (un,vn)−
1
θ

J
′
λ
(un,vn)(un,vn)

=
(

1
2
− 1

θ

)
‖(un,vn)‖2

λ
+
(

1
θ
− 1

2∗

)
λ

∫
RN

K(x)
(
|un|2

∗
+ |vn|2

∗)
+λ

∫
RN

1
θ

(
|un|2Hs

(
|un|2, |vn|2

)
+ |vn|2Ht

(
|un|2, |vn|2

))
− 1

2
H
(
|un|2, |vn|2

)
≥
(

1
2
− 1

θ

)
‖(un,vn)‖2

λ
≥ 0.
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Together with Jλ (un,vn)→ c and J′
λ
(un,vn)→ 0 in E−1

λ
, we have {(un,vn)} is bounded in

Eλ and c≥ 0. The proof is completed.
By Lemma 3.1, (PS)c sequence {(un,vn)} is bounded in Eλ . So we can assume (un,vn)⇀

(u,v) in Eλ . By Remark 2.1, passing to a subsequence, un→ u and vn→ v in Lp
loc(R

N) for
any p ∈ [2,2∗) and un→ u,vn→ v a.e. in RN . It is standard that (u,v) is a critical point of
Jλ , namely a weak solution of (2.1).

Lemma 3.2. Let s ∈ [2,2∗). There is a subsequence {(un j ,vn j)} such that for any ε > 0,
there exists rε > 0 with

limsup
i→∞

∫
Bi\Br

|uni |
s + |vni |

s ≤ ε,

for all r ≥ rε , where Br := {x ∈ RN : |x| ≤ r}.

Proof. The proof of Lemma 3.2 is similar to the one of Lemma 3.4 [23].
Let η ∈C∞(R+), satisfying 0≤ η(t)≤ 1, t ≥ 0, η(t) = 1, if t ≤ 1, and η(t) = 0, if t ≥ 2.

Define ũ j(x) = η(2|x|/ j)u(x), ṽ j(x) = η(2|x|/ j)v(x), then ũ j → u in Eλ ,A and ṽ j → v in
Eλ ,A.

Lemma 3.3.

lim
j→∞

Re
∫

RN

(
Hs
(
|un j |

2, |vn j |
2)un j

−Hs
(
|un j − ũ j|2, |vn j − ṽ j|2

)
(un j − ũ j)−Hs

(
|ũ j|2, |ṽ j|2

)
ũ j

)
ϕ̄ = 0

and

lim
j→∞

Re
∫

RN

(
Ht
(
|un j |

2, |vn j |
2)vn j

−Ht
(
|un j − ũ j|2, |vn j − ṽ j|2

)
(vn j − ṽ j)−Ht

(
|ũ j|2, |ṽ j|2

)
ṽ j

)
ψ̄ = 0,

uniformly in (ϕ,ψ) ∈ Eλ with ‖(ϕ,ψ)‖Eλ
≤ 1.

Proof. Similar to the proof of Lemma 3.6 [23], so we omit it.

Lemma 3.4. One has along a subsequence

Jλ (un− ũn,vn− ṽn)→ c− Jλ (u,v)

and
J′

λ
(un− ũn,vn− ṽn)→ 0 in E−1

λ
.

Proof. Since ũ j→ u in EλA, ṽ j→ v in Eλ ,B and (u j,v j) ⇀ (u,v) in Eλ , one has

Jλ (un− ũn,vn− ṽn)

= Jλ (un,vn)− Jλ (ũn, ṽn)+
λ

2∗

∫
RN

K(x)
(
|un|2

∗ −|un− ũn|2
∗ −|ũn|2

∗)
+

λ

2∗

∫
RN

K(x)
(
|vn|2

∗ −|vn− ṽn|2
∗ −|ṽn|2

∗)
+

λ

2

∫
RN

H
(
|un|2, |vn|2

)
−H

(
|un− vn|2, |ũn− ṽn|2

)
−H

(
|ũn|2, |ṽn|2

)
+o(1).
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Along the lines in proving the Brezis-Lieb lemma, it is easy to check that

lim
n→∞

∫
RN

K(x)
(
|un|2

∗ −|un− ũn|2
∗ −|ũn|2

∗)
= 0,

lim
n→∞

∫
RN

K(x)
(
|vn|2

∗ −|vn− ũn|2
∗ −|ṽn|2

∗)
= 0

and

lim
n→∞

∫
RN

H
(
|un|2, |vn|2

)
−H

(
|un− vn|2, |ũn− ṽn|2

)
−H

(
|ũn|2, |ṽn|2

)
= 0.

Note that Jλ (un,vn)→ c and Jλ (ũn, ṽn)→ Jλ (u,v), we have that

Jλ (un− ũn,vn− ṽn)→ c− Jλ (u,v).

For any (ϕ,ψ) ∈ Eλ , we have

J′
λ
(un− ũn,vn− ṽn)(ϕ,ψ)

= J′
λ
(un,vn)(ϕ,ψ)− J′

λ
(ũn, ṽn)(ϕ,ψ)

+λRe
∫

RN
K(x)

(
|un|2

∗−2un−|un− ũn|2
∗−2(un− ũn)−|ũn|2

∗−2ũn
)
ϕ̄

+λRe
∫

RN
K(x)

(
|vn|2

∗−2vn−|vn− ṽn|2
∗−2(vn− ṽn)−|ṽn|2

∗−2ṽn
)
ψ̄

+λRe
∫

RN

(
Hs
(
|un|2, |vn|2

)
un−Hs

(
|un− ũn|2, |vn− ṽn|2

)
(un− ũn)

−Hs
(
|ũn|2, |ṽn|2

)
ũn
)
ϕ̄

+λRe
∫

RN

(
Ht(|un|2, |vn|2)vn−Ht

(
|un− ũn|2, |vn− ṽn|2

)
(vn− ṽn)

−Ht
(
|ũn|2, |ṽn|2

)
ṽn
)
ψ̄.

It is standard to check that

lim
n→∞

Re
∫

RN
K(x)

(
|un|2

∗−2un−|un− ũn|2
∗−2(un− ũn)−|ũn|2

∗−2ũn
)
ϕ̄ = 0

and

lim
n→∞

Re
∫

RN
K(x)

(
|vn|2

∗−2vn−|vn− ṽn|2
∗−2(vn− ṽn)−|ṽn|2

∗−2ṽn
)
ψ̄ = 0

uniformly in (ϕ,ψ) ∈ Eλ with ‖(ϕ,ψ)‖λ ≤ 1. Therefore, the conclusion required holds by
Lemma 3.3. The proof is completed.

Let u1
n = un− ũn,v1

n = vn− ṽn, then un− u = u1
n + (ũn− u),vn− v = v1

n + (ṽn− v). So
(un,vn)→ (u,v) in Eλ if and only if (u1

n,v
1
n)→ (0,0) in Eλ . Observe that

Jλ

(
u1

n,v
1
n
)
− 1

2
J
′
λ

(
u1

n,v
1
n
)(

u1
n,v

1
n
)
≥ λ

N
Kmin

∫
RN

(
|u1

n|2
∗
+ |v1

n|2
∗)

,

where Kmin = infx∈RN K(x) > 0. Hence by Lemma 3.4, we get

(3.1)
∣∣u1

n
∣∣2∗
2∗ +

∣∣v1
n
∣∣2∗
2∗ ≤

N(c− Jλ (u,v))
λKmin

+o(1).

Now, we determine the energy level of the functional Jλ below which the (PS)c condition
holds.
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Let Vb(x) = max{V (x),b}, where b is the positive constant in the assumption (V0). Since
the set νb has finite measure and u1

n,v
1
n→ 0 in L2

loc(RN), we have∫
RN

V (x)
(
|u1

n|2 + |v1
n|2
)

=
∫

RN
Vb(x)

(
|u1

n|2 + |v1
n|2
)
+o(1).

By (H2) and (H3), there exists Cb > 0 such that∫
RN

K(x)
(
|u|2∗ + |v|2∗

)
+ |u|2Hs

(
|u|2, |v|2

)
+ |v|2Ht

(
|u|2, |v|2

)
≤ b

(
‖u‖2

2 +‖v‖2
2
)
+Cb

(
‖u‖2∗

2∗ +‖v‖2∗
2∗
)
.

Let S be the best Sobolev constant

S‖u‖2
2∗ ≤

∫
RN
|∇u|2,

for all u ∈ H1(RN).

Lemma 3.5. Under the assumptions of Theorem 2.1, there is a constant α0 > 0 independent
of λ such that, for any (PS)c sequence {(un,vn)} ⊂ Eλ for Jλ with (un,vn) ⇀ (u,v), either
(un,vn)→ (u,v) or c− Jλ (u,v)≥ α0λ 1−N/2.

Proof. Assume that (un,vn) 6→ (u,v), then

liminf
n→∞

∥∥(u1
n,v

1
n
)∥∥

λ
> 0 and c− Jλ (u,v) > 0.

By the Sobolev inequality and the diamagnetic inequality, we have

S
(
‖u1

n‖2
2∗ +‖v1

n‖2
2∗
)
≤ λCb

(
‖u1

n‖2∗
2∗ +‖v1

n‖2∗
2∗
)
+o(1).

It is easy to show that liminfn→∞(‖u1
n‖2∗

2∗ +‖v1
n‖2∗

2∗) > 0. Thus, by (3.1), we get

S≤ λCb
(
‖u1

n‖2∗
2∗ +‖v1

n‖2∗
2∗
) 2∗−2

2∗ +o(1)≤ λCb

(
N(c− Jλ (u,v))

λKmin

) 2
N

+o(1)

= λ
1− 2

N Cb

(
N

Kmin

) 2
N

(c− Jλ (u,v))
2
N +o(1).

Therefore, we have α0λ 1−N/2 ≤ c− Jλ (u,v)+ o(1), where α0 = SN/2C−N/2
b N−1Kmin. The

proof is completed.

Lemma 3.6. Under the assumptions of Theorem 2.1, there is a constant α0 > 0 independent
of λ such that, if a sequence {(un,vn)} ⊂ Eλ satisfies

Jλ (un,vn)→ c < α0λ
1−N/2,J

′
λ
(un,vn)→ 0 in E−1

λ
,

then {(un,vn)} is relatively compact in Eλ .

Proof. From Jλ (un,vn)→ c and J′
λ
(un,vn)→ 0, we get {(un,vn)} ⊂ Eλ is a (PS)c sequence

for Jλ . By c < α0λ 1−N/2, we have c− Jλ (u,v) < α0λ 1−N/2 − Jλ (u,v). Together with
Jλ (u,v)≥ 0 and Lemma 3.5, we get the required conclusion.

Lemma 3.7. Under the assumptions of Theorem 2.1, there exist αλ ,ρλ > 0 such that

Jλ (u,v) > 0, 0 < ‖(u,v)‖λ < ρλ ; Jλ (u,v)≥ αλ , if ‖(u,v)‖λ = ρλ .
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Proof. By (H1)− (H3), for δ ≤ (4λC2)−1, there exists Cδ such that∫
RN

G(x,u,v)≤ δ
(
‖u‖2

2 +‖v‖2
2
)
+Cδ

(
‖u‖2∗

2∗ +‖v‖2∗
2∗
)
.

Thus

Jλ (u,v)≥ 1
2
‖(u,v)‖2

λ
−λδ

(
‖u‖2

2 +‖v‖2
2
)
−λCδ

(
‖u‖2∗

2∗ +‖v‖2∗
2∗
)
.

Observe that ‖u‖2
2 +‖v‖2

2 ≤C2‖(u,v)‖2
λ

, we have

Jλ (u,v)≥ 1
4
‖(u,v)‖2

λ
−λCδ

(
‖u‖2∗

2∗ +‖v‖2∗
2∗
)
,

which implies that the conclusions required hold. The proof is completed.

Lemma 3.8. Under the assumptions of Theorem 2.1, for any finite dimensional subspace
F ⊂ Eλ , one has Jλ (u,v)→−∞ as (u,v) ∈ F, ‖(u,v)‖λ → ∞.

Proof. By the assumptions of Theorem 2.1

Jλ (u,v)≤ 1
2
‖(u,v)‖2

λ
−λa0

(
|u|pp + |v|qq

)
for all (u,v)∈Eλ . Since all norms in a finite dimensional space are equivalent and (p,q > 2),
we easily obtain the desired conclusion.

Define the functional

Φλ (u,v) =
1
2

∫
RN

(
|∇u+ i

√
λAu|2 + |∇v+ i

√
λBv|2 +λV (x)

(
|u|2 + |v|2

))
−a0λ

∫
RN

(|u|p + |v|q).

It is obvious that Φλ ∈C1(Eλ ) and Jλ (u,v)≤Φλ (u,v) for any (u,v) ∈ Eλ .
Note that

inf
{∫

RN
|∇φ |2 : φ ∈C∞

0 (RN ,R), |φ |p = 1
}

= 0

and

inf
{∫

RN
|∇ψ|2 : ψ ∈C∞

0 (RN ,R), |ψ|q = 1
}

= 0.

For any δ > 0, there exist φδ ,ψδ ∈C∞
0 (RN ,R), with |φδ |p = |ψδ |q = 1 and suppφδ , suppψδ ⊂

Brδ
(0) such that |∇φδ |22, |∇ψδ |22 < δ .
Let eλ (x) = (φδ (

√
λx),ψδ (

√
λx)), then suppeλ ⊂ B

λ−1/2rδ
(0). For t ≥ 0, we have

Φλ (teλ ) =
t2

2
‖eλ‖2

λ
−a0λ t p

∫
RN
|φδ (
√

λx)|p−a0λ tq
∫

RN
|ψδ (
√

λx)|q

= λ
1−N

2 Iλ (tφδ , tψδ ),

where

Iλ (u,v) =
1
2

∫
RN

(
|∇u|2 + |∇v|2 +A

(
λ
− 1

2 x
)
|u|2 +B(λ−

1
2 x)|v|2 +V

(
λ
− 1

2 x
)(
|u|2 + |v|2

))
−a0

∫
RN

(|u|p + |v|q).
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It is obvious that

max
t≥0

Iλ (tφδ , tψδ ) =
p−2

2p(pa0)
2

p−2

{∫
RN
|∇φδ |2 +A

(
λ
− 1

2 x
)
|φδ |2 +V

(
λ
− 1

2 x
)
|φδ |2

} p
p−2

+
q−2

2q(qa0)
2

q−2

{∫
RN
|∇ψδ |2 +B

(
λ
− 1

2 x
)
|ψδ |2 +V

(
λ
− 1

2 x
)
|ψδ |2

} q
q−2

.

Recall that A(0) = 0, B(0) = 0, V (0) = 0 and suppφδ ,suppψδ ⊂ Brδ
(0). Therefore, there

exists Λδ > 0 such that for all λ ≥ Λσ , we get

(3.2) max
t≥0

Jλ (tφδ , tψδ )≤

(
p−2

2p(pa0)
2

p−2
(5δ )

p
p−2 +

q−2

2q(qa0)
2

q−2
(5δ )

q
q−2

)
λ

1−N
2 .

It follows from (3.2) that

Lemma 3.9. Under the assumptions of Theorem 2.1, for any σ > 0 there exists Λσ > 0
such that for each λ ≥ Λσ , there is eλ ∈ Eλ with ‖eλ‖λ > ρλ , Jλ (eλ )≤ 0 and

max
t≥0

Jλ (teλ )≤ σλ
1−N

2 ,

where ρλ is defined from Lemma 3.7.

Proof. We can choose δ < 0 so small that(
p−2

2p(pa0)
2

p−2
(5δ )

p
p−2 +

q−2

2q(qa0)
2

q−2
(5δ )

q
q−2

)
λ

1−N
2 ≤ σ .

We take eλ (x) = (φδ (
√

λx),ψδ (
√

λx)) and Λσ = Λδ . Let t̄λ > 0 be such that t̄λ‖eλ‖λ > ρλ

and Jλ (teλ )≤ 0 for all t ≥ t̄λ . So we take ēλ = t̄λ eλ . The required conclusion holds.

For any m ∈ N, we can choose m functions φ i
δ
∈C∞

0 (RN) such that suppφ i
δ
∩ suppφ

j
δ

=
/0, i 6= j, |φ i

δ
|p = 1 and |∇φ i

δ
|22 < δ . Similarly, one can also get m functions ψ i

δ
∈C∞

0 (RN)
with suppψ i

δ
∩ suppψ

j
δ

= /0, i 6= j, |ψ i
δ
|q = 1 and |∇ψ i

δ
|22 < δ . Let rm

δ
> 0 be such that

supp(φ i
δ
,ψ i

δ
)⊂ Bi

rm
δ

(0) for i = 1,2, . . . ,m.

Set ei
λ
(x)=

(
φ i

δ
(
√

λx),ψ i
δ
(
√

λx)
)
=
(

f i
λ
,gi

λ

)
, i = 1,2, . . . ,m, then suppei

λ
(x)⊂B

λ−1/2rm
δ

(0).

Let Fm
λδ

= span{e1
λ
,e2

λ
, . . . ,em

λ
}. For each

(u,v) =
m

∑
i=1

kiei
λ
∈ Fm

λδ
,

we get ∫
RN

(
|∇Au|2 + |∇Bv|2

)
=

m

∑
i=1
|ki|2

(∫
RN
|∇A f i

λ
|2 +

∫
RN
|∇Bgi

λ
|2
)

,

∫
RN

V (x)
(
|u|2 + |v|2

)
=

m

∑
i=1
|ki|2

(∫
RN

V (x)| f i
λ
|2 +

∫
RN

V (x)|gi
λ
|2
)

,

1
2∗

∫
RN

K(x)
(
|u|2∗ + |v|2∗

)
=

1
2∗

m

∑
i=1
|ki|2

∗
(∫

RN
K(x)| f i

λ
|2∗ +

∫
RN

K(x)|gi
λ
|2∗
)
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and ∫
RN

H(u,v) =
m

∑
i=1

∫
RN

H
(
ki f i

λ
,kigi

λ

)
.

Therefore

Jλ (u,v) =
m

∑
i=1

Jλ

(
kiei

λ

)
and

Jλ (kiei
λ
)≤ φλ

(
kiei

λ

)
.

Set βδ := max{|(φ i
δ
,ψ i

δ
)|22 : i = 1,2, . . . ,m} and choose some Λmδ > 0 so that

V (λ
1
2 x)≤ δ

βδ

for all |x| ≤ rm
δ

and λ ≥ Λmδ

Similar to the proof mentioned above, we can obtain the following inequality

(3.3) max
(u,v)∈Fm

λδ

Jλ (u,v)≤

(
m(p−2)

2p(pa0)
2

p−2
(5δ )

p
p−2 +

m(q−2)

2q(qa0)
2

q−2
(5δ )

q
q−2

)
λ

2−N
2 .

By using the estimate, we can get the following.

Lemma 3.10. Under the assumptions of Lemma 3.7, for any m ∈ N and σ > 0, there exists
Λmσ > 0 such that for each λ ≥ Λmδ , we can take a m-dimensional subspace F satisfying

max
(u,v)∈F

Jλ (u,v)≤ σλ
2−N

2 .

Proof. choose δ > 0 so small that(
m(p−2)

2p(pa0)
2

p−2
(5δ )

p
p−2 +

m(q−2)

2q(qa0)
2

q−2
(5δ )

q
q−2

)
≤ σ

and take F = Fm
λδ

. By (3.3), we get the conclusion as required.

4. Proof of the main results

Firstly, we give the proof of Theorem 2.1.
Proof of Theorem 2.1. By Lemma 3.9, for any 0 < σ < α0, there exists Λσ > 0 such that
for each λ ≥ Λσ , we get cλ ≤ σλ 1−N/2, where

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ (γ(t)),

Γλ = {γ ∈C([0,1],Eλ ) : γ(0) = 0,γ(1) = eλ} .
In virtue of Lemma 3.5, Jλ satisfies the (PS)cλ

condition. Hence, by the mountain pass the-
orem, there exists (uλ ,vλ ) ∈ Eλ satisfying J

′
λ
(uλ ,vλ ) = 0 and Jλ (uλ ,vλ ) = cλ . Therefore,

(uλ ,vλ ) is a weak solution of (2.1).
Moreover, it is well known that (uλ ,vλ ) is one least energy solution of (2.1).
Note that Jλ (uλ ,vλ )≤ σλ 1−N/2 and J

′
λ
(uλ ,vλ ) = 0, we have

Jλ (uλ ,vλ ) = Jλ (uλ ,vλ )− 1
θ

J
′
λ
(uλ ,vλ )(uλ ,vλ )

= (
1
2
− 1

θ
)‖(uλ ,vλ )‖2

λ
+(

1
θ
− 1

2∗
)λ
∫

RN
K(x)(|uλ |2

∗
+ |vλ |2

∗
)
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+λ

∫
RN

1
θ

(|uλ |2Hs(|uλ |2, |vλ |2)+ |vλ |2Ht(|uλ |2, |vλ |2))−
1
2

H(|uλ |2, |vλ |2)

≥ (
1
2
− 1

θ
)‖(uλ ,vλ )‖2

λ
.

So the diamagnetic inequality implies that

θ −2
2θ

∫
RN

(|∇|uλ ||2 + |∇|vλ ||2 +λV (x)(|uλ |2 + |vλ |2))≤ σλ
1−N

2 .

The proof is completed.
Secondly, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. By Lemma 3.10, for any m ∈ N and σ ∈ (0,α0), there exists Λmσ

such that for λ ≥ Λmσ , we can choose a m-dimensional subspace F with maxJλ (F) ≤
σλ 1−N/2. By Lemma 3.8, there is R > 0 (depending on λ and m) such that Jλ (u) ≤ 0 for
all u ∈ F |BR.

Denote the set of all symmetric (in the sense that −Ω = Ω) and closed subsets of Eλ by
Σ. For each Ω ∈ Σ, let gen(Ω) be the Krasnoselski genus and let

i(A) := min
h∈Γm

gen h(Ω)∩∂Bρλ

where Γm is the set of all odd homeomorphisms h ∈ C(Eλ ,Eλ ) and ρλ is the number of
Lemma 3.7. Then i is a version of Benci’s pseudoindex [8]. Let

cλ j = inf
i(Ω)≥ j

sup
u∈Ω

Jλ (u), 1≤ j ≤ m.

Since Jλ (u)≥ αλ for all u ∈ ∂Bρλ
(see Lemma 3.7) and i(F) = dimF = m,

αλ ≤ cλ1 ≤ cλ2 ≤ ·· · ≤ cλm ≤ sup
(u,v)∈Fm

λσ

Jλ (u,v)≤ σλ
1−N

2 .

In connection with Lemma 3.6, we know that Jλ satisfies the (PS)cλ j
condition at all levels

cλ j . By the critical point theory, all cλ j are critical levels and Jλ has at least m pairs of non-
trivial critical points. Finally, as in the proof of Theorem 2.1, we easily get these solutions
are the least energy solutions.
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