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Abstract. The exterior degree d∧(G) of a finite group G has been recently introduced by
Rezaei and Niroomand in order to study the probability that two given elements x and y of G
commute in the nonabelian exterior square G∧G. This notion is related with the probability
d(G) that two elements of G commute in the usual sense. Motivated by a paper of Erovenko
and Sury of 2008, we compute the exterior degree of a group which is the wreath product
of two finite abelian p-groups (p prime). We find some numerical inequalities and study
mostly abelian p-groups.
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1. Introduction

The present paper deals only with finite groups. A consistent body of scientific results is
devoted to study the combinatorial conditions which influence the structure of finite groups
in [1, 4, 5, 6, 17]. Denoting with k(G) the number of the G-conjugacy classes [x]G =
{xg | g ∈G} of a group G and with CG(x) the centralizer of x in G, it is shown in [1, 4, 5, 6,
17] that the commutativity degree

d(G) =
|{(x,y) ∈ G×G | [x,y] = 1}|

|G|2
=

1
|G|2 ∑

x∈G
|CG(x)|= k(G)

|G|
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allows us to classify large classes of groups only looking at their numerical value of d(G).
The intriguing idea, which is behind most of the proofs of [1, 3, 4], is that d(G) measures the
distance of G from being abelian and so we may apply different techniques of combinatorial
nature. We inform the reader that there are some recent contributions in [12, 19] which
study the recognition of the structure of a group from inequalities of numerical nature. This
approach might be useful to compare with our techniques of investigation.

Going back to illustrate our scopes, we mention that several authors call d(G) the prob-
ability of commuting pairs of G. In fact, {(x,y) ∈ G×G | [x,y] = 1} can be regarded as a
measurable subset of G2 (with respect to the discrete measure over G2) and d(G) is defined
exactly as a probability measure. Of course, d(G) = 1 if and only if G is abelian. As one
may expect, d(G) is an invariant, but it is not only invariant under isomorphisms of groups,
but also under various generalizations, for instance the isoclinisms (see [5, 17]).

On the other hand, there is a recent interest in algebraic topology and in group theory
in the study of the nonabelian exterior square G∧G of G: we recall that G∧G is the
group generated by the symbols g∧ h and by the relations gg′ ∧ h = ((g′)g ∧ hg) (g∧ h),
g∧hh′ = (g∧h) (gh∧ (h′)h) and g∧g = 1 for all g,g′,h,h′ ∈ G, where G acts on itself by
conjugation via (g′)g = g−1g′g.

A recent number of papers is in fact devoted to investigate a more specific invariant,
which allows us to measure how far is G from being an abelian group of a prescribed type,
for instance, elementary abelian of given rank. Niroomand and Rezaei [14] introduced the
exterior degree of G

d∧(G) =
|{(x,y) ∈ G×G | x∧ y = 1G∧G}|

|G|2
=

1
|G|

k(G)

∑
i=1

|C∧G(xi)|
|CG(xi)|

,

where the last equality is precisely [14, Lemma 2.2]. The set

C∧G(x) = {a ∈ G | a∧ x = 1G∧G}

is called exterior centralizer of x in G and turns out to be a subgroup of G (see [13]) con-
tained in CG(x). The exterior center of G is the set

Z∧(G) = {g ∈ G | 1G∧G = g∧ y ∈ G∧G,∀y ∈ G}=
⋂
x∈G

C∧G(x)

which is a subgroup of the center Z(G) of G (see [13, 14, 15]). Originally, C∧G(x) and Z∧(G)
have been introduced for the study of properties of G∧G and this justifies the use of these
subgroups in our perspective of research.

H2(G,Z) = M(G) denotes the second homology group of G with integral coefficients
(also called Schur multiplier of G, see [11]) and plays a fundamental role in the study of
the exterior degree, as noted in [14, 15, 16]. There is a classical result in [11], known as
Poincaré Duality, which shows H2(G,Z) ' H2(G,C∗). This means that the second ho-
mology group with coefficients in Z is isomorphic with the second cohomology group with
coefficients in C∗ and, in principle, we may use independently H2(G,Z) or H2(G,Z) for de-
noting the Schur multiplier. We prefer to use H2(G,Z) = M(G), following [13, 14, 15, 16].

Very briefly, we mention that the interest for C∧G(x) and Z∧(G) is due to the fact that they
allow us to decide whether G is a capable group or not, that is, whether G is isomorphic to
E/Z(E) for some group E or not. Beyl and others [2] illustrate that capable groups are well
known and subject to interesting classifications.
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We noted that it is not available a precise computation of the exterior degree of wreath
products of abelian groups as in [7], even if some general bounds are known by [14, 15, 16].
The present paper has been written to cover this aspect of the literature. Since the dihedral
group D8 of order 8 is isomorphic to the wreath product C2 oC2 of two copies of the cyclic
group C2 of order 2, we have precise values for d∧(D8) already in [14, 15] and several other
extraspecial p-groups (p any prime) can be constructed directly as wreath products of cyclic
p-groups (see [10]). In fact we confirm not only the main results of [16], but provide new
formulas for the exterior degree of wreath products of cyclic p-groups.

2. Preliminaries

Let L and H be groups and Ω a set with H acting on it. Let K be the direct product K =
∏ω∈Ω Lω of copies of Lω = L indexed by the set Ω. The elements of K can be seen as
arbitrary sequences (lω) of elements of L indexed by Ω with componentwise multiplication.
Then the action of H on Ω extends in a natural way to an action of H on the group K by
h(lω) = (lh−1ω). In this way, we have defined the group L oΩ H, wreath product of L by H
with respect to Ω. The subgroup K of L oΩ H is called a basis. Since H acts in a natural way
on itself by left multiplication (notion of left Cayley action), we can choose Ω = H. In this
case, we write briefly L oH, omitting Ω, and the wreath product turns out to be the semidirect
product H n K, that is, L oH = H n K. We will consider only this type of wreath product,
also called standard wreath product. More specifically, we will focus on two abelian groups
A and B and on A oB, considering the left Cayley action as just said. We will have

A oB = B n A×A×·· ·×A︸ ︷︷ ︸
|B|−times

= B n A|B|,

that is, the semidirect product of B by |B|-copies of A (see [11, Chapter 6] or [10]). Several
examples, which motivated our investigations, are listed below.

Example 2.1. The symmetric group

S3 = 〈x,y | x2 = y3 = 1,x−1yx = y−1〉= 〈x〉n 〈y〉 'C2 n A3 'C2 nC3

on 3 letters is isomorphic to the dihedral group D6 of order 6, where A3 'C3 denotes the
alternating group on 3 elements. It is easy to check that Z(S3) = Z∧(S3) = 1, CS3(A3) = A3
and CS3(〈x〉) = 〈x〉. More generally, the dihedral group of order 2q is

D2q = 〈x,y | x2 = yq = 1,x−1yx = y−1〉 'C2 nCq

(see [10]) and, in case q≥ 3 is an odd prime, it is possible to extend our considerations, up
to isomorphisms, to all dihedral groups D2q. We find again CD2q(Cq) = Cq, CD2q(〈x〉) = 〈x〉
and Z(D2q) = Z∧(D2q) = 1.

One of the key results in [14, 15] is the following bound, which restricts the values of the
exterior degree by two functions depending on the size of the Schur multiplier.

Theorem 2.1. (See [14, Theorem 2.3]) Let G be a group. Then

d(G)
|M(G)|

+
|Z∧(G)|
|G|

(
1− 1
|M(G)|

)
≤ d∧(G)≤ d(G)−

(
p−1

p

)(
|Z(G)|− |Z∧(G)|

|G|

)
where p is the smallest prime number dividing the order of G.
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Since capable groups are characterized to have trivial exterior center (see [2, 11]), the
following consequences are clear.

Corollary 2.1. (See [14, Corollary 2.5]) Let G be a group. Then d∧(G)≤ d(G). Moreover,
if G is capable, then 1

|G| ≤ d∧(G)≤ d(G).

There are a series of information which can be found in [11] about M(A oB) that we list
in the next lines. Given an arbitrary abelian group A,

A ] A =
A⊗A
U(A)

, where U(A) = 〈a⊗b+b⊗a | a,b ∈ A〉

and
Inv(A) = {a ∈ A | a2 = 1}.

The structure of A ] A is described by the following result.

Theorem 2.2. (See [11, Lemma 6.3.4]) Let A = Cn1⊕Cn2⊕·· ·⊕Cnt be a decomposition of
an abelian group A for n1,n2, . . . ,nt ≥ 1 and s the number of even ni for 1≤ i≤ t. Then

A ] A =
t⊕

1≤i≤ j

C(ni,n j)⊕Cs
2.

Two classic results of Blackburn show that we may compute M(A oB) once we know
A ] A and Inv(A). The first is very general.

Theorem 2.3. (See [11, Theorem 6.3.3]) Let A and B be two abelian groups. Then

M(A oB) = M(A)⊕M(B)⊕ (B⊗B)
1
2 (|A|−|Inv(A)|−1)⊕ (B ] B)|Inv(A)|.

The second is an application and deals with M(Pn), where Pn is a Sylow p-subgroup
of the symmetric group Spn . It is well known by a result of Kaloujnine (see [11, Section
6]) that Pn has order pk with k = 1 + p + p2 + · · ·+ pn−1 and that P1 ' Cp, P2 ' Cp oCp,
P3 = Cp o (Cp oCp) and so on until Pn = P1 oPn−1. Moreover Pn−1/P′n−1 is an elementary
abelian p-group of order pn−1 for all n. The following result is very important after we
note that any p-group can be embedded in a p–group whose Schur multiplier is elementary
abelian [11, Corollary 6.3.6]. Therefore most of the groups which have been studied in
[1, 4, 5, 6, 13, 14, 15, 17] turns out to have the Schur multipliers equal to M(Pn).

Theorem 2.4. (See [11, Theorem 6.3.5]) If Pn is a Sylow p-subgroup of the symmetric group
Spn , then M(Pn) = Cs

p, where s = 1
12 (p−1)(n−1)n(2n−1) if p 6= 2 and s = 1

6 n(n2−1) if
p = 2.

We may be more specific on |Inv(A)| when A is a cyclic group in Theorem 2.3. Before
to proceed, the following observation is fundamental and motivates us to concentrate on
p-groups.

Remark 2.1. An abelian group can be always written as direct sum of its Sylow p-subgroups
by a well known result of decomposition (see [10]). On the other hand, we know that the
exterior degree is a multiplicative function, that is, the exterior degree of a direct product
(of finitely many groups) equals the product of the values of the exterior degree of each
factor (see [14]). Therefore it is reasonable to reduce the study of the exterior degree of
abelian groups only to the case of abelian p-groups. Therefore we will concentrare mostly
on p-groups from now on.
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We know in fact that each finite cyclic group Cn can be written as a direct sum

Cn 'Cp
m1
1
⊕Cp

m2
2
⊕·· ·⊕Cpmr

r

of cyclic groups Cp
mi
i

, where pi ≥ 2 are primes such that n = pm1
1 pm2

2 . . . pmr
r .

There is a good description of |Inv(Cn)| in [8, 9] by the function

ξ : n ∈ N 7→ ξ (n) =

 1, if 8|n,
−1, if 2|n and 4 6 |n, ∈ {−1,0,1}
0, otherwise.

Theorem 2.5. (See [8, Lemma 2, Theorem 2]) Let n = pm1
1 pm2

2 . . . pmr
r be a prime decom-

position of n with pi < pi+1 and mi > 0 for all 1≤ 1≤ r−1. Then

|Inv(Cn)|= 2r+ξ (n).

In particular, if r = 1, then n = pm and

|Inv(Cpm)|= 21+ξ (pm).

The wreath product of cyclic p-groups is described below.

Lemma 2.1. Let A = Cpm and B = Cpn where p is an odd prime and m,n≥ 1 integers. Then

pb
1
2 n(pm−3)c ≤ |M(A oB)| ≤ pb

1
2 n(pm+1)c.

Moreover, the lower bound is achieved when U(A) = B⊗ B and the upper bound when
U(B) = 0.

Proof. The Künneth Formula [11, Theorem 2.2.10] shows that

M(Cpm ⊕Cpn) = M(Cpm)⊕M(Cpn)⊕ (Cpm ⊗Cpn) = Cpm ⊗Cpn = Cp(m,n)

We apply Theorem 2.3 and find

M(A oB) = M(Cpm oCpn)

= M(Cpm)⊕M(Cpn)⊕ (Cpn ⊗Cpn)
1
2 (pm−|Inv(Cpm )|−1)⊕ (Cpn ] Cpn)|Inv(Cpm )|

= (Cpn ⊗Cpn)
1
2 (pm−|Inv(Cpm )|−1)⊕ (Cpn ] Cpn)|Inv(Cpm )|

but p is odd, then ξ (p) = ξ (pm) = 0 and |Inv(Cpm)|= 2 by Theorem 2.5, and

= (Cpn ⊗Cpn)
1
2 (pm−3)⊕ (Cpn ] Cpn)2 = C

1
2 (pm−3)
pn ⊕ (Cpn ] Cpn)2.

If U(B) = B⊗B, then B ] B = 0 and

M(A oB) = C
1
2 (pm−3)
pn .

If U(B) = 0, then B ] B = B⊗B and

M(A oB) = C
1
2 (pm−3)
pn ⊕C2

pn = C
1
2 (pm+1)
pn .

If U(B) is a nontrivial proper subgroup of B⊗B, then 0≤ |B ] B| ≤ |B⊗B| and

|C
1
2 (pm−3)
pn | ≤ |M(A oB)| ≤ |C

1
2 (pm+1)
pn |,

as claimed.

Lemma 2.2. Let A = C2m and B = C2n and m,n≥ 1 integers.
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(i) If m = 1, then |M(A oB)| ≤ 2b
1
2 nc.

(ii) If m = 2, then 2b
1
2 nc ≤ |M(A oB)| ≤ 2b

5
2 nc.

(iii) If m≥ 3, then 2b
1
2 n(2m−5)c ≤ |M(A oB)| ≤ 2b

1
2 n(2m+5)c.

Moreover, the lower bounds are achieved when U(B) = B⊗B and the upper bounds when
U(B) = 0.

Proof. By Theorem 2.5, we should distinguish three cases in order to apply the same argu-
ment of Lemma 2.1. If m = 1, then ξ (2) =−1 and |Inv(C2)|= 1. In this case we get

2
1
2 n(21−2) ≤ |M(A oB)| ≤ 2

1
2 n(21−1).

If m = 2, then ξ (4) = 0 and |Inv(C4)|= 2. In this case, we get

2
1
2 n(22−3) ≤ |M(A oB)| ≤ p

1
2 n(22+1).

If m≥ 3, then ξ (2m) = 1 and |Inv(C2m)|= 4. In this case, we get

2
1
2 n(2m−5) ≤ |M(A oB)| ≤ 2

1
2 n(2m+5).

Remark 2.2. Lemma 2.1 shows that

|M(A oB)| ∈ {pb
1
2 n(pm−3)c, pb

1
2 n(pm−2)c, pb

1
2 n(pm−1)c, pb

1
2 npmc, pb

1
2 n(pm+1)c},

that is, we have just five choices for |M(A oB)| and of the above type, for all m,n ≥ 1. A
similar situation happens in Lemma 2.2 (iii), where we find only eleven possible values of
|M(A oB)| between 2b

1
2 n(2m−5)c and 2b

1
2 n(2m+5)c.

The following example is done for convenience of the reader.

Example 2.2. The Schur multipliers of metacyclic p-groups have been computed by Austin,
Beyl and Ng independently, see [11, Theorem 2.11.3, Proposition 2.11.4] or [2]. It is well
known that C2 oC2 ' D8, which is a metacyclic 2-group, has M(D8)'C2. We find exactly
this result if m = n = 1 in Lemma 2.2 (i). On the other hand, P2 is a Sylow 2-subgroup of
S4 of order 8 and is well known that P2 'C2 oC2 ' D8. From Theorem 2.4, s = 1 and again
M(P2)'C2 is confirmed.

Erovenko and Sury [7] showed that if B is an abelian group of order n and A is an arbitrary
abelian group, then the commutativity degree of the wreath product A oB tends to 1

n2 as the
order of A tends to infinity. By the way, Sury has recently investigated some combinatorial
properties of wreath products in [18].

Theorem 2.6. (See [7, Theorem 1.1]) Let A and B = {b1,b2, ...,bn} be two abelian groups.
Then

d(A oB) =
1

n2|A|n
n

∑
s,t=1
|A|α(s,t),

where α(s, t) = |B : 〈bs,bt〉|.

Immediately, we may draw the following conclusion.

Corollary 2.2. Let A and B = {b1,b2, ...,bn} be two abelian groups. If A oB is capable, then

1
n2 |A|n

≤ d∧(A oB)≤ 1
n2|A|n

n

∑
s,t=1
|A|α(s,t)



On the Exterior Degree of the Wreath Product of Finite Abelian Groups 31

Proof. The upper bound d∧(A oB)≤ d(A oB) is always true by Theorems 2.1 and 2.6. The
lower bound follows by Corollary 2.1 because A oB is capable.

3. Main theorems

The p-group E1 = 〈a,b,c | ap = bp = cp = 1, [a,c] = [b,c] = 1, [a,b] = c〉 is extraspecial of
order p3 and exponent p and has |M(E1)| = p2. It was investigated recently in [16] under
our perspective. [16, Theorem 2.2 (i)] shows that

(3.1) d∧(E1) = ∑
g∈E1

|C∧E1
(g)|= p3 + p2−1

p5 ,

where the first equality is clear from the definitions but the second depends on the fact that
|C∧E1

(g)|= p for all g ∈ E1. Moreover, Niroomand [16] proved a series of results for d∧(P)
in which the presence of a bound of the form (3.1) for an arbitrary p-group P implies that
P/Z∧(P) is elementary abelian (see [16, Theorems 2.4 and 2.6]). Similar conditions were
studied already in [1, 4, 5, 17] for the commutativity degree and have motivated us to look
for a specific type of inequalities in our investigations, which has the formal aspect of (3.1).

We need to recall from [13] that the map

(3.2) ϕ : g ∈CG(x) 7→ x∧g ∈M(G)

is a monomorphism of groups such that kerϕ = C∧G(x) and CG(x)/C∧G(x) is isomorphic to a
subgroup of M(G) for all x ∈ G. Consequently,

(3.3) |CG(x) : C∧G(x)| ≤ |M(G)|
and, in case ϕ is surjective, we find

(3.4) |CG(x) : C∧G(x)|= |M(G)|.
The following example is instructive.

Example 3.1.
(i) The group E1 satisfies (3.3) properly, because |CE1(x) : C∧E1

(x)| = p for all x ∈ E1

and |M(E1)|= p2.
(ii) The extraspecial p-group of order p3 and exponent p2 with p 6= 2 is E2 = 〈a,b,c |

ap2
= bp2

= cp2
= 1, [a,c] = [b,c] = 1, [a,b] = c〉 and it satisfies (3.4), because

|CE2(x) : C∧E2
(x)|= |M(E2)|= 1 for all x ∈ E2.

(iii) A cyclic group Cn has M(Cn) = 1 (see [11]) and satisfies (3.4), because |CCn(x) :
C∧Cn

(x)|= |M(Cn)|= 1 for all x ∈Cn.

If G = P is a p-group, then it is not hard to see that M(P) is also a p-group (see [11]) and
it is meaningful to introduce

(3.5) ux = logp
|M(P)|

|CP(x) : C∧P (x)|
in order to measure the gap among (3.3) and (3.4).

Of course, ux depends on x and |CP(x) : C∧P (x)| · pux = |M(P)| is a bound depending
on x. In particular, ux = 0 if and only if |CP(x) : C∧P (x)| = |M(P)|, which is exactly (3.4).
Immediately, we observe that all groups with trivial Schur multiplier must satisfy (3.4) and
then they have ux = 0. Example 3.1 (ii) and (iii) belong to this case and so they are indicative
of a more general fact.
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Theorem 3.1. Let A = Cpm , B = Cpn , p odd prime, α(s, t) = |B : 〈bs,bt〉| for bs,bt ∈ B and
m,n,s, t ≥ 1. Then

1

pb
1
2 (2mpn+n(pm+5))c

pn

∑
s,t=1

pmα(s,t) ≤ d∧(A oB).

Moreover, there exist elements x1,x2, . . . ,xk(AoB) ∈ A oB such that u = ux1 +ux2 + · · ·+uxk(AoB)

and

d∧(A oB)≤ 1
pm(pn−1)+n

+
u

pb
1
2 (2mpn+n(pm+1))c

pn

∑
s,t=1

pmα(s,t).

Proof. First of all,

(3.6) |A oB|= |B| · |A||B| = pn · (pm)pn
= pn · pmpn

= pn+mpn
.

Notice that Z(A o B) = {(a,a, . . . ,a) | a ∈ A} is the set of elements of A|B| in which the
components are equal, that is, the diagonal subgroup of A|B| and so |Z(A oB)|= |A| ≥ |Z∧(A o
B)|. We will prove before the upper bound and then the lower bound.

Since for all i = 1,2, . . . ,k(A oB)∣∣∣∣∣C∧AoB(xi)

CAoB(xi)

∣∣∣∣∣= uxi

|M(A oB)|
,

we get

d∧(A oB) =
1
|A oB|

k(AoB)

∑
i=1

∣∣∣∣∣C∧AoB(xi)

CAoB(xi)

∣∣∣∣∣
=

1
|A oB|

(
|Z∧(A oB)|+ k(A oB)−|Z∧(A oB)|

|M(A oB)|

)
and, if u = ux1 +ux2 + · · ·+uk(AoB), then the above quantity becomes

=
u k(A oB)

|A oB| |M(A oB)|
+
|Z∧(A oB)|
|A oB|

(
1− u
|M(A oB)|

)
= u

d(A oB)
|M(A oB)|

+
|Z∧(A oB)|
|A oB|

(
1− u
|M(A oB)|

)
≤ u

d(A oB)
|M(A oB)|

+
|A|

|B| · |A||B|

(
1− u
|M(A oB)|

)

(3.7) = u
d(A oB)
|M(A oB)|

+
1

|B| · |A||B|−1

(
1− u
|M(A oB)|

)
.

Now Theorem 2.6 implies

(3.8) d(A oB) =
1

p2n pmpn

pn

∑
s,t=1

pmα(s,t) =
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

and, if we replace (3.8) in (3.7) and use (3.6), then we get

=
u

|M(A oB)|

(
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m

(
1− u
|M(A oB)|

)
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≤ u
|M(A oB)|

(
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m .

But the lower bound in Lemma 2.1 implies 1
|M(AoB)| ≤

1

pb
1
2 n(pm−3)c

and so we may upper

bound with

≤ u

pb
1
2 n(pm−3)c

(
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

)
+

1
pn+mpn−m

=
u

pb
1
2 (n(pm+1)+2mpn)c

pn

∑
s,t=1

pmα(s,t) +
1

pn+m(pn−1) ,

as claimed.
On the other hand,

d∧(A oB) =
d(A oB)
|M(A oB)|

+
|Z∧(A oB)|
|A oB|

(
1− 1
|M(A oB)|

)
≥ d(A oB)
|M(A oB)|

and by Theorem 2.6 and the upper bound of Lemma 2.1 we get

=
1

|M(A oB)|

(
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

)
≥ 1

pb
1
2 n(pm+1)c

(
1

p2n+mpn

pn

∑
s,t=1

pmα(s,t)

)

=
1

pb
1
2 (n(pm+5)+2mpn)c

pn

∑
s,t=1

pmα(s,t)

as claimed.

The even case is described below.

Theorem 3.2. Let A = C2m , B = C2n , α(s, t) = |B : 〈bs,bt〉| for bs,bt ∈ B, m,n,s, t ≥ 1 and
suitable x1,x2, . . . ,xk(AoB) ∈ A oB such that u = ux1 +ux2 + · · ·+uxk(AoB) .

(i) If m = 1, then

1

2b
1
2 (m2n+1+5n)c

2n

∑
s,t=1

2mα(s,t) ≤ d∧(A oB)≤ 1
2n+m2n−m +

u
22n+m2n

2n

∑
s,t=1

2mα(s,t)

(ii) If m = 2, then

1

2b
5
2 (m2n+1+5n)c

2n

∑
s,t=1

2mα(s,t) ≤ d∧(A oB)≤ 1
2n+m2n−m +

u

2b
1
2 (m2n+1+5n)c

2n

∑
s,t=1

2mα(s,t)

(iii) If m≥ 3, then

1

2b
1
2 (m2n+1+n(2m+9))c

2n

∑
s,t=1

2mα(s,t) ≤ d∧(A oB)≤ 1
2n+m2n−m

+
u

2b
1
2 (m2n+1+n(2m−1))c

2n

∑
s,t=1

2mα(s,t).
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Proof. We follow the argument of the proof of Theorem 3.1. From Theorem 2.6,

d∧(A oB)≤ u
|M(A oB)|

(
1

22n+m2n

2n

∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m

and we should distinguish three cases in view of Lemma 2.2. If m = 1, then

d∧(A oB)≤ u
22n+m2n

2n

∑
s,t=1

2mα(s,t) +
1

2n+m2n−m .

If m = 2, then

d∧(A oB)≤ u

2b
1
2 nc

(
1

22n+m2n

2n

∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m .

If m≥ 3, then

d∧(A oB)≤ u

2b
1
2 n(2m−5)c

(
1

22n+m2n

2n

∑
s,t=1

2mα(s,t)

)
+

1
2n+m2n−m .

On the other hand,

d∧(A oB)≥ d(A oB)
|M(A oB)|

and the following cases should be considered by Lemma 2.2 and Theorem 2.6. If m = 1,
then we may lower bound with

≥ 1
22n+m2n

2n

∑
s,t=1

2mα(s,t) ≥ 1

2b
1
2 nc

1
22n+m2n

2n

∑
s,t=1

2mα(s,t).

If m = 2, then we have analogously

≥ 1

2b
5
2 nc

(
1

22n+m2n

2n

∑
s,t=1

2mα(s,t)

)
.

If m≥ 3, then we have analogously

≥ 1

2b
1
2 n(2m+5)c

(
1

22n+m2n

2n

∑
s,t=1

2mα(s,t)

)
.

We end with an application to the Sylow p-subgroups Pn of the symmetric group Spn ,
described in Theorem 2.4.

Theorem 3.3. Let Pn be a capable Sylow p-subgroup of Spn and u = ux1 + · · ·+ uxk(Pn) for
suitable x1, . . . ,xk(Pn) ∈ Pn.

(i) If p 6= 2, then

d∧(Pn) =
u d(Pn)

p
1
12 (p−1)(n−1)n(2n−1)

+
1

p
1−pn
1−p

(
1− u

p
1

12 (p−1)(n−1)n(2n−1)

)
.

(ii) If p = 2, then

d∧(Pn) =
u d(Pn)

p
1
6 n(n2−1)

+
1

p
1−pn
1−p

(
1− u

p
1
6 n(n2−1)

)
.
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Proof. (i). We know from Theorem 2.4 that Pn = P1 oPn−1,

|Pn|= 1+ p+ p2 + · · ·+ pn−1 =
1− pn

1− p

and M(Pn) = Cs
p, where s = 1

12 (p− 1)(n− 1)n(2n− 1) if p 6= 2. Moreover, Pn is capable,
then Z∧(Pn) = 1. We may repeat the proof of Theorem 3.1 and get

d∧(Pn) =
1
|Pn|

k(Pn)

∑
i=1

∣∣∣∣C∧Pn
(xi)

CPn(xi)

∣∣∣∣= 1
|Pn|

(
|Z∧(Pn)|+

k(Pn)−|Z∧(Pn)|
|M(Pn)|

)
=

u k(Pn)
|Pn| |M(Pn)|

+
|Z∧(Pn)|
|Pn|

(
1− u
|M(Pn)|

)
= u

d(Pn)
|M(Pn)|

+
|Z∧(Pn)|
|Pn|

(
1− u
|M(Pn)|

)
= u

d(Pn)
|M(Pn)|

+
1
|Pn|

(
1− u
|M(Pn)|

)
=

u
|M(Pn)|

(
d(Pn)−

1
|Pn|

)
+

1
|Pn|

=
u

p
1

12 (p−1)(n−1)n(2n−1)

(
d(Pn)−

1
p1+p+p2+...+pn−1

)
+

1
p1+p+p2+...+pn−1

=
u

p
1

12 (p−1)(n−1)n(2n−1)

(
d(Pn)−

1

p
1−pn
1−p

)
+

1

p
1−pn
1−p

=
u d(Pn)

p
1

12 (p−1)(n−1)n(2n−1)
+

1

p
1−pn
1−p

(
1− u

p
1
12 (p−1)(n−1)n(2n−1)

)
.

(ii). In case p = 2, it is enough to replace the term 1
12 (p−1)(n−1)n(2n−1) with 1

6 n(n2−1)
by Theorem 2.4.

The importance of Theorem 3.3 is due to the fact that it provides a relation among d∧(Pn)
and d(Pn). Since there are several results on the commutativity degree in [1, 4, 5, 6], the
term d(Pn) is well known and then Theorem 3.3 is significant.
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