# On the Exterior Degree of the Wreath Product of Finite Abelian Groups 

${ }^{1}$ Ahmad Erfanian, ${ }^{2}$ Fadila Normahia Abd Manaf, ${ }^{3}$ Francesco G. Russo and ${ }^{4}$ Nor Haniza Sarmin<br>${ }^{1}$ Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi<br>University of Mashhad, P. O. Box 1159, 91775, Mashhad, Iran<br>${ }^{2}$ Department of Mathematical Sciences, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia<br>${ }^{3}$ Dipartimento Energia, Ingegneria dell'Informazione e Modelli Matematici, Universitá degli Studi di Palermo, Viale delle Scienze, Edificio 8, 90128, Palermo, Italy<br>Instituto de Matemática, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco C, Cidade Universitária, Ilha do Fundão, Caixa Postal 68530, 21941-909, Rio de Janeiro, Brasil<br>${ }^{4}$ Department of Mathematical Sciences and Ibnu Sina Institute for Fundamental Studies, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia<br>${ }^{1}$ erfanian@math.um.ac.ir, ${ }^{2}$ fnormahia@yahoo.com, ${ }^{3}$ francescog.russo@yahoo.com, ${ }^{4}$ nhs @utm.my


#### Abstract

The exterior degree $d^{\wedge}(G)$ of a finite group $G$ has been recently introduced by Rezaei and Niroomand in order to study the probability that two given elements $x$ and $y$ of $G$ commute in the nonabelian exterior square $G \wedge G$. This notion is related with the probability $d(G)$ that two elements of $G$ commute in the usual sense. Motivated by a paper of Erovenko and Sury of 2008, we compute the exterior degree of a group which is the wreath product of two finite abelian $p$-groups ( $p$ prime). We find some numerical inequalities and study mostly abelian $p$-groups.


2010 Mathematics Subject Classification: Primary 20J99; Secondary 20D15, 20P05
Keywords and phrases: Exterior degree, wreath products, $p$-groups.

## 1. Introduction

The present paper deals only with finite groups. A consistent body of scientific results is devoted to study the combinatorial conditions which influence the structure of finite groups in $[1,4,5,6,17]$. Denoting with $k(G)$ the number of the $G$-conjugacy classes $[x]_{G}=$ $\left\{x^{g} \mid g \in G\right\}$ of a group $G$ and with $C_{G}(x)$ the centralizer of $x$ in $G$, it is shown in $[1,4,5,6$, 17] that the commutativity degree

$$
d(G)=\frac{|\{(x, y) \in G \times G \mid[x, y]=1\}|}{|G|^{2}}=\frac{1}{|G|^{2}} \sum_{x \in G}\left|C_{G}(x)\right|=\frac{k(G)}{|G|}
$$

allows us to classify large classes of groups only looking at their numerical value of $d(G)$. The intriguing idea, which is behind most of the proofs of $[1,3,4]$, is that $d(G)$ measures the distance of $G$ from being abelian and so we may apply different techniques of combinatorial nature. We inform the reader that there are some recent contributions in [12, 19] which study the recognition of the structure of a group from inequalities of numerical nature. This approach might be useful to compare with our techniques of investigation.

Going back to illustrate our scopes, we mention that several authors call $d(G)$ the probability of commuting pairs of $G$. In fact, $\{(x, y) \in G \times G \mid[x, y]=1\}$ can be regarded as a measurable subset of $G^{2}$ (with respect to the discrete measure over $G^{2}$ ) and $d(G)$ is defined exactly as a probability measure. Of course, $d(G)=1$ if and only if $G$ is abelian. As one may expect, $d(G)$ is an invariant, but it is not only invariant under isomorphisms of groups, but also under various generalizations, for instance the isoclinisms (see [5, 17]).

On the other hand, there is a recent interest in algebraic topology and in group theory in the study of the nonabelian exterior square $G \wedge G$ of $G$ : we recall that $G \wedge G$ is the group generated by the symbols $g \wedge h$ and by the relations $g g^{\prime} \wedge h=\left(\left(g^{\prime}\right)^{g} \wedge h^{g}\right)(g \wedge h)$, $g \wedge h h^{\prime}=(g \wedge h)\left(g^{h} \wedge\left(h^{\prime}\right)^{h}\right)$ and $g \wedge g=1$ for all $g, g^{\prime}, h, h^{\prime} \in G$, where $G$ acts on itself by conjugation via $\left(g^{\prime}\right)^{g}=g^{-1} g^{\prime} g$.

A recent number of papers is in fact devoted to investigate a more specific invariant, which allows us to measure how far is $G$ from being an abelian group of a prescribed type, for instance, elementary abelian of given rank. Niroomand and Rezaei [14] introduced the exterior degree of $G$

$$
d^{\wedge}(G)=\frac{\left|\left\{(x, y) \in G \times G \mid x \wedge y=1_{G \wedge G}\right\}\right|}{|G|^{2}}=\frac{1}{|G|} \sum_{i=1}^{k(G)} \frac{\left|C_{G}^{\wedge}\left(x_{i}\right)\right|}{\left|C_{G}\left(x_{i}\right)\right|},
$$

where the last equality is precisely [14, Lemma 2.2]. The set

$$
C_{G}^{\wedge}(x)=\left\{a \in G \mid a \wedge x=1_{G \wedge G}\right\}
$$

is called exterior centralizer of $x$ in $G$ and turns out to be a subgroup of $G$ (see [13]) contained in $C_{G}(x)$. The exterior center of $G$ is the set

$$
Z^{\wedge}(G)=\left\{g \in G \mid 1_{G \wedge G}=g \wedge y \in G \wedge G, \forall y \in G\right\}=\bigcap_{x \in G} C_{G}^{\wedge}(x)
$$

which is a subgroup of the center $Z(G)$ of $G$ (see $[13,14,15]$ ). Originally, $C_{G}^{\wedge}(x)$ and $Z^{\wedge}(G)$ have been introduced for the study of properties of $G \wedge G$ and this justifies the use of these subgroups in our perspective of research.
$H_{2}(G, \mathbb{Z})=M(G)$ denotes the second homology group of $G$ with integral coefficients (also called Schur multiplier of $G$, see [11]) and plays a fundamental role in the study of the exterior degree, as noted in $[14,15,16]$. There is a classical result in [11], known as Poincaré Duality, which shows $H_{2}(G, \mathbb{Z}) \simeq H^{2}\left(G, \mathbb{C}^{*}\right)$. This means that the second homology group with coefficients in $\mathbb{Z}$ is isomorphic with the second cohomology group with coefficients in $\mathbb{C}^{*}$ and, in principle, we may use independently $H_{2}(G, \mathbb{Z})$ or $H^{2}(G, \mathbb{Z})$ for denoting the Schur multiplier. We prefer to use $H_{2}(G, \mathbb{Z})=M(G)$, following [13, 14, 15, 16].

Very briefly, we mention that the interest for $C_{G}^{\wedge}(x)$ and $Z^{\wedge}(G)$ is due to the fact that they allow us to decide whether $G$ is a capable group or not, that is, whether $G$ is isomorphic to $E / Z(E)$ for some group $E$ or not. Beyl and others [2] illustrate that capable groups are well known and subject to interesting classifications.

We noted that it is not available a precise computation of the exterior degree of wreath products of abelian groups as in [7], even if some general bounds are known by [14, 15, 16]. The present paper has been written to cover this aspect of the literature. Since the dihedral group $D_{8}$ of order 8 is isomorphic to the wreath product $C_{2} \prec C_{2}$ of two copies of the cyclic group $C_{2}$ of order 2, we have precise values for $d^{\wedge}\left(D_{8}\right)$ already in $[14,15]$ and several other extraspecial $p$-groups ( $p$ any prime) can be constructed directly as wreath products of cyclic $p$-groups (see [10]). In fact we confirm not only the main results of [16], but provide new formulas for the exterior degree of wreath products of cyclic p-groups.

## 2. Preliminaries

Let $L$ and $H$ be groups and $\Omega$ a set with $H$ acting on it. Let $K$ be the direct product $K=$ $\Pi_{\omega \in \Omega} L_{\omega}$ of copies of $L_{\omega}=L$ indexed by the set $\Omega$. The elements of $K$ can be seen as arbitrary sequences $\left(l_{\omega}\right)$ of elements of $L$ indexed by $\Omega$ with componentwise multiplication. Then the action of $H$ on $\Omega$ extends in a natural way to an action of $H$ on the group $K$ by $h\left(l_{\omega}\right)=\left(l_{h^{-1} \omega}\right)$. In this way, we have defined the group $L l_{\Omega} H$, wreath product of $L$ by $H$ with respect to $\Omega$. The subgroup $K$ of $L l_{\Omega} H$ is called a basis. Since $H$ acts in a natural way on itself by left multiplication (notion of left Cayley action), we can choose $\Omega=H$. In this case, we write briefly $L\langle H$, omitting $\Omega$, and the wreath product turns out to be the semidirect product $H \ltimes K$, that is, $L \zeta H=H \ltimes K$. We will consider only this type of wreath product, also called standard wreath product. More specifically, we will focus on two abelian groups $A$ and $B$ and on $A\{B$, considering the left Cayley action as just said. We will have

$$
A \backslash B=B \ltimes \underbrace{A \times A \times \cdots \times A}_{|B| \text {-times }}=B \ltimes A^{|B|},
$$

that is, the semidirect product of $B$ by $|B|$-copies of $A$ (see [11, Chapter 6] or [10]). Several examples, which motivated our investigations, are listed below.

Example 2.1. The symmetric group

$$
S_{3}=\left\langle x, y \mid x^{2}=y^{3}=1, x^{-1} y x=y^{-1}\right\rangle=\langle x\rangle \ltimes\langle y\rangle \simeq C_{2} \ltimes A_{3} \simeq C_{2} \ltimes C_{3}
$$

on 3 letters is isomorphic to the dihedral group $D_{6}$ of order 6 , where $A_{3} \simeq C_{3}$ denotes the alternating group on 3 elements. It is easy to check that $Z\left(S_{3}\right)=Z^{\wedge}\left(S_{3}\right)=1, C_{S_{3}}\left(A_{3}\right)=A_{3}$ and $C_{S_{3}}(\langle x\rangle)=\langle x\rangle$. More generally, the dihedral group of order $2 q$ is

$$
D_{2 q}=\left\langle x, y \mid x^{2}=y^{q}=1, x^{-1} y x=y^{-1}\right\rangle \simeq C_{2} \ltimes C_{q}
$$

(see [10]) and, in case $q \geq 3$ is an odd prime, it is possible to extend our considerations, up to isomorphisms, to all dihedral groups $D_{2 q}$. We find again $C_{D_{2 q}}\left(C_{q}\right)=C_{q}, C_{D_{2 q}}(\langle x\rangle)=\langle x\rangle$ and $Z\left(D_{2 q}\right)=Z^{\wedge}\left(D_{2 q}\right)=1$.

One of the key results in $[14,15]$ is the following bound, which restricts the values of the exterior degree by two functions depending on the size of the Schur multiplier.

Theorem 2.1. (See [14, Theorem 2.3]) Let G be a group. Then

$$
\frac{d(G)}{|M(G)|}+\frac{\left|Z^{\wedge}(G)\right|}{|G|}\left(1-\frac{1}{|M(G)|}\right) \leq d^{\wedge}(G) \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right)
$$

where $p$ is the smallest prime number dividing the order of $G$.

Since capable groups are characterized to have trivial exterior center (see [2, 11]), the following consequences are clear.

Corollary 2.1. (See [14, Corollary 2.5]) Let $G$ be a group. Then $d^{\wedge}(G) \leq d(G)$. Moreover, if $G$ is capable, then $\frac{1}{|G|} \leq d^{\wedge}(G) \leq d(G)$.

There are a series of information which can be found in [11] about $M(A \backslash B)$ that we list in the next lines. Given an arbitrary abelian group $A$,

$$
A \sharp A=\frac{A \otimes A}{U(A)} \text {, where } U(A)=\langle a \otimes b+b \otimes a \mid a, b \in A\rangle
$$

and

$$
\operatorname{Inv}(A)=\left\{a \in A \mid a^{2}=1\right\}
$$

The structure of $A \sharp A$ is described by the following result.
Theorem 2.2. (See [11, Lemma 6.3.4]) Let A $=C_{n_{1}} \oplus C_{n_{2}} \oplus \cdots \oplus C_{n_{t}}$ be a decomposition of an abelian group $A$ for $n_{1}, n_{2}, \ldots, n_{t} \geq 1$ and s the number of even $n_{i}$ for $1 \leq i \leq t$. Then

$$
A \sharp A=\bigoplus_{1 \leq i \leq j}^{t} C_{\left(n_{i}, n_{j}\right)} \oplus C_{2}^{s} .
$$

Two classic results of Blackburn show that we may compute $M(A 〕 B)$ once we know $A \sharp A$ and $\operatorname{Inv}(A)$. The first is very general.
Theorem 2.3. (See [11, Theorem 6.3.3]) Let $A$ and $B$ be two abelian groups. Then

$$
M(A \imath B)=M(A) \oplus M(B) \oplus(B \otimes B)^{\frac{1}{2}(|A|-|\operatorname{Inv}(A)|-1)} \oplus(B \sharp B)^{|\operatorname{Inv}(A)|} .
$$

The second is an application and deals with $M\left(P_{n}\right)$, where $P_{n}$ is a Sylow $p$-subgroup of the symmetric group $S_{p^{n}}$. It is well known by a result of Kaloujnine (see [11, Section 6]) that $P_{n}$ has order $p^{k}$ with $k=1+p+p^{2}+\cdots+p^{n-1}$ and that $P_{1} \simeq C_{p}, P_{2} \simeq C_{p} \prec C_{p}$, $P_{3}=C_{p} \prec\left(C_{p} \prec C_{p}\right)$ and so on until $P_{n}=P_{1} \prec P_{n-1}$. Moreover $P_{n-1} / P_{n-1}^{\prime}$ is an elementary abelian $p$-group of order $p^{n-1}$ for all $n$. The following result is very important after we note that any $p$-group can be embedded in a $p$-group whose Schur multiplier is elementary abelian [11, Corollary 6.3.6]. Therefore most of the groups which have been studied in $[1,4,5,6,13,14,15,17]$ turns out to have the Schur multipliers equal to $M\left(P_{n}\right)$.
Theorem 2.4. (See [11, Theorem 6.3.5]) If $P_{n}$ is a Sylow p-subgroup of the symmetric group $S_{p^{n}}$, then $M\left(P_{n}\right)=C_{p}^{s}$, where $s=\frac{1}{12}(p-1)(n-1) n(2 n-1)$ if $p \neq 2$ and $s=\frac{1}{6} n\left(n^{2}-1\right)$ if $p=2$.

We may be more specific on $|\operatorname{Inv}(A)|$ when $A$ is a cyclic group in Theorem 2.3. Before to proceed, the following observation is fundamental and motivates us to concentrate on p-groups.
Remark 2.1. An abelian group can be always written as direct sum of its Sylow $p$-subgroups by a well known result of decomposition (see [10]). On the other hand, we know that the exterior degree is a multiplicative function, that is, the exterior degree of a direct product (of finitely many groups) equals the product of the values of the exterior degree of each factor (see [14]). Therefore it is reasonable to reduce the study of the exterior degree of abelian groups only to the case of abelian $p$-groups. Therefore we will concentrare mostly on $p$-groups from now on.

We know in fact that each finite cyclic group $C_{n}$ can be written as a direct sum

$$
C_{n} \simeq C_{p_{1}^{m_{1}}} \oplus C_{p_{2}^{m_{2}}} \oplus \cdots \oplus C_{p_{r}^{m_{r}}}
$$

of cyclic groups $C_{p_{i}^{m}}$, where $p_{i} \geq 2$ are primes such that $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}}$.
There is a good description of $\left|\operatorname{Inv}\left(C_{n}\right)\right|$ in $[8,9]$ by the function

$$
\xi: n \in \mathbb{N} \mapsto \xi(n)=\left\{\begin{array}{l}
1, \text { if } 8 \mid n, \\
-1, \text { if } 2 \mid n \text { and } 4 \nmid n, \in\{-1,0,1\} \\
0, \text { otherwise. }
\end{array}\right.
$$

Theorem 2.5. (See [8, Lemma 2, Theorem 2]) Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}}$ be a prime decomposition of $n$ with $p_{i}<p_{i+1}$ and $m_{i}>0$ for all $1 \leq 1 \leq r-1$. Then

$$
\left|\operatorname{Inv}\left(C_{n}\right)\right|=2^{r+\xi(n)}
$$

In particular, if $r=1$, then $n=p^{m}$ and

$$
\left|\operatorname{Inv}\left(C_{p^{m}}\right)\right|=2^{1+\xi\left(p^{m}\right)} .
$$

The wreath product of cyclic $p$-groups is described below.
Lemma 2.1. Let $A=C_{p^{m}}$ and $B=C_{p^{n}}$ where $p$ is an odd prime and $m, n \geq 1$ integers. Then

$$
p^{\left.\left\lvert\, \frac{1}{2} n\left(p^{m}-3\right)\right.\right\rfloor} \leq|M(A \imath B)| \leq p^{\left.\left\lvert\, \frac{1}{2} n\left(p^{m}+1\right)\right.\right\rfloor} .
$$

Moreover, the lower bound is achieved when $U(A)=B \otimes B$ and the upper bound when $U(B)=0$.

Proof. The Künneth Formula [11, Theorem 2.2.10] shows that

$$
M\left(C_{p^{m}} \oplus C_{p^{n}}\right)=M\left(C_{p^{m}}\right) \oplus M\left(C_{p^{n}}\right) \oplus\left(C_{p^{m}} \otimes C_{p^{n}}\right)=C_{p^{m}} \otimes C_{p^{n}}=C_{p^{(m, n)}}
$$

We apply Theorem 2.3 and find

$$
\begin{gathered}
M(A \imath B)=M\left(C_{p^{m}} \backslash C_{p^{n}}\right) \\
=M\left(C_{p^{m}}\right) \oplus M\left(C_{p^{n}}\right) \oplus\left(C_{p^{n}} \otimes C_{p^{n}} \frac{1}{2}\left(p^{m}-\left|\operatorname{Inv}\left(C_{p^{m}}\right)\right|-1\right)\right.
\end{gathered}\left(C_{p^{n}} \sharp C_{p^{n}}\right)^{\operatorname{Inv}\left(C_{p^{m}}\right) \mid}=\left(C_{p^{n}} \otimes C_{p^{n}}\right)^{\frac{1}{2}\left(p^{m}-\left|\operatorname{Inv}\left(C_{p^{m}}\right)\right|-1\right)} \oplus\left(C_{p^{n}} \sharp C_{p^{n}}\right)^{\left|\operatorname{Inv}\left(C_{p^{m}}\right)\right|}
$$

but $p$ is odd, then $\xi(p)=\xi\left(p^{m}\right)=0$ and $\left|\operatorname{Inv}\left(C_{p^{m}}\right)\right|=2$ by Theorem 2.5, and

$$
=\left(C_{p^{n}} \otimes C_{p^{n}}\right)^{\frac{1}{2}\left(p^{m}-3\right)} \oplus\left(C_{p^{n}} \sharp C_{p^{n}}\right)^{2}=C_{p^{n}}^{\frac{1}{2}\left(p^{m}-3\right)} \oplus\left(C_{p^{n}} \sharp C_{p^{n}}\right)^{2} .
$$

If $U(B)=B \otimes B$, then $B \sharp B=0$ and

$$
M(A \imath B)=C_{p^{n}}^{\frac{1}{2}\left(p^{m}-3\right)}
$$

If $U(B)=0$, then $B \sharp B=B \otimes B$ and

$$
M(A \backslash B)=C_{p^{n}}^{\frac{1}{2}\left(p^{m}-3\right)} \oplus C_{p^{n}}^{2}=C_{p^{n}}^{\frac{1}{2}\left(p^{m}+1\right)} .
$$

If $U(B)$ is a nontrivial proper subgroup of $B \otimes B$, then $0 \leq|B \sharp B| \leq|B \otimes B|$ and

$$
\left|C_{p^{n}}^{\frac{1}{2}\left(p^{m}-3\right)}\right| \leq|M(A \imath B)| \leq\left|C_{p^{n}}^{\frac{1}{2}\left(p^{m}+1\right)}\right|,
$$

as claimed.
Lemma 2.2. Let $A=C_{2^{m}}$ and $B=C_{2^{n}}$ and $m, n \geq 1$ integers.
(i) If $m=1$, then $|M(A \backslash B)| \leq 2^{\left\lfloor\frac{1}{2} n\right\rfloor}$.
(ii) If $m=2$, then $2^{\left\lfloor\frac{1}{2} n\right\rfloor} \leq|M(A \backslash B)| \leq 2^{\left\lfloor\frac{5}{2} n\right\rfloor}$.
(iii) If $m \geq 3$, then $2^{\left\lfloor\frac{1}{2} n\left(2^{m}-5\right)\right\rfloor} \leq|M(A \imath B)| \leq 2^{\left\lfloor\frac{1}{2} n\left(2^{m}+5\right)\right\rfloor}$.

Moreover, the lower bounds are achieved when $U(B)=B \otimes B$ and the upper bounds when $U(B)=0$.

Proof. By Theorem 2.5, we should distinguish three cases in order to apply the same argument of Lemma 2.1. If $m=1$, then $\xi(2)=-1$ and $\left|\operatorname{Inv}\left(C_{2}\right)\right|=1$. In this case we get

$$
2^{\frac{1}{2} n\left(2^{1}-2\right)} \leq|M(A \imath B)| \leq 2^{\frac{1}{2} n\left(2^{1}-1\right)} .
$$

If $m=2$, then $\xi(4)=0$ and $\left|\operatorname{Inv}\left(C_{4}\right)\right|=2$. In this case, we get

$$
2^{\frac{1}{2} n\left(2^{2}-3\right)} \leq \left\lvert\, M\left(A\langle B) \left\lvert\, \leq p^{\frac{1}{2} n\left(2^{2}+1\right)} .\right.\right.\right.
$$

If $m \geq 3$, then $\xi\left(2^{m}\right)=1$ and $\left|\operatorname{Inv}\left(C_{2^{m}}\right)\right|=4$. In this case, we get

$$
2^{\frac{1}{2} n\left(2^{m}-5\right)} \leq|M(A \imath B)| \leq 2^{\frac{1}{2} n\left(2^{m}+5\right)} .
$$

Remark 2.2. Lemma 2.1 shows that

$$
|M(A \imath B)| \in\left\{p^{\left\lfloor\frac{1}{2} n\left(p^{m}-3\right)\right\rfloor}, p^{\left\lfloor\frac{1}{2} n\left(p^{m}-2\right)\right\rfloor}, p^{\left\lfloor\frac{1}{2} n\left(p^{m}-1\right)\right\rfloor}, p^{\left\lfloor\frac{1}{2} n p^{m}\right\rfloor}, p^{\left\lfloor\frac{1}{2} n\left(p^{m}+1\right)\right\rfloor}\right\}
$$

that is, we have just five choices for $|M(A \backslash B)|$ and of the above type, for all $m, n \geq 1$. A similar situation happens in Lemma 2.2 (iii), where we find only eleven possible values of $|M(A \backslash B)|$ between $2^{\left\lfloor\frac{1}{2} n\left(2^{m}-5\right)\right\rfloor}$ and $2^{\left\lfloor\frac{1}{2} n\left(2^{m}+5\right)\right\rfloor}$.

The following example is done for convenience of the reader.
Example 2.2. The Schur multipliers of metacyclic $p$-groups have been computed by Austin, Beyl and Ng independently, see [11, Theorem 2.11.3, Proposition 2.11.4] or [2]. It is well known that $C_{2} \prec C_{2} \simeq D_{8}$, which is a metacyclic 2-group, has $M\left(D_{8}\right) \simeq C_{2}$. We find exactly this result if $m=n=1$ in Lemma 2.2 (i). On the other hand, $P_{2}$ is a Sylow 2-subgroup of $S_{4}$ of order 8 and is well known that $P_{2} \simeq C_{2} \prec C_{2} \simeq D_{8}$. From Theorem 2.4,s=1 and again $M\left(P_{2}\right) \simeq C_{2}$ is confirmed.

Erovenko and Sury [7] showed that if $B$ is an abelian group of order $n$ and $A$ is an arbitrary abelian group, then the commutativity degree of the wreath product $A \backslash B$ tends to $\frac{1}{n^{2}}$ as the order of $A$ tends to infinity. By the way, Sury has recently investigated some combinatorial properties of wreath products in [18].

Theorem 2.6. (See [7, Theorem 1.1]) Let $A$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two abelian groups. Then

$$
d(A \backslash B)=\frac{1}{n^{2}|A|^{n}} \sum_{s, t=1}^{n}|A|^{\alpha(s, t)}
$$

where $\alpha(s, t)=\left|B:\left\langle b_{s}, b_{t}\right\rangle\right|$.
Immediately, we may draw the following conclusion.
Corollary 2.2. Let $A$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two abelian groups. If $A \backslash B$ is capable, then

$$
\frac{1}{n^{2}|A|^{n}} \leq d^{\wedge}(A \imath B) \leq \frac{1}{n^{2}|A|^{n}} \sum_{s, t=1}^{n}|A|^{\alpha(s, t)}
$$

Proof. The upper bound $d^{\wedge}(A \backslash B) \leq d(A \backslash B)$ is always true by Theorems 2.1 and 2.6. The lower bound follows by Corollary 2.1 because $A \backslash B$ is capable.

## 3. Main theorems

The $p$-group $E_{1}=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p}=1,[a, c]=[b, c]=1,[a, b]=c\right\rangle$ is extraspecial of order $p^{3}$ and exponent $p$ and has $\left|M\left(E_{1}\right)\right|=p^{2}$. It was investigated recently in [16] under our perspective. [16, Theorem 2.2 (i)] shows that

$$
\begin{equation*}
d^{\wedge}\left(E_{1}\right)=\sum_{g \in E_{1}}\left|C_{E_{1}}^{\wedge}(g)\right|=\frac{p^{3}+p^{2}-1}{p^{5}}, \tag{3.1}
\end{equation*}
$$

where the first equality is clear from the definitions but the second depends on the fact that $\left|C_{E_{1}}^{\wedge}(g)\right|=p$ for all $g \in E_{1}$. Moreover, Niroomand [16] proved a series of results for $d^{\wedge}(P)$ in which the presence of a bound of the form (3.1) for an arbitrary $p$-group $P$ implies that $P / Z^{\wedge}(P)$ is elementary abelian (see [16, Theorems 2.4 and 2.6]). Similar conditions were studied already in $[1,4,5,17]$ for the commutativity degree and have motivated us to look for a specific type of inequalities in our investigations, which has the formal aspect of (3.1).

We need to recall from [13] that the map

$$
\begin{equation*}
\varphi: g \in C_{G}(x) \mapsto x \wedge g \in M(G) \tag{3.2}
\end{equation*}
$$

is a monomorphism of groups such that $\operatorname{ker} \varphi=C_{G}^{\wedge}(x)$ and $C_{G}(x) / C_{G}^{\wedge}(x)$ is isomorphic to a subgroup of $M(G)$ for all $x \in G$. Consequently,

$$
\begin{equation*}
\left|C_{G}(x): C_{G}^{\wedge}(x)\right| \leq|M(G)| \tag{3.3}
\end{equation*}
$$

and, in case $\varphi$ is surjective, we find

$$
\begin{equation*}
\left|C_{G}(x): C_{G}^{\wedge}(x)\right|=|M(G)| \tag{3.4}
\end{equation*}
$$

The following example is instructive.

## Example 3.1.

(i) The group $E_{1}$ satisfies (3.3) properly, because $\left|C_{E_{1}}(x): C_{E_{1}}^{\wedge}(x)\right|=p$ for all $x \in E_{1}$ and $\left|M\left(E_{1}\right)\right|=p^{2}$.
(ii) The extraspecial $p$-group of order $p^{3}$ and exponent $p^{2}$ with $p \neq 2$ is $E_{2}=\langle a, b, c|$ $\left.a^{p^{2}}=b^{p^{2}}=c^{p^{2}}=1,[a, c]=[b, c]=1,[a, b]=c\right\rangle$ and it satisfies (3.4), because $\left|C_{E_{2}}(x): C_{E_{2}}^{\wedge}(x)\right|=\left|M\left(E_{2}\right)\right|=1$ for all $x \in E_{2}$.
(iii) A cyclic group $C_{n}$ has $M\left(C_{n}\right)=1$ (see [11]) and satisfies (3.4), because $\mid C_{C_{n}}(x)$ : $C_{C_{n}}^{\wedge}(x)\left|=\left|M\left(C_{n}\right)\right|=1\right.$ for all $x \in C_{n}$.
If $G=P$ is a $p$-group, then it is not hard to see that $M(P)$ is also a $p$-group (see [11]) and it is meaningful to introduce

$$
\begin{equation*}
u_{x}=\log _{p} \frac{|M(P)|}{\left|C_{P}(x): C_{P}^{\wedge}(x)\right|} \tag{3.5}
\end{equation*}
$$

in order to measure the gap among (3.3) and (3.4).
Of course, $u_{x}$ depends on $x$ and $\left|C_{P}(x): C_{P}^{\wedge}(x)\right| \cdot p^{u_{x}}=|M(P)|$ is a bound depending on $x$. In particular, $u_{x}=0$ if and only if $\left|C_{P}(x): C_{P}^{\wedge}(x)\right|=|M(P)|$, which is exactly (3.4). Immediately, we observe that all groups with trivial Schur multiplier must satisfy (3.4) and then they have $u_{x}=0$. Example 3.1 (ii) and (iii) belong to this case and so they are indicative of a more general fact.

Theorem 3.1. Let $A=C_{p^{m}}, B=C_{p^{n}}$, podd prime, $\alpha(s, t)=\left|B:\left\langle b_{s}, b_{t}\right\rangle\right|$ for $b_{s}, b_{t} \in B$ and $m, n, s, t \geq 1$. Then

$$
\frac{1}{p^{\left\lfloor\frac{1}{2}\left(2 m p^{n}+n\left(p^{m}+5\right)\right)\right\rfloor}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)} \leq d^{\wedge}(A \backslash B) .
$$

Moreover, there exist elements $x_{1}, x_{2}, \ldots, x_{k(A \backslash B)} \in A \imath B$ such that $u=u_{x_{1}}+u_{x_{2}}+\cdots+u_{x_{k(A B)}}$ and

$$
d^{\wedge}(A \prec B) \leq \frac{1}{p^{m\left(p^{n}-1\right)+n}}+\frac{u}{p^{\left\lfloor\frac{1}{2}\left(2 m p^{n}+n\left(p^{m}+1\right)\right)\right\rfloor}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}
$$

Proof. First of all,

$$
\begin{equation*}
|A \imath B|=|B| \cdot|A|^{|B|}=p^{n} \cdot\left(p^{m}\right)^{p^{n}}=p^{n} \cdot p^{m p^{n}}=p^{n+m p^{n}} . \tag{3.6}
\end{equation*}
$$

Notice that $Z(A \imath B)=\{(a, a, \ldots, a) \mid a \in A\}$ is the set of elements of $A^{|B|}$ in which the components are equal, that is, the diagonal subgroup of $A^{|B|}$ and so $|Z(A \imath B)|=|A| \geq \mid Z^{\wedge}(A \imath$ $B) \mid$. We will prove before the upper bound and then the lower bound.

Since for all $i=1,2, \ldots, k(A \backslash B)$

$$
\left|\frac{C_{A \not B}^{\wedge}\left(x_{i}\right)}{C_{A \backslash B}\left(x_{i}\right)}\right|=\frac{u_{x_{i}}}{|M(A \imath B)|},
$$

we get

$$
\begin{gathered}
d^{\wedge}(A \imath B)=\frac{1}{|A \imath B|} \sum_{i=1}^{k(A \imath B)}\left|\frac{C_{A \backslash B}^{\wedge}\left(x_{i}\right)}{C_{A \imath B}\left(x_{i}\right)}\right| \\
=\frac{1}{|A \backslash B|}\left(\left|Z^{\wedge}(A \imath B)\right|+\frac{k(A \imath B)-\left|Z^{\wedge}(A \imath B)\right|}{|M(A \imath B)|}\right)
\end{gathered}
$$

and, if $u=u_{x_{1}}+u_{x_{2}}+\cdots+u_{k(A \backslash B)}$, then the above quantity becomes

$$
\begin{align*}
= & \frac{u k(A \imath B)}{|A \imath B||M(A \imath B)|}+\frac{\left|Z^{\wedge}(A \imath B)\right|}{|A \imath B|}\left(1-\frac{u}{|M(A \imath B)|}\right) \\
& =u \frac{d(A \imath B)}{|M(A \imath B)|}+\frac{\left|Z^{\wedge}(A \imath B)\right|}{|A \imath B|}\left(1-\frac{u}{|M(A \imath B)|}\right) \\
& \leq u \frac{d(A \imath B)}{|M(A \imath B)|}+\frac{|A|}{|B| \cdot|A|^{|B|} \mid}\left(1-\frac{u}{|M(A \imath B)|}\right) \\
= & u \frac{d(A \imath B)}{|M(A \imath B)|}+\frac{1}{|B| \cdot|A|^{|B|-1}}\left(1-\frac{u}{|M(A \imath B)|}\right) . \tag{3.7}
\end{align*}
$$

Now Theorem 2.6 implies

$$
\begin{equation*}
d(A \imath B)=\frac{1}{p^{2 n} p^{m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}=\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)} \tag{3.8}
\end{equation*}
$$

and, if we replace (3.8) in (3.7) and use (3.6), then we get

$$
=\frac{u}{|M(A \prec B)|}\left(\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}\right)+\frac{1}{p^{n+m p^{n}-m}}\left(1-\frac{u}{|M(A \prec B)|}\right)
$$

$$
\leq \frac{u}{|M(A \imath B)|}\left(\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}\right)+\frac{1}{p^{n+m p^{n}-m}} .
$$

But the lower bound in Lemma 2.1 implies $\frac{1}{|M(A \backslash B)|} \leq \frac{1}{p^{\left\lfloor\frac{1}{2} n\left(p^{m}-3\right)\right\rfloor}}$ and so we may upper bound with

$$
\begin{aligned}
& \leq \frac{u}{p^{\left\lfloor\frac{1}{2} n\left(p^{m}-3\right)\right\rfloor}}\left(\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}\right)+\frac{1}{p^{n+m p^{n}-m}} \\
& \quad=\frac{u}{p^{\left\lfloor\frac{1}{2}\left(n\left(p^{m}+1\right)+2 m p^{n}\right)\right\rfloor}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}+\frac{1}{p^{n+m\left(p^{n}-1\right)}}
\end{aligned}
$$

as claimed.
On the other hand,

$$
d^{\wedge}(A \imath B)=\frac{d(A \imath B)}{|M(A \imath B)|}+\frac{\left|Z^{\wedge}(A \imath B)\right|}{|A \imath B|}\left(1-\frac{1}{|M(A \imath B)|}\right) \geq \frac{d(A \imath B)}{|M(A \imath B)|}
$$

and by Theorem 2.6 and the upper bound of Lemma 2.1 we get

$$
\begin{gathered}
=\frac{1}{|M(A \backslash B)|}\left(\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}\right) \geq \frac{1}{p^{\left\lfloor\frac{1}{2} n\left(p^{m}+1\right)\right\rfloor}}\left(\frac{1}{p^{2 n+m p^{n}}} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}\right) \\
=\frac{1}{p^{\left\lfloor\frac{1}{2}\left(n\left(p^{m}+5\right)+2 m p^{n}\right)\right\rfloor} \sum_{s, t=1}^{p^{n}} p^{m \alpha(s, t)}}
\end{gathered}
$$

as claimed.
The even case is described below.
Theorem 3.2. Let $A=C_{2^{m}}, B=C_{2^{n}}, \alpha(s, t)=\left|B:\left\langle b_{s}, b_{t}\right\rangle\right|$ for $b_{s}, b_{t} \in B, m, n, s, t \geq 1$ and suitable $x_{1}, x_{2}, \ldots, x_{k(A \backslash B)} \in A \backslash B$ such that $u=u_{x_{1}}+u_{x_{2}}+\cdots+u_{x_{k(A \mid B)}}$.
(i) If $m=1$, then

$$
\frac{1}{2^{\left\lfloor\frac{1}{2}\left(m 2^{n+1}+5 n\right)\right\rfloor}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)} \leq d^{\wedge}(A \backslash B) \leq \frac{1}{2^{n+m 2^{n}-m}}+\frac{u}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}
$$

(ii) If $m=2$, then

$$
\frac{1}{2^{\left\lfloor\frac{5}{2}\left(m 2^{n+1}+5 n\right)\right\rfloor}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)} \leq d^{\wedge}(A \imath B) \leq \frac{1}{2^{n+m 2^{n}-m}}+\frac{u}{2^{\left\lfloor\frac{1}{2}\left(m 2^{n+1}+5 n\right)\right\rfloor}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}
$$

(iii) If $m \geq 3$, then

$$
\begin{gathered}
\frac{1}{2^{\left\lfloor\frac{1}{2}\left(m 2^{n+1}+n\left(2^{m}+9\right)\right)\right\rfloor}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)} \leq d^{\wedge}(A \prec B) \leq \frac{1}{2^{n+m 2^{n}-m}} \\
+\frac{u}{2^{\left\lfloor\frac{1}{2}\left(m 2^{n+1}+n\left(2^{m}-1\right)\right)\right\rfloor}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)} .
\end{gathered}
$$

Proof. We follow the argument of the proof of Theorem 3.1. From Theorem 2.6,

$$
d^{\wedge}(A \imath B) \leq \frac{u}{|M(A \imath B)|}\left(\frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}\right)+\frac{1}{2^{n+m 2^{n}-m}}
$$

and we should distinguish three cases in view of Lemma 2.2. If $m=1$, then

$$
d^{\wedge}(A \imath B) \leq \frac{u}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}+\frac{1}{2^{n+m 2^{n}-m}}
$$

If $m=2$, then

$$
d^{\wedge}(A \imath B) \leq \frac{u}{2^{\left.\frac{1}{2} n\right\rfloor}}\left(\frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}\right)+\frac{1}{2^{n+m 2^{n}-m}}
$$

If $m \geq 3$, then

$$
d^{\wedge}\left(A\langle B) \leq \frac{u}{2^{\left\lfloor\frac{1}{2} n\left(2^{m}-5\right)\right\rfloor}}\left(\frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}\right)+\frac{1}{2^{n+m 2^{n}-m}} .\right.
$$

On the other hand,

$$
d^{\wedge}(A \imath B) \geq \frac{d(A \imath B)}{|M(A \imath B)|}
$$

and the following cases should be considered by Lemma 2.2 and Theorem 2.6. If $m=1$, then we may lower bound with

$$
\geq \frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)} \geq \frac{1}{2^{\left\lfloor\frac{1}{2} n\right\rfloor}} \frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}
$$

If $m=2$, then we have analogously

$$
\geq \frac{1}{2^{\left\lfloor\frac{5}{2} n\right\rfloor}}\left(\frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}\right)
$$

If $m \geq 3$, then we have analogously

$$
\geq \frac{1}{2^{\left\lfloor\frac{1}{2} n\left(2^{m}+5\right)\right\rfloor}}\left(\frac{1}{2^{2 n+m 2^{n}}} \sum_{s, t=1}^{2^{n}} 2^{m \alpha(s, t)}\right)
$$

We end with an application to the Sylow $p$-subgroups $P_{n}$ of the symmetric group $S_{p^{n}}$, described in Theorem 2.4.

Theorem 3.3. Let $P_{n}$ be a capable Sylow p-subgroup of $S_{p^{n}}$ and $u=u_{x_{1}}+\cdots+u_{x_{k\left(P_{n}\right)}}$ for suitable $x_{1}, \ldots, x_{k\left(P_{n}\right)} \in P_{n}$.
(i) If $p \neq 2$, then

$$
d^{\wedge}\left(P_{n}\right)=\frac{u d\left(P_{n}\right)}{p^{\frac{1}{12}(p-1)(n-1) n(2 n-1)}}+\frac{1}{p^{\frac{1-p^{n}}{1-p}}}\left(1-\frac{u}{p^{\frac{1}{12}(p-1)(n-1) n(2 n-1)}}\right) .
$$

(ii) If $p=2$, then

$$
d^{\wedge}\left(P_{n}\right)=\frac{u d\left(P_{n}\right)}{p^{\frac{1}{6} n\left(n^{2}-1\right)}}+\frac{1}{p^{\frac{1-p^{n}}{1-p}}}\left(1-\frac{u}{p^{\frac{1}{6} n\left(n^{2}-1\right)}}\right) .
$$

Proof. (i). We know from Theorem 2.4 that $P_{n}=P_{1}\left\langle P_{n-1}\right.$,

$$
\left|P_{n}\right|=1+p+p^{2}+\cdots+p^{n-1}=\frac{1-p^{n}}{1-p}
$$

and $M\left(P_{n}\right)=C_{p}^{s}$, where $s=\frac{1}{12}(p-1)(n-1) n(2 n-1)$ if $p \neq 2$. Moreover, $P_{n}$ is capable, then $Z^{\wedge}\left(P_{n}\right)=1$. We may repeat the proof of Theorem 3.1 and get

$$
\begin{aligned}
& d^{\wedge}\left(P_{n}\right)=\frac{1}{\left|P_{n}\right|} \sum_{i=1}^{k\left(P_{n}\right)}\left|\frac{C_{P_{n}}\left(x_{i}\right)}{C_{P_{n}}\left(x_{i}\right)}\right|=\frac{1}{\left|P_{n}\right|}\left(\left|Z^{\wedge}\left(P_{n}\right)\right|+\frac{k\left(P_{n}\right)-\left|Z^{\wedge}\left(P_{n}\right)\right|}{\left|M\left(P_{n}\right)\right|}\right) \\
& =\frac{u k\left(P_{n}\right)}{\left|P_{n}\right|\left|M\left(P_{n}\right)\right|}+\frac{\left|Z^{\wedge}\left(P_{n}\right)\right|}{\left|P_{n}\right|}\left(1-\frac{u}{\left|M\left(P_{n}\right)\right|}\right)=u \frac{d\left(P_{n}\right)}{\left|M\left(P_{n}\right)\right|}+\frac{\left|Z^{\wedge}\left(P_{n}\right)\right|}{\left|P_{n}\right|}\left(1-\frac{u}{\left|M\left(P_{n}\right)\right|}\right) \\
& =u \frac{d\left(P_{n}\right)}{\left|M\left(P_{n}\right)\right|}+\frac{1}{\left|P_{n}\right|}\left(1-\frac{u}{\left|M\left(P_{n}\right)\right|}\right)=\frac{u}{\left|M\left(P_{n}\right)\right|}\left(d\left(P_{n}\right)-\frac{1}{\left|P_{n}\right|}\right)+\frac{1}{\left|P_{n}\right|} \\
& =\frac{u}{p^{\frac{1}{2}(p-1)(n-1) n(2 n-1)}}\left(d\left(P_{n}\right)-\frac{1}{\left.p^{1+p+p^{2}+\ldots+p^{n-1}}\right)+\frac{1}{p^{1+p+p^{2}+\ldots+p^{n-1}}}}\right. \\
& =\frac{u}{p^{\frac{1}{12}(p-1)(n-1) n(2 n-1)}}\left(d\left(P_{n}\right)-\frac{1}{p^{\frac{1-p^{n}}{1-p}}}\right)+\frac{1}{p^{\frac{1-p^{n}}{1-p}}} \\
& =\frac{u d\left(P_{n}\right)}{p^{\frac{1}{12}(p-1)(n-1) n(2 n-1)}}+\frac{1}{p^{\frac{1-p^{n}}{1-p}}}\left(1-\frac{u}{p^{\frac{1}{2}(p-1)(n-1) n(2 n-1)}}\right) .
\end{aligned}
$$

(ii). In case $p=2$, it is enough to replace the term $\frac{1}{12}(p-1)(n-1) n(2 n-1)$ with $\frac{1}{6} n\left(n^{2}-1\right)$ by Theorem 2.4.

The importance of Theorem 3.3 is due to the fact that it provides a relation among $d^{\wedge}\left(P_{n}\right)$ and $d\left(P_{n}\right)$. Since there are several results on the commutativity degree in $[1,4,5,6]$, the term $d\left(P_{n}\right)$ is well known and then Theorem 3.3 is significant.

## References

[1] R. Barzgar, A. Erfanian and M. Farrokhi, Probability of mutually commuting two finite subsets of a finite group, Ars Comb., to appear.
[2] F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), no. 1, 161-177.
[3] S. R. Blackburn, J. R. Britnell and M. Wildon, The probability that a pair of elements of a finite group are conjugate, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 755-778.
[4] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree of a subgroup of a finite group, Comm. Algebra 35 (2007), no. 12, 4183-4197.
[5] A. Erfanian, R. Rezaei and F. G. Russo, Relative $n$-isoclinism classes and relative $n$-th nilpotency degree of finite groups, Filomat 27 (2013), 367-371.
[6] A. Erfanian, P. Niroomand and R. Rezaei, On the multiple exterior degree of finite groups, Math. Slovaca, to appear.
[7] I. V. Erovenko and B. Sury, Commutativity degrees of wreath products of finite abelian groups, Bull. Aust. Math. Soc. 77 (2008), no. 1, 31-36.
[8] J. Hage and T. Harju, On involutions arising from graphs, in Algorithmic Bioprocesses, 623-630, Nat. Comput. Ser, Springer, Berlin, 2009.
[9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1954.
[10] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer, Berlin, 1967.
[11] G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs. New Series, 2, Oxford Univ. Press, New York, 1987.
[12] C. Li, New characterizations of p-nilpotency and Sylow tower groups, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 845-854.
[13] P. Niroomand and F. Russo, A note on the exterior centralizer, Arch. Math. (Basel) 93 (2009), no. 6, 505-512.
[14] P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), no. 1, 335343.
[15] P. Niroomand, R. Rezaei and F. G. Russo, Commuting powers and exterior degree of finite groups, J. Korean Math. Soc. 49 (2012), no. 4, 855-865.
[16] P. Niroomand, Some results on the exterior degree of extraspecial groups, Ars Comb., to appear.
[17] R. Rezaei and F. G. Russo, $n$-th relative nilpotency degree and relative $n$-isoclinism classes, Carpathian J. Math. 27 (2011), no. 1, 123-130.
[18] B. Sury, Wreath products, Sylow's theorem and Fermat's little theorem, Eur. J. Pure Appl. Math. 3 (2010), no. 1, 13-15.
[19] M. Tărnăuceanu, A note on the product of element orders of finite abelian groups, Bull. Malays. Math. Sci. Soc. (2), $\mathbf{3 6}$ (2013), no. 4, 1123-1126.

