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1. Introduction

For centuries probability theory and error calculus have been the only models to treat im-
precision and uncertainty. However recently a lot of new models have been introduced for
handling incomplete information. The fact that crisp relations fail in interpreting real life
phenomenon was first expressed by Poincare [67] in 1902 . Half a century later, Menger [56]
addressed the issue raised by Poincare and proposed his “Probabilistic relations”. According
to Menger in order to be in harmony with real life continuum, we should sacrifice transitiv-
ity and classical definition of relations should be changed and a probability of being related
should be allocated to every pair of points belonging to the universe under consideration.
Even after this development there remained a silence regarding re-building a rigorous the-
ory of relations with different probabilities associated with them. Undoubtedly the notion
of fuzzy set theory initiated by Zadeh [86] in 1965 in a seminal paper, plays the central role
for further development. This notion tries to show that an object corresponds more or less
to the particular category we want to assimilate it to; that was how the idea of defining the
membership of an element to a set not on the Aristotelian pair {0,1} any more but on the
continuous interval [0,1] was born. The notion of a fuzzy set is completely non-statistical
in nature and the concept of fuzzy set provides a natural way of dealing with problems in
which the source of imprecision is the absence of sharply defined criteria of class member-
ship rather than the presence of random variables. In fact the idea of describing all shades
of reality was for long the obsession of some logicians [55, 72]. During last four decades
the fuzzy set theory has rapidly developed into an area which scientifically as well as from
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the application point of view, is recognized as a very valuable contribution to the existing
knowledge (see [13,14,16–20,29,39,43,44,48–50,53,58,66,88–90]). After the emergence
of fuzzy set theory in 1965 [86], the simple task of looking at relations as fuzzy sets on
the universe X ×X was accomplished in a celebrated paper by Zadeh [87], he introduced
the concept of fuzzy relation, defined the notion of equivalence, and gave the concept of
fuzzy ordering. Fuzzy relations have broad utility. Compared with crisp relations, they have
greater expressive power. They are considered as softer models for expressing the strength
of links between elements. Starting in early seventies, fuzzy relations have been defined,
investigated, and applied in many different ways e.g., in fuzzy modeling, fuzzy diagnosis,
and fuzzy control. They also have applications in fields such as Artificial Intelligence, Psy-
chology, Medicine, Economics, and Sociology. In this survey article our aim is to assemble
a summary for the theory of fuzzy relations developed so far.

To provide a self contained survey of the state of art of the fuzzy binary relations and their
applications, Section 2 is devoted to a comprehensive introduction to the basic definitions of
fuzzy set theory. Major source for definitions included in this section are [35,41,48,58,90].
It is important to mention that the fuzzy relational compositions and images were initially
defined and studied by Bandler and Kohout [3–5]. Afterwards De Baets and Kerre further
developed the theory [31–33, 35]. In Section 3, we state the properties of fuzzy relations
fuzzified from those of crisp relations by Zadeh [87]. Next we focus on different forms
of fuzzy equivalence relations found in literature as similarity relations, likeness relations,
probabilistic relations and T -equivalence relations. In this context, first we summarized
Menger’s [56] work on probabilistic theory of relations. After that we study Similarity re-
lations. Then the likeness relations developed by Bezdek [22] are given. All these relations
claim to model approximate equality and are supposed to solve the Poincare paradox: that
in physical continuum equality is nontransitive. All these relations were also generalized
by Trillas [77] under the name T -indistinguishability operators. Now we review the defi-
nition of T -transitivity and that of T -transitive equivalence relations due to Boixader [27],
Valverde [81, 82], Jacas [45] and Ovchinnikov and Riera [64]. A thorough discussion on
construction of fuzzy equivalence relations from a single criteria and from multi criteria is
also included.

Section 5 deals with the task of studying fuzzy orderings. We start from the fuzzy or-
derings defined on the basis of max-min transitivity. Different types of fuzzy orderings,
selected from the papers of Ovchinnikov [62, 63] and concepts related with them are pre-
sented. A number of examples are also included in order to elaborate the notion of different
types of fuzzy orderings. Theorems about construction and numerical representation of
quasi orderings are also included which are the significant achievement of Ovchinnikov.
Beg [7, 11, 12] has successfully used definitions for fuzzy orderings with some new forms
of reflexivity, antisymmetry and max-min transitivity. Beg’s results, on fuzzy ordered sets,
fixed point theory in fuzzy ordered sets, fuzzy chains, fuzzy maximal and minimal ele-
ments, fuzzy Zorn lemma and the extension of fuzzy Zorn lemma are included. Bodenhofer
et al. [23–26] results on T -E-orderings, their properties, linearity of fuzzy orderings are
presented.

Fuzzy subsethood or fuzzy inclusion is an important concept in the field of fuzzy set
theory and it provides a basis for fuzzy similarity and measures of similarity. First attempt
to define fuzzy subsethood was made by Zadeh [86]. Later on it was realized that defining
fuzzy subsethood in this way is though highly appreciable and useful but is still against the
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spirit of fuzzy set theory, in the sense that it represents a crisp decision about being a subset
or not (see [4, 41]). Researchers working in the area of fuzzy inclusion remained interested
in assigning a degree of inclusion of one fuzzy set into another (see [28, 41, 47, 75]). So
fuzzy inclusion is defined as a fuzzy relation on set F(X) of all fuzzy subsets of X . We
hold that the fuzzy inclusion relation is a very important type of fuzzy relation and we have
therefore opted to include an introduction to fuzzy inclusion relation in Section 7 from the
work of [28, 47, 75]. Fuzzy preference structures as a triplet of fuzzy relation satisfying
certain properties played an important role while working on fuzzy relations. In this context
we have made selections from Roubens and Vincke [69,70], De Baets and Fodor [30] and De
Baets, Van de Walle and Kerre [36]. Some of the definitions for the constructions of fuzzy
preference structures are from Orlovski [59, 60]. In the end, few definitions and results
from [8] and [80] are included on continuity and linearity property of fuzzy multivalued
mappings or fuzzy relations.

2. Fuzzy sets

2.1. Basic definitions

Throughout this paper we study only the fuzzy binary relations and we do not make any ref-
erence to n-ary relation so we use the term fuzzy relations instead of fuzzy binary relations.

Definition 2.1. [86] A fuzzy set A in a universe X is a mapping from X to [0,1]. For any x
∈ X the value A(x) (or µA(x)) is called the degree of membership of x in A. X is called the
carrier of the fuzzy set A. The degree of membership can also be represented by x instead of
A(x). The class of all fuzzy sets in X is denoted by F(X). The fuzzy sets taking their values
only on the boundary of [0,1] are called crisp sets. For example the whole universe X and
the empty set /0 are fuzzy sets defined as: X(x) = 1 for all x ∈ X and /0(x) = 0 for all x ∈ X.

Example 2.1. [35] As an example of fuzzy set consider the fuzzy set of large numbers L in
the set of natural numbers whose membership function is a mapping from N to [0,1] defined
by: L(n) = (1 +(100/n)3)−1. The above function associates with every natural number n,
a degree to which it satisfies the description large number. For example, the number 100
is a large number to the degree 0.5 and the number 10 is a large number to the degree
1,000,000/1,000,001.

Remark 2.1. [44] One can easily connect the above definition to F(X) = IX = the set of
all [0,1]-valued mappings on X .

Definition 2.2. [86] Let A,B ∈ F(X), The inclusion of A into B and the equality of A and B
are defined as: (i) A ⊆ B if and only if A(x) ≤ B(x), for all x ∈ X . (ii) A = B if and only if
A(x) = B(x) for all x ∈ X.

Remark 2.2. [35] The choice of a membership function is both context and observer de-
pendent. Initially, [0,1] was taken to evaluate the degrees of membership. However, in some
applications, this choice is too restrictive. The unit interval is totally ordered and does not
allow incomparable degrees of membership. Goguen [42] has extended the concept of a
fuzzy set by using a complete lattice to evaluate the degrees of membership. In such cases
fuzzy set theory can be described as the Mathematics of lattice-valued mappings (see [44]).

Definition 2.3. [90] Let A be a fuzzy set in X and A(x) be its membership function, then
two important operators: the height operator hgt(A) and the plinth operator plinth(A)
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operators are defined as follows: hgt(A) = supx∈X A(x), plinth(A) = infx∈X A(x). A fuzzy
set A is called normal if hgt(A) = 1. A nonempty fuzzy set A can always be normalized by
dividing A(x) by hgt(A).

Definition 2.4. [92] The scalar cardinality of a fuzzy subset A of X is defined as: |A| =
∑x∈X A(x).

Definition 2.5. [90] A fuzzy set A in R is convex ifA(λx1 +(1−λ )x2)≥min(A(x1),A(x2)),
for all x1,x2 ∈ A and λ ∈ [0,1].

Definition 2.6. [68] A fuzzy set in X is called a fuzzy point xλ (or (x,λ )) if and only if it is
of the following form: (x,λ )(y) = 1, if x = y and x,λ )(y) = 0 otherwise, where, point x is
called its support. The fuzzy point xλ is said to be contained in a fuzzy set A if λ ≤ A(x).

Definition 2.7. [90] A fuzzy number M is a convex normalized fuzzy set M of real line R
such that: (1) There exists exactly one x0 ∈ R, such that: M(x0) = 1, x0 is then called the
mean value of M. (2) M(x) is piecewise continuous.A fuzzy number M is called positive
(negative) if its membership function is such that µM(x) = 0, for all x < 0 (for all x > 0).

Definition 2.8. [90] The weak α-cuts Aα and the strong α-cuts Aα , are defined as follows:
Aα = {x | x ∈ X and A(x) ≥ α}, for all α ∈]0,1]; and Aα = {x | x ∈ X and A(x) > α}, for
all α ∈ [0,1[.

The value α = 0, is excluded for weak α-cuts and α = 1, for the strong α-cuts since A0 and
A1 are both independent of A, and hence yield no new information. A0 and A1 are called
support and core of A respectively.

Remark 2.3. [41] The α-cuts of A are nested in the sense that α > β implies that Aα ⊆
Aβ . In particular, Aα = ∩

β<α

Aβ . Going from the level cut representation to the membership

function and back is easy. The membership function can be recovered from the level cuts as
follows: A(u) = sup{α : u ∈ Aα}= supα∈[0,1] min(α,A(α)), with Aα(u) = 1 if u ∈ Aα and
0 otherwise.

Negoita and Ralescu [57] obtained a representation theorem according to which, a given
fuzzy set can be represented by a combination of its α- level cuts and conversely given a
family of crisp sets one can construct a fuzzy set from them under certain conditions.

2.2. Fuzzy conjunction and disjunction

Definition 2.9. [86] If A,B ∈ F(X), then for all x,y ∈ X, following fuzzy sets were defined
by Zadeh: (i) A∪B(x) = max(A(x),B(x)); (ii) A∩B(x) = min(A(x),B(x)); (iii) Ac(x) =
1−A(x);

Remark 2.4. [35] These operations follow De Morgan’s laws, idempotency laws, com-
mutativity laws, associativity laws, absorption laws and distributivity laws, but the law of
contradiction and the law of excluded middle no more hold. Anyhow, the overlap between
a set and its complement is bounded by the following way: ∀x ∈ X , A∩Ac(x) ≤ 0.5, and
the corresponding weakened law of excluded middle is: ∀x ∈ X , A∪Ac(x)≥ 0.5.

The max and min operations play a key role in the literature of fuzzy sets but these
are not the only candidates as fuzzy extensions of the crisp disjunction and conjunction.
Zimmermann and Zysno [91] proved that any t-norm T and any t-conorm δ can be used to
model fuzzy intersection and union respectively.
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Definition 2.10. [73] The triangular norm (t-norm) T and triangular conorm (t-conorm)
δ are increasing, associative, commutative and [0,1]2→ [0,1] mappings satisfying: T (1,x)=
x and δ (x,0) = x, for all x ∈ [0,1]. To every t-norm T there corresponds a t-conorm T ∗

called the dual t-conorm, defined by: T ∗(x,y) = 1−T (1− x,1− y).

Remark 2.5. [73] Following are some popular choices for t-norms: (i) The minimum oper-
ator M : M(x,y) = min(x,y). (ii) The Lukasiewicz’s t-norm W : W (x,y) = max(x+y−1,0).
(iii) The product operator P : P(x,y) = xy. The corresponding dual t-conorms are: (i) The
maximum operator M∗ : M∗(x,y) = max(x,y). (ii) The bounded sum W ∗ : W ∗(x,y) =
min(x+ y,1). (iii) The probabilistic sum P∗ : P∗(x,y) = x+ y− xy.

Remark 2.6. [48] Here is a table that gives us information about the relationship of these
fuzzy conjunctions and disjunctions with laws satisfied by their crisp counter parts:

(M,M∗) (W ,W ∗) (P,P∗)
De Morgan laws Y Y Y
Commutativity Y Y Y
Associativity Y Y Y
Idempotency Y N N

Absorption law Y N N
Distributivity laws Y N N

It is important to note that if a system disobeys some law, most of the times it satisfies
some weaker version of the law. The behavior of Lukasiewicz system is different in the
sense that it does not satisfy even the weakened distributive laws but the law of contradiction
and the law of excluded middle hold for it.

An important concept associated with t-norms and t-conorms is that of compatibility.
Two crisp sets are compatible if they have at least one element in common. Similarly,
in fuzzy context it is defined as the maximum degree of overlap i.e. as the height of the
intersection of these fuzzy sets.

Definition 2.11. [79] Consider two fuzzy sets A and B in X, and a t-norm T . The degree of
compatibility ComT (A,B) of A and B is: ComT (A,B) = supx∈X T (A(x),B(x)).

Remark 2.7. [41] A broad class of problems consists of representation of multi-place func-
tions, in general, by composition of simpler functions of fewer variables [54] such as:
K(x,y) = g( f (x) + f (y)). Abel [1] obtained the first such representation. He assumed in
addition the commutativity, strict monotonicity and differentiability. Since Abel’s result,
a lot of contributions have been made in the field of representation theory of associative
functions (and generally speaking of abstract semigroups). It was Ling [54] who proved
that min cannot be represented in the above form assuming either f ,g to be continuous or
strictly decreasing functions. This negative result indicates that a suitable class of t-norms
should be considered. The properties of these t-norms are given next. For any x ∈ [0,1]
and any associative binary operation K on [0,1], x(n)

K denotes the nth power of x defined
x(n)

K = K(x, ...,x) (see [41]).

Definition 2.12. [41] A t-norm T (resp. a t-conorm δ ) is said to be: (i) continuous, if T
(resp.δ ) is continuous as a function on the unit interval; (ii) Archimedean, if limn→∞ x(n)

T = 0
(resp limn→∞ x(n)

δ
= 1), for all x ∈]0,1[.
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Note that the definition of the Archimedean property has been borrowed from the theory
of semigroups.

Remark 2.8. [41] If T is Archimedean, then it satisfies:

(2.1) T (x,x) < x for all x ∈]0,1[.

If a t-norm is continuous, then it is Archimedean, if and only if, it satisfies (1). Similarly, if
δ is Archimedean, then it satisfies

(2.2) δ (x,x) > x for all x ∈]0,1[.

If a t-conorm is continuous, then it is Archimedean, if and only if it satisfies (2.2). Generally,
T (x,x) < x does not imply the Archimedean property for discontinuous t-norms (see [73]
for counter example).

Definition 2.13. [40] A t-norm T has zero divisors if and only if there exist (x,y) ∈]0,1]2

such that T (x,y) = 0. In this case, x and y are the zero divisors of T . For example, 0.25
and 0.75 are zero divisors of W. A t-norm without zero divisors is called positive.

Theorem 2.1. [41] A t-norm T is Archimedean if and only if it can be represented in the
following form: T (x,y) = g( f (x)+ f (y)), where, (a) f : [0,1]→R+ = [0,∞] is a continuous
strictly decreasing function such that f (1) = 0; (b) g is continuous function from R+ onto
[0,1] such that g(x) = f−1(x) on [0, f (0)] and g(x) = 0, for x ∈ g(0).

In this case, f is said to be an additive generator of T .
An order preserving permutation of the unit interval is called a [0,1]-automorphism. Any

automorphism φ is continuous and satisfies the boundary conditions φ(0) = 0 and φ(1) = 1.

Definition 2.14. [58] Consider a t-norm T and a [0,1]-automorphism φ . (1) the φ -transform
of T is the t-norm defined by: Tφ (x,y) = φ−1(T (φ(x),φ(y))). (2) the φ -transform of a t-
conorm δ is the t-conorm δφ defined by: δφ (x,y) = φ−1(δ (φ(x),φ(y))).

The min t-norm and the max t-conorm are not affected by φ transforms.

Remark 2.9. [30] Continuous Archimedean t-norms are further divided into two classes:
(1) the class of strict t-norms. A t-norm is called strict if it is continuous and all partial
mappings T (x, .) and T (.,y) are strictly increasing. (2) the class of nilpotent t-norms. A
t-norm is called nilpotent if it is continuous, Archimedean and non-strict.

Remark 2.10. [30] The strict and nilpotent t-norms can be characterized by means of φ -
transforms of basic t-norms: (i) A t-norm T is strict if and only if there exists a [0,1]-
automorphism φ such that T is the φ -transform of the algebraic product P. (ii) A t-norm
T is nilpotent if and only if there exists a [0,1]-automorphism φ - such that T is the φ -
transform of the Lukasiewicz t-norm W . Another characterization of strict and nilpotent
t-norms is based on the notion of zero divisors: (i) A t-norm T is strict if and only if it
is continuous, Archimedean and positive. (ii) A t-norm T is nilpotent if and only if it is
continuous, Archimedean and has zero divisors

Proposition 2.1. [58] Consider a [0,1]- automorphism φ . The Nφ -dual t-conorm of the

φ -transform of a t-norm T is given by: T
Nφ

φ
(x,y) = φ−1(T ∗(φ(x),φ(y))). In particular, we

have that the Nφ -dual t-conorm of the φ - transform of the t-norm W is given by: W
Nφ

φ
(x,y) =

φ−1(min(φ(x)+φ(y),1)).
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2.3. The negator operator N

Definition 2.15. [58] A negator N is an order-reversing [0,1]→ [0,1] mapping such that
N(0) = 1 and N(1) = 0. Negators are used to model complementation in the calculus of
fuzzy set theory i.e., for a given fuzzy set A in the universe X, its complement Ac is defined
by negator N as: Ac(x) = N(A(x)) for all x ∈ X .

Definition 2.16. [41] Some important types of negators are: (i) A negator is strict, if it
is strictly decreasing and continuous. (ii) A negator is involutive if N(N(x)) = x, for all
x ∈ [0,1]. (iii) A strict and involutive negator is called a strong negator. A popular strong
negator is the standard negator Ns (Zadeh’s complement) defined as: Ns(x) = 1− x. An
example of a strict negator which is not strong can be given by N(x) = 1− x2.

Definition 2.17. [76] A family of strong negators including the standard one is defined by
Sugeno in 1977 (under the name λ -complement) as follows: Nλ (x) = (1−x)/(1+λx), λ >
−1, x ∈ [0,1]. Because any strict negator is strictly decreasing and continuous function,
one can define its inverse N−1 which is also a strict negator and in general differs from N.
Clearly, we have N−1 = N if and only if n is involutive too. Another very important property
of the strict negators is that there exists a unique value 0 < SN < 1 such that N(SN) = SN .
This value is called membership crossover point by Dubois and Prade [38].

Definition 2.18. [58] A triplet (T,S,N) of a t-norm T , a t-conorm δ and a strong negator N
is called a De Morgan’s triplet, if and only if δ (x,y) = N(T (N(x),N(y))), for all x,y∈ [0,1]
or δ = T N .

Proposition 2.2. [77] A [0,1]→ [0,1]-mapping N is an involutive negator if and only if,
there exists a [0,1]-automorphism φ such that for all x ∈ [0,1] N(x) = φ−1(1−φ(x)).

The involutive negator N defined byN(x) = φ−1(1− φ(x)) is called the φ -transform of
the standard negator Ns, and will be denoted as Nφ .

2.4. Fuzzy implication operator

Definition 2.19. [4] A fuzzy implicator I is a binary operation on [0,1] with order reversing
first partial mappings and order preserving second partial mappings such that: I(0,1) =
I(0,0) = I(1,1) = 1, I(1,0) = 0.

Definition 2.20. [74] From an axiomatic point of view, the following properties are consid-
ered as the axioms for a fuzzy implicator by Smets and Magrez [74]. A fuzzy implication I
is a [0,1]2 −→ [0,1] mapping satisfying the following axioms: A1. Contraposition: (∀x,y ∈
[0,1]), I(x,y) = I(1− y,1− x); A2. Exchange Principle: (∀x,y,z ∈ [0,1]), I(x, I(y,z)) =
I(y, I(x,z)); A3. Hybrid Monotonicity: stated in definition 2.4.1; A4. Boundary Conditions;
x ≤ y ⇐⇒ I(x,y) = 1, for all x,y ∈ [0,1]; A5. Neutrality Principle: I(1,x) = x, for all
x ∈ [0,1]; A6. Continuity: I is continuous.

To every implication operator, there corresponds an implication operator I∗ defined by:
I∗(x,y) = I(1−y,1−x). An implicator satisfying neutrality principle is also called a border
implicator or B-implicator.

Definition 2.21. [35] Consider a t-norm T , its corresponding t-conorm δ . Then the map-
pings: [0,1]2 → [0,1] defined by: (1) IT

1 (x,y) = δ (T (x,y),1− x), (2) IT
2 (x,y) = δ (T (1−

x,1− y),y), (3) IT
3 (x,y) = δ (1− x,y), (4) IT

4 (x,y) = sup{z | z ∈ [0,1] and T (x,z) ≤ y},
(5) IT

5 (x,y) = sup{z | z ∈ [0,1] and T (1− y,z)≤ 1− x} are implication operators [33].
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For the list of properties of these operators, see [35]. The implicator listed in 4 is called
R-implication or residual implication.

Lemma 2.1. [26] If T is left-continuous, and I is the R-implication associated with T , then
following holds for all x,y,z ∈ [0,1] : (1) T (x,y)≤ z⇐⇒ x≤ I(y,z); (2) x≤ y⇐⇒ I(x,y) =
1; (3) T (I(x,y), I(y,z))≤ I(x,z); (4) I(1,y) = y; (5) T (x, I(x,y))≤ y.

Remark 2.11. [48] The following is a list of some important implicators. It is noteworthy
that the definitions of these implicators have been borrowed from Smets and Kerre’s work
(for details see [48]), so we adopt the same notations as adopted there. So, for all x,y ∈
[0,1] : (i) Ib(x,y) = max(1− x,y); (ii) Ia(x,y) = min(1− x + y,1); (iii) I∗(x,y) = 1− x +
xy; (iv) I#(x,y) = min(max(1− x,y),max(x,1− x),max(y,1− y)); (v) Im(x,y) = max(1−
x,min(x,y)); (vi) Ig(x,y) = 1 if x≤ y and Ig(x,y) = y otherwise.

Remark 2.12. [48, 71] By the definitions of these implicators, it can be easily established
that: I# ≤ Im ≤ Ib ≤ I∗ ≤ Ia.

Remark 2.13. [71] All the implicators being used may not satisfy the axioms of fuzzy
implication operators stated in Definition 2.4.5. Here is a list describing the properties
possessed by each implicator:

Implicator Axioms satisfied
Ia A1, A2, A3, A4, A5, A6.
I∗ A1, A2, A3, A5, A6.
Ib A1, A2, A3, A4, A6.
Im A5, A6.
I# A1, A2, A5, A6.

Definition 2.22. [35] A mapping ε : [0,1]2 −→ [0,1] is called an equivalence operator if it
satisfies the boundary conditions ε(0,0) = ε(1,1) = 1 and ε(0,1) = ε(1,0) = 0.

3. Crisp and fuzzy relational calculus

In this section first the crisp relational calculus will be studied, and then fuzzy relational
calculus will be studied as its step by step fuzzification.

3.1. Crisp relational calculus

Definition 3.1. [90] A crisp relation R from a universe X to a universe Y is a subset of X×Y .
The statement (x,y) ∈ R is abbreviated as xRy and one says that x is in (binary) relation R
with y. In this case, we define: (i) the after set xR of x as : xR = {y | y ∈ Y and xRy };
(ii) the foreset Ry of y as: Ry = {x | x ∈ X and xRy}; (iii) the domain dom(R) of R as:
dom(R) = {x | x ∈ X and there exists y ∈Y such that xRy}; (iv) the range rng(R) of R is the
subset of Y defined as: rng(R) = {y | y ∈ Y and there exists x ∈ X such that xRy}; (v) the
converse relation (or inverse relation) Rt of R is the relation from Y to X defined as: Rt =
{(y,x) | (y,x) ∈ Y ×X and xRy}. (vi) the complement relation coR of R is the relation from
Y to X defined as: coR = {(y,x) | (y,x) ∈ Y ×X and (x,y) /∈ R}.

Definition 3.2. [35] Consider a relation R from X to Y and a subset A of X. The following
four kinds of images of a set under a relation are defined as:
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(i) the direct image: R(A) = {y | y ∈ Y and there exists x ∈ X such that xRy} = {y | y ∈
Y and A∩Ry 6= /0}; (ii) the lower image: RC(A) = {y | y ∈ Y and /0 ⊂ A ⊆ Ry}; (iii) the
upper image: RB(A) = {y | y ∈Y and /0⊂ Ry⊆ A};(iv) the ultra direct image: R♦(A) = {y |
y ∈ Y and /0⊂ Ry = A}.

Definition 3.3. [35] Given B ⊆ Y , the direct images of B under the converse relation
Rt are called the inverse images of B under R. (i) the direct inverse: R−1(B) = {x |
x ∈ X and there exists y ∈ B such that xRy)} = {x | x ∈ X and B∩ xR 6= /0}; (ii) the lower
inverse:R−1

C (B) = {x | x ∈ X and /0 ⊂ B ⊆ xR}; (iii) the upper inverse:R−1
B (B) = {x | x ∈

X and /0⊂ xR⊆ B}; (iv) the ultra direct inverse: R−1
♦ (B) = {x | x ∈ X and /0⊂ xR = B}.

Example 3.1. [35] Consider a set of patients X and a set of symptoms Y . Let R be a relation
from X to Y defined by: pRs ⇐⇒ patient p shows the symptom s. Further let F ⊆ X be the
set of all female patients in the population. Then the images are given by: (i) R(F) = the set
of symptoms shown by at least one female patient; (ii) RC(F) = the set of symptoms shown
by all female patients; (iii) RB(F) = the set of symptoms shown by at least one female
patient and not by any male patient; (iv) R♦(F) = the set of symptoms shown by all female
patients and not by any male patient.

3.1.1 Properties of images [35]
These images possess many interesting properties, some are listed below. For a de-

tailed study we refer to [31]. (i) R♦(A) = RC(A)∩RB(A), (ii) R♦(A) ⊆ RC(A) ⊆ R(A),
(iii) R♦(A)⊆RB(A)⊆R(A), (iv) RC(A)= co(co(R)(A)), if A 6= /0, (v) RB(A)= co(R(coA))∩
rng(R), if A 6= /0, (vi) A⊆B⇒R(A)⊆R(B), (vii) /0⊂A⊆B⇒RC(A)⊆RC(B), (viii) A⊆B
⇒ RB(A)⊆ RB(B).

Definition 3.4. [35] Consider a relation R from X to Y and a relation S from Y to Z.
We define following four types of compositions of relations R and S as follows: (i) the
direct or round composition: R ◦ S = {(x,z) | (x,z) ∈ X × Z and xR ∩ Sz 6= /0}; (ii) the
lower composition: RC S = {(x,z) | (x,z) ∈ X ×Z and /0 ⊂ xR ⊆ Sz}; (iii) the upper com-
position: RB S = {(x,z) | (x,z) ∈ X × Z and /0 ⊂ Sz ⊆ xR}; (iv) the ultra composition:
R♦S = {(x,z) | (x,z) ∈ X×Z and /0⊂ Sz = xR}.

Example 3.2. [35] Again let X =the set of all patients p, Y = the set of all symptoms
s and Z = the set of all illnesses i. R is a relation from X to Y and S is a relation from
Y to Z defined by: pRs⇐⇒patient p shows the symptom s and sSi⇐⇒ s is a symptom of
illness i The compositions of R and S are given by: (i) p(R ◦ S)i patient p shows at least
one symptom of illness i; (ii) p(R C S)i all symptoms shown by patient p are symptoms
of illness i and patient p shows at least one symptom; (iii) p(R B S)i patient p shows all
symptoms of illness i;. (iv) p(R♦S)i all symptoms shown by patient p are exactly those of
illness i.

3.1.2 Properties of compositions
Next we list important properties of these compositions. For a close examination of

relationship between these compositions and their properties see [31]: ((i) R♦S = (R C
S)∩ (RB S), (ii) R♦S⊆ (RC S)⊆ (R◦S), (iii) R♦S⊆ (RB S)⊆ (R◦S), (iv) R◦ (S◦T ) =
(R◦S)◦T , (v) R1 ⊆ R2⇒ R1 ◦S⊆ R2 ◦S, (vi) R1 ⊆ R2⇒ R1 C S⊆ R2 C S, (vii) R1 ⊆ R2⇒
R1 B S ⊆ R2 B S, (viii) (R ◦ S)t = St ◦Rt , (ix) (R C S)t = St B Rt , (x) (R B S)t = St C Rt ,
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(xi) (R♦S)t = St♦Rt .

3.1.3 Properties of binary relations
All these definitions of potential properties of crisp relations are due to [3]. A binary

relation R in a universe X is called: (i) covering if and only if for all x ∈ X , there exists a
y ∈ X such that (x,y) ∈ R; (ii) locally reflexive if and only if, for all x ∈ X , there exists a
y ∈ X such that (x,y) ∈ R or (y,x) ∈ R implies that (x,x) ∈ R; (iii) reflexive if and only if
for all x ∈ X ,(x,x) ∈ R; (iv) symmetric if and only if for all x,y ∈ X , (x,y) ∈ R =⇒ (y,x) ∈
R; (v) antisymmetric if and only if for all x,y ∈ X , (x,y) ∈ R and (y,x) ∈ R =⇒ x = y;
(vi) strictly antisymmetric if and only if for all x,y ∈ X , (x,y) ∈ R implies that (y,x) /∈ R;
(vii) transitive if and only if for all x,y,z ∈ X , (x,y) ∈ R and (y,z) ∈ R imply that (x,z) ∈ R.

These simple properties can be combined into more complex types of relations, as fol-
lows [3]: A binary relation R in a universe X is called (i) a local tolerance relation if and
only if it is locally reflexive and symmetric; (ii) a tolerance relation if and only if it is a
local tolerance relation and it is covering; (iii) a local preorder relation if and only if it is
locally reflexive and transitive; (iv) a preorder relation if and only if it is a local preorder
relation and it is covering; (v) a local equivalence relation if and only if it is locally re-
flexive, symmetric, and transitive; (vi) an equivalence relation if and only if it is a local
equivalence relation and it is covering; (vii) a local order relation if and only if it is lo-
cally reflexive, anti-symmetric, and transitive; (viii) a strict order relation if and only if it is
strictly antisymmetric and transitive.

3.1.4 Characteristic functions of relations [35]
A relation R from X to Y can be identified with its characteristic mapping R : X ×Y →

{0,1} defined as: R(x,y) = 1 if (x,y) ∈ R and R(x,y) = 0 otherwise. (1) The character-
istic mapping of round composition is: R ◦ S(x,z) = supy∈X (R(x,y)∧B R(y,z)). (2) The
characteristic mapping of the subcomposition is: RCS(x,z) = (infy∈y R(x,y) =⇒B S(y,z)∧
(supBy∈Y R(x,y)). (3) The characteristic mapping of the supercomposition is: RBS(x,z) =
(infy∈y S(y,z) =⇒B R(x,y)∧ (supBy∈Y S(y,z)). (4) The characteristic mapping of the ultra
composition is: R♦S(x,z) = (infy∈y R(x,y)⇐⇒B S(y,z)∧ (supBy∈Y R(x,y)) = (infy∈y S(y,z)
⇐⇒B R(x,y)∧ (supBy∈Y S(y,z)). Similarly, the characteristic mappings of lower and upper
images are as follows: (i) RC(A)(y)= infx∈X A(x)=⇒B R(x,y), (ii) RB(A)(y)= infx∈X R(x,y)
=⇒B A(x) where, ∧B, =⇒B and ⇐⇒B stand for Boolean conjunction, implication and
equivalence respectively.

3.2. Fuzzy relational calculus

Definition 3.5. [63, 90] A fuzzy relation from a universe X to a universe Y is a fuzzy set in
X ×Y . R(x,y) is called the degree of relationship between x and y. In this case: (1) The
afterset xR of x is the fuzzy set in Y defined by xR(y) = R(x,y); (2) The foreset Ry of y is the
fuzzy set in X defined by Ry(x) = R(x,y); (3) The domain dom(R) of R is the fuzzy set in X
defined by: dom(R)(x) = Hgt(xR); (4) The range rng(R) of R is the fuzzy set in Y defined
by: rng(R)(y) = Hgt(Ry); (5) The converse fuzzy relation Rt of R is the fuzzy relation from
Y to X is defined as: Rt(y,x) = R(x,y); (6) The α-cuts of a relation Rα are defined as
follows: Rα = {(x,y) | (x,y) ∈ X ×Y : R(x,y) ≥ α}; (7) The resolution form of a relation
R =

∨
α∈[0,1] Rα ; (8) The complement relation: coR(x,y) = 1−R(x,y).
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It is interesting to remark that we can define a fuzzy relation on a universe X , with the
help of two fuzzy sets on the given universe. In this procedure usually a conjunction operator
such as min is used i.e., if A and B are two fuzzy subsets of a given universe X , then we can
define a fuzzy relation R on X as: R = {(x,y),min(A(x),B(y)}.

This product can be extended to any finite number of fuzzy sets on X . Not only this but
this concept can also be extended to fuzzy sets in different universes. The interesting aspect
of these definitions is that they reduce to their crisp counterparts if the sets are crisp sets.
These operations enjoy many beautiful properties for details see [90].

3.2.1 Crisp composition and images to fuzzy ones
As we have seen that the characteristic mappings of compositions use conjunction, dis-

junction and implicator operators. The fuzzy versions of all these operators have already
been discussed in section on fuzzy set theory. The classical composition of relations was
extended to its fuzzy counter part by Zadeh [87]. Next we shall review the fuzzy relational
compositions which were initially defined by Bandler and Kohout in [5]. These definitions
were then modified by De Baets and Kerre [31–35]. We prefer to state only the modified
forms. For the sake of clarity a subscript bk will be placed with the relations and composi-
tions if they are being used in the forms originally defined by Bandler and Kohout.

Consider a fuzzy relation R from X to Y and a fuzzy relation S from Y to Z. The
sup min composition R ◦ S of R and S is a fuzzy relation from X to Z defined by: R ◦
S(x,z) = supy∈Y min(R(x,y),S(y,z)); or in terms of after and fore sets: R◦S(x,z) = Hgt(xR∩
Sz). where, ∩ is modelled by min. In general, if a t-norm T other than min is used,
then: R ◦T S(x,z) = supy∈Y T ((R(x,y),S(y,z))). The other compositions are extended as
follows: RCI S(x,z) = min[infy∈Y I(R(x,y),S(y,z)), supy∈Y R(x,y),supy∈Y S(y,z))];RBI

S(x,z) = min[infy∈Y I(S(y,z),R(x,y)), supy∈Y R(x,y),supy∈Y S(y,z))]; and R�I S(x,z) = min
(RBI S(x,z),RCI S(x,z)).The second set of improved definitions is given by: RCT,I S(x,z)=
min[infy∈Y I(R(x,y),S(y,z)), supy∈Y (I(R(x,y),S(y,z)))]; RBT,I S(x,z)= min[infy∈Y I(S(y,z),
R(x,y)), supy∈Y (I(R(x,y),S(y,z)))]; R�T,I S(x,z) = min(RCT,I S(x,z), RBT,I S(x,z)). Using
the height and plinth operators the expressions for the triangular compositions can be written
as: RCI

b S(x,z) = min[Plt( I(xR,Sz)),Hgt(xR),Hgt(Sz)]; RBI
b S(x,z) = min[Plt(I(Sz,xR),

Hgt(xR),Hgt(Sz))] and the second set can be written in improved form as: RCT,I S(x,z) =
min[Plt( I(xR,Sz)),Hgt(xR∩T Sz)]; RBT,I S(x,z) = min[Plt(I(Sz,xR)), Hgt(xR∩T Sz)].
The second set of definitions is more restrictive than the first one, i.e., yields lower de-
grees of relationship, and that the first one in turn is more restrictive than the Bandler-
Kohout compositions: RCT,I S ⊆ RCI S ⊆ RCI

bk S.RBT,I S ⊆ RBI S ⊆ RBI
bk S. As al-

ready indicated, an alternative way to define the ultra composition is by introducing an
equivalence operator: R�I S(x,z) = min[Plt( ε(xR,Sz)),Hgt(xR),Hgt(Sz)], R�T,I S(x,z) =
min[Plt(ε(Sz,xR)), Hgt(xR∩T Sz)].

3.2.2 Images of a fuzzy set under a fuzzy relation [35]
The same line of reasoning as for the compositions can be followed in this

case as well. Consider a fuzzy relation R from X to Y and a fuzzy set
A in X , then the direct image can be written as: RT (A)(y) = Hgt(A∩T Ry)); where, T
represents the t-norm being used. De Baets and Kerre [35] suggest following two sets of im-
proved definitions for triangular images: RI

/(A)(y) = min(Plt(I(A,Ry),Hgt(A),Hgt(Ry));
RI
B(A)(y) = min(Plt(I(Ry,A),Hgt(A),Hgt(Ry)). The second set of improved definitions is:

RT,I
/ (A)(y)min(Plt(I(A,Ry),Hgt(A∩T Ry)); RT,I

B (A)(y) = min(Plt(I(Ry,A),Hgt(A∩T Ry)).
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Example 3.3. [35] Consider a set of patients X and set of symptoms Y . Let R be the fuzzy
relation from X to Y defined by: R(p,s)= the degree to which patient p shows symptom s.
Let O be the fuzzy set of old patients in the population X , then the direct images of O under
R (for either one of the improved definitions) are given by:

• RT (O) is the fuzzy set of symptoms shown by at least one old patient;
• RI

C(O) is the fuzzy set of symptoms shown by all old patients;
• RI

B(O) is the fuzzy set of symptoms shown by at least one old patient and not by
any non-old patient.

Properties 3.2.5 [35] Consider three universes X ,Y and Z and fuzzy relations R from X
to Y , a fuzzy relation S from Y to Z, and a finite family of fuzzy relations Ri from X to
Y , then following properties are satisfied by fuzzy relational compositions: (1) contain-
ment: RCT,I S⊆ R◦T S,RBT,I S⊆ R◦T S;(2) convertibility: (R◦T S)t = St ◦T Rt ,(RCS)t =
StCRt ,(RBS)t = StBRt ,(R�S)t = St �Rt ;(3) monotonicity, for a hybrid monotonous impli-
cation operator: R1 ⊆ R2 =⇒ R1 ◦S⊆ R2 ◦S,dom(R1) = dom(R2) and R1 ⊆ R =⇒ R1CS⊆
R2CS,R1 ⊆ R2) =⇒ R1BS ⊆ R2BS;(4) interaction with union, for a hybrid monotonous
implication operator:

[
∩n

i=1Ri
]
◦ S ⊆ ∩n

i=1(Ri ◦ S); (5) interaction with intersection, for a
hybrid monotonous implication operator:

[
∩n

i=1Ri
]
B S = ∩n

i=1(Ri B S).
Next we shall briefly review the results about the α-cuts of these relations. For a detailed

study see [34] . Consider a fuzzy relation R from X to Y and a fuzzy relation S from Y to
Z. It is well known that the following equality holds, for all α in [0,1], provided that Y is
finite: (R◦S)α = Rα ◦Sα . The converse inclusion only holds when T possesses the following
property: x≥α and y≥α implies T (x,y)≤α, for all x,y∈ [0,1]. The only triangular norm
satisfying this property for all α in [0,1] is the min operator M. The cuttability of the
Bandler-Kohout compositions and their improved versions is far more complex and can be
found in [5].

3.2.3 Matrix representation [35]
Fuzzy relations and their compositions have a special feature that when dealing with

finite universes, as is often the case, relations and fuzzy relations can be represented by
means of a matrix. A fuzzy relation R from X = {x1,x2, . . . ,xl} to Y = {y1,y2 . . . ,ym} can
be represented by means of an l × m matrix, as follows:

R =


R11 . . R1m
. .
. .

Rl1 . . Rlm


′

where, Ri j stands for R(xi,y j). A fuzzy set A in X can be represented by means of a row
vector l with entries: A = (A1,A2,...,Al), where, A j stands for A(x j). The direct image of A
under R can be written as follows:

RT (A) = (A1,A2,...,Al)


R11 . . R1m
. .
. .

Rl1 . . Rlm

 ,

where, the matrix product is calculated using the triangular norm as multiplication and the
maximum operator as addition. Now consider a fuzzy relation S from Y to Z = {z1,z2, ...,zn}.
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The max-T composition of R and S can be written as follows:

R◦T S =


R11 . . R1m
. .
. .

Rl1 . . Rlm




S11 . . S1n
. .
. .

Sm1 . . Smn


The max-T composition is similar to the well-known matrix product, again by using the

triangular norm as multiplication and the maximum operator as addition.

Example 3.4. [35] Consider the triangular norm W and the Lukasiewicz implication oper-
ator I(x,y) = min(1,1− x+ y). The different fuzzy relational compositions are illustrated
on the following fuzzy relations:

R =

0.2 0.4 0.4
0.5 0.3 0
0.9 0.6 1

 and S =

0.5 1 0
0.6 0.8 0.2
0.7 0.6 0.3


The compositions of R and S are given by [35], it is to be noted that the subscript bk

represents Bandler and Kohout’s defined compositions while b and k stand for Baets and
Kerre’s improved definitions of these compositions respectively.

R◦W S =

0.1 0.2 0
0 0.5 0

0.7 0.9 0.3

 , RCI
b S =

0.4 0.4 0.3
0.5 0.5 0.3
0.6 0.6 0.1

 , RBI
b S =

0.4 0.2 0.3
0.3 0.4 0.3
0.7 0.8 0.3

 ,

RCW,I
k S =

0.1 0.2 0
0 0.5 0

0.6 0.6 0.1

 , RBW,I
k S =

0.1 0.2 0
0 0.4 0

0.7 0.8 0.3

 , RCI
bk S =

 1 1 0.8
1 1 0.5

0.6 0.6 0.1

 ,

RBI
bk S =

0.7 0.2 1
0.3 0.4 0.7
1 0.8 1

 , R♦I
bS =

0.4 0.2 0.3
0.3 0.4 0.3
0.6 0.6 0.1

 , R♦T,I
k S =

0.1 0.2 0
0 0.4 0

0.6 0.6 0.1



Remark 3.1. [87] Most of the following properties of binary fuzzy relations were defined
by Zadeh . In all these definitions ∨ and ∧ represent max and min operators respectively.
A binary fuzzy relation R in a universe X is called: (1) covering if and only if for all
x ∈ X ∃ y ∈ X such that R(x,y) = 1; (2) locally reflexive if and only if for all x ∈ X ,
R(x,x) = supy∈X max(R(x,y).R(y,x)); (3) reflexive if and only if for all x ∈ X ,R(x,x) = 1;
(4) symmetric if and only if for all x,y ∈ X , R(x,y) = R(y,x); (5) antisymmetric if and
only if for all x,y ∈ X , and x 6= y implies min(R(x,y),R(y,x)) = 0; (6) strictly antisym-
metric if and only if for all x,y ∈ X , min(R(x,y),R(y,x)) = 0; (7) min-transitive if and
only if for all x,y,z ∈ X , min(R(x,y),R(y,z)) ≤ R(x,z); (8) irreflexive if and only if for
all x ∈ X , R(x,x) = 0; (9) asymmetric if and only if for all x,y ∈ X , R(x,y)∧R(y,x) = 0;
(10) weakly asymmetric if and only if for all x,y ∈ X , R(x,y)∧R(y,x) < 1; (11) negatively
transitive if and only if for all x,y,z ∈ X , R(x,y)∨R(y,z) ≥ R(x,z); (12) complete if and
only if for all x,y ∈ X , R(x,y)∨R(x,y) > 0; (13) strongly complete if and only if for all
x,y ∈ XR(x,y)∨R(x,y) = 1.

Next we shall study the different types of important relations originating from these
properties.
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4. The indistinguishability relations

In this section we shall study the relations formulated to represent fuzzy counterparts of
crisp equivalence relations. In the scenario of fuzzy relations the similarity relations defined
and studied by Zadeh [87] appear as first candidate in this sequence. He studied the prop-
erties of similarity relations and successfully constructed the fuzzy counterparts of equiv-
alence classes. Though the similarity relations were the first to appear after development
of fuzzy relations, but we will start with summary of Menger’s work. Menger’s paper [56]
“Probabilistic Theory of Relations” appeared in 1951, much earlier than even the birth of
fuzzy sets. Later on when it was proved by Zimmermann and Zysno [91], that the t-norms
are the best fit candidates for modelling fuzzy conjuntion, the Probabilistic equivalence re-
lations became a part of the T -transitive relations with Product t-norm taking place of T
in the definition of T -transitivity. After a brief review of Likeness relations we shall study
T-transitive relations and their generators with any general t-norm T .

4.1. Probabilistic relations [56]

Poincare [67] repeatedly emphasized that only in the mathematical continuum the equalities
A = B and B = C imply that A = C. In the observable physical continuum, “equal” means
“indistinguishable” and A = B and B = C by no means imply that A = C. The raw result of
experience may be expressed by the relation A = B,B =C but A <C which may be regarded
as the formula for the physical continuum. According to Poincare, physical equality is a
non-transitive relation.

According to Menger, a closer examination to the physical continuum suggests that in
describing our observation we should sacrifice more than the transitivity of equality. He
suggested to associate a number to the sets A and B, called the probability of finding A and
B indistinguishable. Menger designed following definition for his equality relation.

Definition 4.1. [56] If E(A,B) denotes the probability that A and B be equal, the following
postulates seem to be rather natural: (1) E(A,A) = 1 for every A; (2) E(A,B) = E(B,A)
for every A and B; (3) E(A,B).E(B,C)≤ E(A,C) for every A,B and C. The first two corre-
spond to reflexivity and symmetry of the equality relation, while (3) expresses a minimum of
transitivity.

Proposition 4.1. [56] If we set− log E(A,B)= d(a,b), then (1′a) d(A,A)= 0; (1′b) d(A,B)≥
0; (1′c) d(A,B) 6= 0 if A 6= B ; (2′) d(A,B) = d(B,A) for every A and B; (3′) d(A,B) +
d(B,C)≥ d(A,C) for every A,B and C.

These are Fŕechet’s postulates for the distance in a metric space. In particular (3) is
triangle inequality. Conversely if disjoint sets A,B,... form a metric space with the distance
d(A,B) and we set E(A,B) = e−d(a,b) for each element a of A and b of B, then E(A,B)
satisfies the postulates (1), (2), (3) of a probability of equality. The system of probabilities
of equality in a set, S, are thus identical with the systems of negative antilogarithms of the
distance for various possible metrizations of S.

Since d(a,b) < ∞, for every two points of a metric space, it follows that E(a,b) > 0. We
may find it more desirable to assume that every element b differing from a by more than a
certain exterior threshold be certainly distinguishable from a. But then we have to give up
even the minimum of transitivity expressed in Postulate (3) in Definition 4.1.1.
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4.2. Proximity and similarity relations

Definition 4.2. [62] Let U be a fuzzy set in a universe X. A symmetric relation R is said to be
a proximity relation on U if for all x,y∈X : (1) R(x,x) =U(x), (2) R(x,y)≤R(x,x)∧R(y,y).

Definition 4.3. [62] Let U be a fuzzy set in X . A family of fuzzy sets Σ = {Pi}i∈J is said to
be a fuzzy covering of U if U = ∪

i∈J
Pi.

Definition 4.4. [87] A fuzzy binary relation S on X is called a similarity relation if and only
if it is reflexive, symmetric and max−min transitive.

Example 4.1. [62] (a) If X = {x1,x2,x3,x4,x5,x6}, then the fuzzy relation R defined by
following relational matrix is a similarity relation on X :

1 0.2 1 0.6 0.2 0.6
0.2 1 0.2 0.2 0.8 0.2
1 0.2 1 0.6 0.2 0.6

0.6 0.2 0.6 1 0.2 0.8
0.2 0.8 0.2 0.2 1 0.2
0.6 0.6 0.6 0.8 0.2 1

 .

(b) [35] If X = [0,+∞[, then the fuzzy relation R : [0,+∞[2→ [0,1] defined as: R(x,y) = 1
if x = y and R(x,y) = e−max(x,y) else.

is a similarity relation on X .

Theorem 4.1. [87] Following hold for a fuzzy relation R on X : (1) If R is a similarity
relation, then for all x,y,z ∈ X at least two of the degrees R(x,y),R(y,z) and R(x,z) are
equal. (2) R is a similarity relation, if and only if Rα is an equivalence relation for all
α ∈]0,1]. (3) R is a similarity relation if and only if coR is a [0,1]-valued pseudo ultrametric
on X i.e., it satisfies for all x,y,z ∈ X3: (M1) Non-negativity: coR(x,y) = 0; (M2) Pseudo-
separation: x = y =⇒ coR(x,y) = 0; (M3) Symmetry : coR(x,y) = coR(y,x); (M4) Strong
triangle inequality: coR(x,z)≤ max(coR(x,y),coR(y,z))

Remark 4.1. [62] An important concept associated with a similarity relation is its partition
tree, the fuzzy analogue of the quotient set of crisp equivalence relation. As mentioned
before, the α-cuts, Rα of a similarity relation R are equivalence relations. To each of these
equivalence relations corresponds a partition Πα of the universe X . These partitions become
finer with increasing α . The fact that these partitions are nested can be visualized by means
of a partition tree. We illustrate this construction procedure on the Example 3.2.4 (a). It
suffices to consider those α-cuts for which α is effectively used as a degree of relationship.
The partition tree of these α-cuts is given by:
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{x1,x3} {x4} {x6} {x2} {x5} R1.0

↑ ↖ ↗ ↖ ↗
{x1,x3} {x4,x6} {x2,x5} R0.8

↖ ↗ ↑
{x1,x3,x4,x6} {x2,x5} R0.6

↖ ↗
{x1,x2,x3,x4,x5,x6}

Definition 4.5. [63] Let S be a similarity relation on X. For any given a ∈ X, a similarity
class of a is a fuzzy set S[a] on X defined by the membership function S[a](x) = S(a,x) for
all x ∈ X.

Theorem 4.2. [63] Let S be a similarity relation on X. The following hold for all a,b ∈ X.
(1) S[a] = S[b] if and only if S(a,b) = 1. (2) If S[a] 6= S[b], then hgt(S[a]∪S[b])≤ 1.

Definition 4.6. [63] A fuzzy covering Σ of X is called a fuzzy partition of X, if there exists a
similarity relation S on X such that Σ is the set of all distinct similarity classes of S.

4.3. Likeness relations

Definition 4.7. [22] A likeness relation is a fuzzy relation that is reflexive, symmetric and
sup−W transitive. Since sup−min transitivity implies sup−W transitivity so, it follows
that every similarity relation is a likeness relation, but the converse may not be true as is
shown in the following example.

Example 4.2. [22] Consider the single-valued attribute BUILD of a person, with the fol-
lowing possible linguistic descriptions: thin, slim, middling, sturdy and corpulent. It is clear
that these terms overlap to a certain extent. In order to take this into account we introduce a
likeness relation on the domain of this attribute:

1 0.9 0.5 0.3 0
0.9 1 0.6 0.4 0.1
0.5 0.6 1 0.8 0.4
0.3 0.4 0.8 1 0.6
0 0.1 0.4 0.6 1


One easily verifies that this fuzzy relation is a likeness relation and not a similarity relation.
Some α-cuts of this fuzzy relation are given next (with t = thin, s =slim, m = middling,
st = sturdy and c = corpulent): R1.0 = {(t, t),(s,s),(m,m),(st,st),(c,c)}, R0.9 = R1.0 ∪
{(t,s),(s, t)}, R0.8 = R0.9∪{(m,st),(st,m)}, R0.6 = R0.8∪{(s,m),(m,s),(st,c),(c,st)}.

Remark 4.2. [27] Bezdek and Harris and later Ruspini indicate as one of the main rea-
sons for introducing likeness relations is that the associated metric is the restriction to unit
interval of the Euclidean metric.

4.4. T -transitive equivalence relations

In 1982 E. Trillas [77] summarized all the above mentioned results under the name T -
indistinguishability operators since they are the key idea in order to solve the Poincare
paradox. The T -transitive equivalence relations are defined as the fuzzy counter parts of the
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crisp equivalence relation. As it is well known, within a classical context, an equivalence
relation in a set defines a partition or a classification in it, and vice versa. There have been
several attempts to extend these concepts to the fuzzy framework. In the existing literature
on this subject, two different trends have been followed. The first one puts its emphasis on
the definition of fuzzy partition and then, studies the properties of the associated relation,
if it exists. The papers by Bezdek and Harris [22] and Ovchinnikov and Riera [64] are
representative of this research line. The following concepts are being recalled here for the
sake of completeness; nevertheless, further details can be found, for instance, in Trillas and
Valverde [78], Valverde [81] and Jacas [45].

Definition 4.8. [27] Let R be a fuzzy relation on a universe X, R is called T -transitive if for
all x,y,z ∈ XT (E(x,y),E(y,z))≤ E(x,z).

Definition 4.9. [27] Let R be a fuzzy relation, its T -transitive closure R is the smallest
transitive superset of a fuzzy relation and is obtained as follows: R = supn∈N Rn. where,
R1 = R and Rn+1 = Rn ◦R, moreover the t-norm T is used in the direct product.

Proposition 4.2. [27] If R is a reflexive and symmetric fuzzy relation on a finite universe X
of cardinal n, then R = Rn−1.

Example 4.3. [27] Let R be the relation given by the matrix

R =


1 0.3 0.5 0.7

0.3 1 0.2 0.8
0.5 0.2 1 0.3
0.7 0.8 0.3 1

 .

Then the transitive closures RW ,RP, and RM of R with respect to the t-norms of W , P
and M respectively are:

RW =


1 0.5 0.5 0.7

0.5 1 0.2 0.8
0.5 0.2 1 0.3
0.7 0.8 0.3 1

 ,RP =


1 0.56 0.5 0.7

0.56 1 0.28 0.8
0.5 0.28 1 0.35
0.7 0.8 0.35 1

 ,RM =


1 0.7 0.5 0.7

0.7 1 0.5 0.8
0.5 0.5 1 0.5
0.7 0.8 0.5 1


Proposition 4.3. [27] Given a reflexive and symmetric fuzzy relation on a set X, let A be
the set of fuzzy T -transitive equivalence relations on X greater than or equal R and R its
transitive closure. Then, for any x,y ∈ X, R(x,y) = infE∈A{E(x,y)}.

Definition 4.10. [27] A T -indistinguishability relation E is a reflexive, symmetric and T-
transitive fuzzy relation.

Definition 4.11. [27] An S-pseudometric m is a map from X×X into [0,1] such that for all
x,y,z ∈ X, (i) m(x,x) = 0 (ii) m(x,y) = m(y,x) (iii) S(m(x,y),m(y,z)) ≥ m(x,z) (S-triangle
inequality) An S-metric is defined in the usual way i.e., replacing(i) by m(x,y) = 0 if and
only if x = y.

The very first property of T -indistinguishability relations is their close relation with S-
pseudometrics as is shown in the following theorem:

Theorem 4.3. [27] Let E be a T -indistinguishability relation and let φ be a continu-
ous and order-reversing bijection from [0,1] into itself, thenmE(x,y) = φ(E(x,y)) is a S-
pseudometric and vice-versa, where S(x,y) = φ−1(T (φ(x),φ(y)).



220 I. Beg and S. Ashraf

4.4.1 Construction of T-equivalence relations [82]
For a long time, the only available methods to build up fuzzy transitive relations (FER)

have been the transitive closure and related methods. To be more concrete in order to apply
the transitive closure method (Proposition 4.4.3) to construct in general a fuzzy T -transitive
relation, a reflexive and symmetric fuzzy relation has to be used as a starting point. In other
words an index of similarity relating each couple of elements in the sample space has to be
given: each two elements should be matched, in some way, and then a method is applied to
obtain either a similarity or dissimilarity relations.

At this point, the first arising question is: Does it mean that, from a single criterion,
or from the matching of all elements to one given, no similarity measure can be given?
The obvious negative answer can be stated by assuming that as a result of the single cri-
terion evaluation or the matching-to-one process, a function h : X → [0,1], is given, h(x)
representing the degree to which x fits the given conditions; with such assumption it is
easy to check thatm(x,y) = |h(x)−h(y)| , is a pseudo-distance (i.e., a dissimilarity mea-
sure) such that m(x,x0) = h(x), for any x0 ∈ h−1({0}) so that such pseudo-distance may be
considered as truely induced by the data. It is also quite obvious thatE(x,y) = 1−m(x,y) =
1−|h(x)−h(y)| , is a likeness relation on X for which E(y,y0) = h(y) for any y0 ∈ h−1({1})
i.e., h(y) itself is the measure of similarity between the element y, and any perfect prototype.

Lemma 4.1. [82] The construction of fuzzy equivalence relations can be
extended in order to get T -transitive fuzzy relations for any t-norm T . If I stands for
the R-implication associated with the t-norm T then it is easy to check that
Eh(x,y) = I(max(h(x),h(y)),min(h(x),h(y))), is a T -fuzzy transitive relation, such that:
Eh(x,x0) = h(x), for any x0 ∈ h−1({1}).

Thus, for instance,Eh(x,y) =
{

min(h(x),h(y)), if h(x) 6= h(y)
1, otherwise, is a similarity relation

induced by h , i.e. Eh is min-transitive. Consequently,mh(x,y) = 1−Eh(x,y), is an ultra-
metric.

If the product t-norm P is used, then Eh(x,y) =

{
min(h(x),h(y))
max(h(x),h(y)) if h(x) 6= h(y)
1, otherwise,

is a prob-

abilistic relation, i.e. transitive with respect to the t-norm and P, and mh(x,y) = 1−Eh(x,y),
is generalized pseudo-metric with respect to the t-conorm P∗.

The most important of all if W , the Lukasiewicz t-norm is used then Eh(x,y) = 1−
|h(x)−h(y)| . This fact was mentioned in the Remark 4.3.3 about Likeness relations.

Let it be noticed that, if the t-norm is strict, like the min and P t-norms andh(x) =
{0,a} with a ∈]0,1], then the induced relation is nothing but the classical equivalence re-

lation associated with h, that isEh(x,y) =
{

1, if h(x) = h(y)
0, otherwise. In general, such relation

can be found as the 1-level set of the induced fuzzy relation.

Summing up, the above considerations show what to do in order to obtain a similarity
(or dissimilarity) measure which matches to the data from a single subjective evaluation of
the degrees of similarity in the sample set.

Next, suppose that several criteria or prototypes are given in the form of a family of
functions: h j : X → [0,1]; j = 1, ...,n. In this case the most natural procedure seems, first,
to get the similarity measure in the form of a fuzzy transitive relation for a fixed t-norm
T - associated with each h j, E j, and then to take as the degree of the similarity of two
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elements, E(x,y), the minimum of all the degrees i.e. E(x,y) = inf j=1,...,n E j(x,y), which,
is also a T -transitive relation. Obviously, there are other ways to combine fuzzy transitive
relations which also preserve the transitive character of the relation, but the one chosen here
is canonical, in the sense expressed by the following representation theorem:

Theorem 4.4. [27] Let E be a fuzzy relation on a set X, i.e., a map from X ×X into [0,1]
and let T be a continuous t-norm. Then E is a reflexive, symmetric and T -transitive fuzzy
relation (T -indistinguishability relation) if and only if, there exists a family {h j} j∈J of fuzzy
subsets of X, such thatE(x,y) = inf j∈J(I(h j(x)∨h j(y),h j(x)∧h j(y))), for all x,y ∈ X.

In other words, any reflexive, symmetric and T -transitive fuzzy relation on a set X is
generated by a family of fuzzy subsets of the given set through the procedure described
in this section. Valverde and Ovchinnikov [83] have shown that the above representation
also holds for left-continuous T -norms. This fact is specially interesting when the minimal
t-norm Z is considered. As it is known, this t-norm is defined by:

Z(a,b) =
{

min(a,b), if max(a,b) = 1
0, otherwise.

It is worth noting that reflexive, symmetric and Z-transitive fuzzy relations are simply those
reflexive and symmetric relations for which the 1-level set is a classical equivalence relation.
From this viewpoint, the Z-transitive relation S , obtained by applying the procedure implied
by the representation theorem starting from a strict reflexive fuzzy relation, R, is simply
the greatest symmetric relation contained in R, i.e.S(x,y) = min(R(x,y),R(y,x)). On the
other hand, when the representation theorem is applied to build the T -indistinguishability
relation ER generated by a reflexive and symmetric fuzzy relation R, the representation
theorem assures for both the existence of such a fuzzy relation and the method to compute
it. Moreover, the use of the representation theorem no longer requires a complete fuzzy
binary relation; neither reflexivity nor symmetry are required. As it has been shown the
initial data may be just one function from the set X into [0,1].

It is quite clear that, due to duality between indistinguishability and S-pseudometrics the
Theorem has an immediate counter part for S-pseudometrics. The details for such results
can be found in [27]. In other words, any S-pseudometric on a given set X comes from a
family of fuzzy subsets of the given set and a metric on the unit interval.

Next the structure and characterization of the generators of a given T -indistinguishability
relation E will be studied.

Definition 4.12. [81] A function from X into [0,1] is termed a generator of a given T -
indistinguishability relation E, if Eh ≥ E. .

HE will denote the set of all generators of E. It follows immediately from the represen-
tation theorem that, given a T -indistinguishability relation E on X , the set {E(x,y)}y∈X of
fuzzy subsets of X is a generating family of E and will be denoted by {hy(x)}y∈X . The next
definition will play an important role in order to give a more convenient characterization of
the generators of a T -indistinguishability relation E.

Definition 4.13. [81] Let E be a T -indistinguishability relation, then φE is the map from
F(X) into F(X) defined byφE(h)(x) = supy∈X{T (E(x,y),h(y))} for any x ∈ X It is worth
noting that if X is a finite set then E is represented by a matrix and may be understood as
the max−T product of E by the column vector representing the fuzzy set h.
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Theorem 4.5. [81] A fuzzy subset h ∈ F(X) is a generator of a T -indistinguishability rela-
tion E on X, if and only if φE(h) = h.

Theorem 4.6. [81] Let E be a fuzzy relation on a set X, i.e. a map from X ×X −→ [0,1],
and let T be a continuous t-norm. Then E is a reflexive, symmetric and T-transitive fuzzy
relation (T- indistinguishability relation) if and only if there exist a family {h j}, j∈ J of fuzzy
subsets of X, such that: E(x,y) = inf j∈J E j(x,y) = inf j∈J T{ {h j(x)∨h j(y}

{h j(x)∧h j(y}}, for all x,y ∈ X.

5. Fuzzy orders

Initially the fuzzy orders were defined with the assumption of max-min transitivity as in
[87]. Later some researchers preferred W -transitivity and formulated different forms for
transitivity of fuzzy orders and inclusions. In general a fuzzy ordering is a fuzzy binary
relation satisfying the T -transitivity property (see [61]). In addition it is desirable that the
fuzzy ordering should satisfy some kind of asymmetric property. The most recent approach
towards defining similarity based fuzzy orderings with the assumption of T-transitivity was
made by Bodenhofer [24].

In this section we intend to summarize all the above mentioned results. We shall first
summarize the work of Ovchinnikov about different types of fuzzy orderings defined with
the help of max−min transitivity. Some of their representation theorems will also be men-
tioned. Next we shall discuss the forms of asymmetry and fuzzy transitivity of fuzzy or-
derings formulated by Willmott [85] and Beg [7, 9–11]. In the end we shall summarize
the work of Bodenhofer [23–25] on similarity based fuzzy T -transitive orderings and their
representation theorems.

5.1. Max-min transitive fuzzy orderings

Definition 5.1. [62] In order to define different types of fuzzy orderings we shall need fol-
lowing additional definitions of the fuzzy relations associated with R.

Symmetric part: Rs(x,y) = R(x,y)∧R(y,x),
Dual relation: Rd(x,y) = 1− R(y,x), for all x,y ∈ X. It can be readily verified that

Rs = R∩R−1, Rd = R−1 and (Rd)d = R, i.e., relations Rd and R are dual of each other.

Definition 5.2. [62] Let R be a fuzzy relation on X. R is a: (1) pre-order or quasi-order
if it is reflexive and max-min transitive; (2) partial order if it is asymmetric and max-
min transitive; (3) weak ordering if it is asymmetric and negatively transitive; (4) linear
ordering if it is a complete weak ordering; (5) quasi transitive relation if R is dual to a
partial ordering; (6) reflexive linear ordering if it is dual to a linear ordering.

The nonempty set X with any of the order is called a (quasi, partially, weakly or linearly)
ordered set.

The classes of fuzzy orderings are presented in the form of a diagram borrowed from
[62].

Partial orderings dual←−−−−−−→ Quasi-transitive relations
↑ ↑

Weak orderings dual←−−−−−→ Complete quasi orders
↑ ↑

Linear orderings dual←−−−−−→ Reflexive linear orderings
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where vertical arrows indicate proper inclusions.

Example 5.1. [62] Let X = {x1,x2,x3}. We define a fuzzy binary relation R on X by:

R =

1 1 1
α 1 1
γ β 1


where α,β ,γ ∈ [0,1]. Then R is a strongly complete fuzzy binary relation on X . The dual
relation P = Rd and the symmetric part I = R∩R−1 associated with R are represented by
the following matrices:

P =

0 1−α 1− γ

0 0 1−β

0 0 0

 and I =

1 α γ

α 1 β

γ β 1

,

It is observed that if γ = min(α,β ), then R is a strongly complete transitive relation, P
a transitive fuzzy binary relation and I is a symmetric and transitive fuzzy binary relation.
This demonstrates the facts proved in following theorems (for proofs see [62]).

Theorem 5.1. Let R be strongly complete and transitive fuzzy binary relation. The dual
relation Rd associated with R is a transitive fuzzy binary relation. Moreover the symmetric
part of a transitive fuzzy relation is a transitive fuzzy relation.

Remark 5.1. [63] Quasi orders enjoy a special importance; firstly because they are at the
root of both fuzzy equivalence relations and fuzzy orders, and secondly because of their
pleasant properties. For example (for proofs see [63]): (1) The intersection of two quasi
orders is again a quasi order. (2) If R is a quasi order then for any given k ∈ [0,1] a relation
P given by:P(x,y) = R(x,y)∨ k, is a quasi order for all x,y ∈ X . (3) Let f : X → Y be a
function and Q be a quasi order on X . Then the functionR(x,y) = Q( f (x), f (y)), x,y ∈ X ,
is a quasi order on X . (4) Let X and Y be two topological spaces and let f be a continuous
function. Also let P and Q be two quasi orders on X and Y respectively. For any given
k ∈ [0,1] a relation given by:R(x,y) = (P(x,y)∨ k)∧Q( f (x), f (y)), is a continuous quasi
order for all x,y ∈ X .

Definition 5.3. [63] A quasi order R on X is said to be strict if: R(x,y)∧R(y,x) < 1, for all
x 6= y in X.

Definition 5.4. [63] Let X be a space and let R be a quasi order on X. The pair (X ,R) is
called a fuzzy relational system.

Definition 5.5. [63] A fuzzy relational system (R, R) is called numerical fuzzy relational
system. Here, R stands for the set of real numbers.

Definition 5.6. [63] A homomorphism from (X ,P) to (Y,Q) is a continuous function f :
X → Y such that:

P(x,y) = Q( f (x), f (y)), for all x,y ∈ X.

Theorem 5.2. [63] There exists a numerical fuzzy relational system (R, R) such that any
fuzzy relational system (X ,R) with finite X admits a numerical representation in (R, R),
provided R is positive and T is a strict t- norm. For proof see [63].

Theorem 5.3. [62] A fuzzy relation R on X is a fuzzy pre-ordering if and only if there is a
family F of positive real functions on X such that: R(x,y)= inf f∈F min{ f (x)/ f (y),1} for all
x,y ∈ X .
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5.2. Fuzzy order relations

Beg has used fuzzy orders in several forms. Initially the quasi order defined in his work is in
the same form as defined by Ovchinnikov (see Definition 5.1.2), but later he reformulated
some other definitions of order relations. A summary of his work will be presented . His
focus is on total fuzzy orders, fuzzy maximal elements, fuzzy chains etc.

Definition 5.7. [7] A quasi-order (see Definition 5.1.2) R is called order if it satisfies:
R(x,y)+ R(y,x) > 1 ⇒ x = y. Moreover, a quasi order is called total if for all x 6= y⇒

R(x,y) 6= R(y,x).
Other than this traditional definition, he constructed some other forms of fuzzy order

relations. We next give one such definition.

Definition 5.8. [10] Let X be a crisp set. A fuzzy ordering relation on X is a fuzzy subset of
X×X with the following properties:

(1) For all x ∈ X, R(x,x) ∈ (0,1].
(2) For all x,y ∈ X, R(x,y)+R(y,x) > 1⇒ x = y.
(3) For all x,y,z ∈ X, R(x,y)≥ R(y,x) and R(y,z)≥ R(z,y)⇒ R(x,z)≥ R(z,x). A set with a

fuzzy order relation defined on it, is called a fuzzy ordered set.

Definition 5.9. [9] Let X be a set with a fuzzy order relation R. Then:
(a) A fuzzy ordered subset of X on which the fuzzy order R is total, is called a fuzzy chain,
alternatively a fuzzy subset on which fuzzy preorder is linear is called a fuzzy chain.
(b) For a fuzzy subset A ⊆ X, the fuzzy set U(A) of upper bounds is defined by U(A)(x) =
sup{in f (R(y,x)−R(x,y) : y ∈ A},0}.
Thus an upper bound or a strict upper bound of A is an element x ∈ X satisfying:
Either R(y,x)≥ R(x,y) or R(y,x) > R(x,y)) for all y ∈ Y.

Definition 5.10. Let X be a set with a fuzzy order relation R. A fuzzy subset B of X is said
to be pointwisely dominated in X if for each x ∈ B there exists a y ∈ X such that y 6= x and
R(x,y)≥ R(y,x). The fuzzy set B is called strictly dominated in X if there exists some y ∈ Bc

such that R(x,y) > R(y,x) = 0 for all x ∈ B. A pointwisely dominant R-fuzzy chain C in
X is said to have the dominant property on X, if it is strictly dominated in X. When every
pointwisely dominated R-fuzzy chain C⊂ X is strictly dominated in X, we say that the fuzzy
relation R has fuzzy chain dominant property.

Definition 5.11. [9] An element x is called a maximal element of A if there is no y 6= x in A
for which r(x,y)≥ r(y,x).

Definition 5.12. [9] An element x ∈ A satisfying r(y,x) ≥ r(x,y) for all y ∈ A is called the
greatest element of A.

Similarly, we can define a lower bound, a minimal and a least element of A. In a chain
the least and the greatest element are unique lower bound in X .

Theorem 5.4. [10] Let X be a fuzzy ordered set such that every decreasing chain in X has
greatest lower bound in X. If f : X −→ X is a map such that for all x ∈ X, µ( f (x),x) ≥
µ(x, f (x)), then there is a v in X with f (v) = v.

Theorem 5.5. [9] Let (X ,R) be an ordered set. If every R-fuzzy chain in X has an upper
bound then X has a maximal element.
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Theorem 5.6. [11] Let R be a fuzzy relation on a nonempty set X having the chain dominant
property then there exists a maximal element x∗ in X.

5.3. T-transitive fuzzy orderings

Definition 5.13. [23] A mapping L : X2→ [0,1] is a fuzzy ordering on the non-empty crisp
domain X with respect to a T -norm T , for brevity T -order if and only if the following axioms
are satisfied for all x,y,z∈X: (1) L(x,x) = 1 (reflexivity), (2) x 6= y⇒ T (L(x,y),L(y,x)) = 0
(T-antisymmetry), (3) T (L(x,y),L(y,z)) ≤ L(x,z) (T-transitivity). If the condition (2) is
dropped the resulting relation is called a fuzzy preorder with respect to T . As studied in
the previous section the symmetric preorders are called the T -transitive fuzzy equivalence
relations. The strongly complete T -preorders are called fuzzy weak orders with respect to
T or in short T -weak orders.

Doubts that T -antisymmetry could be too strong a requirement have appeared and they
have motivated several researchers to propose generalizations. According to Bodenhofer
“In opposition to Zadeh’s our point of view is that an axiom of antisymmetry without refer-
ence to a concept of equality is meaningless”.

Consequently Bodenhofer [23] reformulated the definition of fuzzy ordering by making
fuzzy similarity its basis.

Definition 5.14. A fuzzy relation L on a universe X is called a fuzzy ordering with re-
spect to a t-norm T and a T -equivalence relation E (on the same domain X) for brevity
T -E-ordering, if and only if it is T -transitive and additionally fulfils two axioms: (1) E-
reflexivity, i.e. for all x,y ∈ X, E(x,y)≤ L(x,y). (2) T -E-antisymmetry, i.e. for all x,y ∈ X,
T (L(x,y),L(y,x))≤ E(x,y).

It is easily verified that this definition of antisymmetry coincides with the one in (2) of
5.3.1

Lemma 5.1. [24] Some basic properties of T-E-ordering are as follows: (1) Every crisp
equality is a fuzzy ordering with respect to any t-norm and the crisp equality. (2) A T -
equivalence E is itself a T -E-ordering. Moreover, for a given T -equivalence E, it is the
smallest T -E-ordering. (3) The inverse of a T -E-ordering is itself a T -E-ordering.

Example 5.2. [25] The fuzzy relationL(x,y) =
{

1 if x≤ y
max(1− x+ y,0) otherwise,

is a fuzzy ordering on the real numbers R with respect to the Lukasiewicz t-norm W and the
following well known W -equivalence E(x,y) = max(1−|x− y| ,0).

Many other interesting results about the intersections, Cartesian products, implicit fac-
torizations, constructions and representations can be found in [24].

Lemma 5.2. [25] Every T -preorder R : X2 −→ [0,1] fulfills the following equality for all
x,y ∈ X. R(x,y) = infz∈X I(R(z,x),R(z,y)), where I is the R-implication associated with T .

Theorem 5.7. [25] A fuzzy relation on a universe X is a weak T -order if and only if there
exist a non-empty domain Y , a T -equivalence relation on Y , a strongly complete T -E-order
L on Y and a mapping f : X −→ Y such that the following equality holds for all x,y ∈
X :R(x,y) = L( f (x), f (y)).
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6. ε-fuzzy equivalence relations

The max-min transitivity is the most commonly used transitivity in fuzzy equivalence rela-
tions. It was introduced by Zadeh and agreed by Orlovsky [59, 60]. Moreover, it is the only
type of transitivity proposed by Roubens and Vincke [70]. But it faces a lot of criticism [52].

Example 6.1. (a) Bazu [6] develops a criticism against max-min transitivity and prefers
some weighted transitivities. According to his argument: Let us suppose that X = {x,y,z}
and R(x,y) = R(y,z) = 0.5. If we want R to be max-min transitive relation, then the smallest
level for R(x,z) is 0.5. Let us now alternatively consider R(x,y) = 1 and R(y,z) = 0.5; even
in this case, the smallest level for R(x,z) is 0.5, other wise the relation violates max-min
transitivity. Intuitively speaking for the second case, R(x,z) should be assumed greater than
the R(x,z) of the first case.

Here is another example that captures the failure of the existing definition in giving fuzzy
extension of the crisp transitivity.
(b) [21] In case of max-min transitivity, a fuzzy relation R is called nontransitive if it fails to
keep the inequality even at a single triplet of points. Consider a fuzzy relation R such that:

R(x,y) = 0.9,

R(y,z) = 0.9,

R(x,z) = 0.899999999.

The inequality (1) is so strict that it would call the relation nontransitive while R(x,z) has a
considerable value. A large number of such relations are discarded being nontransitive by
not only the definition of max-min transitivity but all the other T -transitivities fail in this
respect.

Remark 6.1. [37, 51, 52] As mentioned earlier Similarity relations, Likeness relations and
Probabilistic relations were all summarized by E. Trillas [77] under the name indistinguisha-
bility operators in an attempt to solve the Poincare paradox. It has been established by De
Cock [37] and Klawonn [52] that even with T -transitive equivalence relations the Poincare
paradox appears. Following example is constructed by De Cock and Kerre [37] in this
context.

Let X be the universe of possible heights of men, T a t-norm and E a T -transitive equiv-
alence relation on X . If E is used to represent “approximate equality”, we could expect
intuitively

(6.1) E(1.50m,1.51m) = E(1.51m,1.52m) = 1, and E(1.52m,1.53m) = 1.

Now the T - transitivity behaves as follows:

T (E(1.50m,1.51m),E(1.51m,1.52m))≤ E(1.50m,1.52m).

So,

(6.2) E(1.50m,1.52m) = 1.

Combining (6.1) with (6.2) and using T -transitivity, we can derive in a similar way that

(6.3) E(1.50m,1.53m) = 1.

Similarly we get

(6.4) E(1.50m,1.54m) = 1
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etc. Finally, it yields that all heights are approximately equal to degree 1 that is, the Poincare
paradox. De Cock [37] establishes that when resemblance relation is used as model of
approximate equality the Poincare paradox does not appear, but for the construction of a re-
semblance relation a pseudometric space must be at hand as can be seen from the Definition
6.1.

Definition 6.1. [37] For a universe X, a pseudometric space (M,d) and a mapping g : X→
M, a fuzzy relation E on X is called a (g,d)-resemblance relation on X if and only if for all
x,y,z,u ∈ X :

(R.1) E(x,x) = 1,
(R.2) E(x,y) = E(y,x),
(R.3) d(g(x),g(y))≤ d(g(z),g(u)) implies E(x,y)≥ E(z,u).

If X is already equipped with a suitable pseudometric, then g = I, the identity mapping
on X. In this case (R.3) reduces tod(x,y) ≤ d(z,u) implies E(x,y) ≥ E(z,u). S. Mazhar
and I. Beg propose ε-fuzzy equivalence relations as better candidates for the concept of
fuzzy transitivity. They hold the opinion that the concept of ε-fuzzy equivalence relations
is self dependent and resemblance relations lie within the class of strong fuzzy equivalence
relations see [15].

Definition 6.2. [21] Let R be a fuzzy relation on X. The fuzzy transitivity relation trI,T
R is a

fuzzy relation on X defined as: trI,T
R (x,z) = infy∈X I(T (R(x,y),R(y,z)),R(x,z)); where, I is

any implication and T is a t-norm. The transitivity function so defined, assigns a degree of
transitivity to the given fuzzy relation at each point of X ×X. Therefore, the given relation
may have different degrees of transitivity at different pairs of points. When we work with a
fixed relation t-norm and implicator we shall drop the superscripts and the subscript.

Definition 6.3. [15] For a given fuzzy relation R, the measure of transitivity of R is given
by: mTr(R) = m(trR); where, m is Sugeno’s measure [76]. In this paper plinth of a fuzzy set
will be taken as the measure, consequently;

mTr(R) = Plinth(trR) = inf
x,y,z∈X

(I(T (R(x,y),R(y,z)),R(x,z)))

will be taken as the value for the measure of transitivity of a given fuzzy relation. A fuzzy
relation R is called ε-fuzzy transitive if ε = mTr(R), R is non-transitive if ε = 0. ε expresses
different shades of transitivity, in fact it orders the fuzzy relations with respect to the degree
of transitivity.

Remark 6.2. [15] If an R-implicator is used in calculation of degree of transitivity,
then the T -transitive fuzzy relations are 1-fuzzy transitive. This is due to the fact that R-
implications possess the property that a ≤ b implies I(a,b) = 1. So the T -transitivity i.e.,
T (R(x,y),R(y,z))≤ R(x,z) for all x,y,z ∈ X implies I(T (R(x,y),R(y,z)),R(x,z)) = 1 for all
x,y,z ∈ X . Hence the result.

Definition 6.4. [21] A fuzzy relation E on X is called an ε-fuzzy equivalence relation if for
all x,y,z ∈ X (i) E(x,x) = 1; (ii) E(x,y) = E(y,x); (iii) mTr(E) = ε .

In this case E will be called an ε-equivalence relation. For T -transitive equivalence relations
ε = 1. In general, if ε > 0, then R will be called a fuzzy equivalence relation and application
of a strong negator to R will convert it to what we shall call a fuzzy dissimilarity relation.



228 I. Beg and S. Ashraf

The following theorem proved in [15] connects this form of degree or measure of transi-
tivity with a traditional property of crisp transitive stated as: “A relation R on a universe X
is transitive if and only if R◦R⊆ R ”.

Theorem 6.1. [15] Let R be a fuzzy relation on X and ◦ stands for max-min product. If a
continuous implicator is used in both sides thenInc(R◦R,R) = Tr(R). where, the mapping
Inc is defined in Definition 7.1.3.

Theorem 6.2. [15] Let R be a fuzzy relation on a given universe X, then Tr(R) = mInc(R◦
R,R) ∈]0,1] and mInc(RC R,R)≥ Tr(R).

7. Fuzzy inclusion relation

Fuzzy inclusion relations constitute a very important part of the fuzzy set theory. The first
inclusion of fuzzy sets was first introduced by Zadeh in his seminal paper [86]. In spite
of its immense practical utility, it was soon realized that the definition was not in accor-
dance with the true spirit of fuzzy logic, in fact it was a crisp definition. This intuition
has inspired many researchers to consider F(X)×F(X)→ [0,1] mapping Inc, such that the
value Inc(A,B) predicts to what extent A is included into B (see [4]). Moreover, many
researchers formulated axioms of inclusion i.e., they provide a list of properties which a
reasonable inclusion measure must satisfy. A significant contribution in this direction is
by Sinha and Dougherty [75]; they list nine properties that a reasonable inclusion measure
should satisfy and then proceed to introduce inclusion measures which have these proper-
ties. Cornelis [28] later proved that the scalar introduced by Bandler and Kohout in [4]
as: infx∈X{I(A(x),B(x)} is a fuzzy inclusion satisfying all the axioms of fuzzy inclusion
constructed by Sinha and Dougherty. Kehagias [47] made the most recent achievement in
this context by extending the range of fuzzy inclusion to a lattice. Willmott [85] has ad-
dressed the issue that the form of transitivity expected to be satisfied by set inclusion must
be different from the one set equivalence must satisfy.

Definition 7.1. [28] Let Inc be a F(X)×F(X)→ [0,1] mapping, and A, B and C fuzzy sets
in a given universe X. The Sinha-Dougherty axioms imposed on Inc are as follows:
Axiom 1. Inc(A,B) = 1 if and only if A⊆ B (in Zadeh’s sense)
Axiom 2. Inc(A,B) = 0 if and only if Ker(A)∩ supp(B) 6= /0, where, ker(A = {x ∈ X |
A(x) = 1}, supp(B) = {x ∈ X | B(x) > 0}
Axiom 3. B⊆C implies Inc(A,B)≤ Inc(A,C), i.e., Inc has increasing second partial map-
pings.
Axiom 4. B ⊆ C implies Inc(B,A) ≥ Inc(C,A), i.e., Inc has decreasing first partial map-
pings.
Axiom 5. Inc(A,B) = Inc(S(A),S(B)) where S is a F(X)→ F(X) mapping defined by, for
every x ∈ X, S(A)(x) = A(s(x)), s denoting an X → X mapping.
Axiom 6. Inc(A,B) = Inc(Bc,Ac).
Axiom 7. Inc(B∪C,A) = min(Inc(B,A), Inc(C,A)).
Axiom 8. Inc(A,B∩C) = min(Inc(A,B),(A,C)).

Definition 7.2. [4] A fuzzy relation Inc on F(X) is a fuzzy inclusion if and only if there is
a contrapositive fuzzy implication I on X such that: Inc(A,B) = infx∈X I(A(x),B(x)) for all
A,B ∈ F(X).
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Example 7.1. [79] The fuzzy inclusion Inc corresponding the Gödel implication operator
Ig is defined for any A and B in F(x) as follows: Inc(A,B) = infA(x)>B(x) B(x).

Remark 7.1. A list of some specific examples of fuzzy inclusion measures cited in [47]
are given below, for comparison with these previous attempts. i(A,B) in all these cases
represent the degree of inclusion of A into B. (1). i(A,B) = |A∧B|

|A| . (2). i(A,B) = |B|
|A∨B| .

(3). i(A,B) = |Ac∧Bc|
|Bc| . (4). i(A,B) = |Bc|

|Ac∨Bc| . (5). i(A,B) = ∑u∈U 1∧(1−A(u)+B(u))
|U | . (6). i(A,B) =

∑u∈U (1−A(u))∨B(u))
|U | .

8. The preference structures

Now we are in a position to give a formal discussion on fuzzy preference structure [84] that
come out of combinations of three fuzzy relations at a time. Some preliminaries of crisp
preference structures are also presented.

8.1. Classical preference structure [70]

The study of classical preference structures is a well-known field of research in preference
modeling. These structures consist of three fundamental relations (the strict preference,
indifference and incomparability relations) fulfilling a number of intuitive conditions. To
be more explanative, in decision problems a decision maker is usually confronted with a
set of alternatives A, among which for instance, the best alternative has to be selected. In
following we demand the decision maker to compare two alternatives a and b in A. It is then
acceptable to assume that the decision maker either
• prefers a to b;
• prefers b to a;
• is indifferent to a and b;
• is not able to compare a and b.

Further let P, I and J be three binary relations on A then:
• A couple of alternatives (a,b) belongs to the strict preference relation P if and only if

the user prefers a to b
• A couple of alternatives (a,b) belongs to the indifference relation I if and only if the

user is indifferent between alternatives a and b.
• A couple of alternatives (a,b) belongs to the incomparability relation J if and only if

the user is unable to compare a and b, for instance caused by conflicting or insufficient infor-
mation. These considerations lead to the following formal definition of the crisp preference
structure.

Definition 8.1. [70] A preference structure on a set A is a triplet (P, I,J) of binary relations
in A that satisfy : (1) P is irreflexive, I is reflexive and J is irreflexive; (2) P is asymmetrical, I
is symmetrical and J is symmetrical; (3) P∩I = /0,P∩J = /0 and I∩J = /0; (4) P∪Pt∪I∪J =
A2.

This definition is exhaustive: it lists all properties of the components P, I and J of a
preference structure. The asymmetry of P can also be written as P∩Pt = /0 and it implies
the irreflexivity of P. Condition (4) is called the completeness condition and expresses the
ability of the decision maker to judge all pairs of alternatives. It is important to realize that
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this condition can be written equivalently in at least eight different ways: C1 : co(P∪ I) =
Pt ∪ J;

C2 : co(P∪ J) = Pt ∪ I;
C3 : co(P∪Pt) = I∪ J;
C4 : coPt ∩ coJ∩ coI = P;
C5 : coP∩ coJ∩ coI = Pt ;
C6 : coP∩ coPt ∩ coJ = I;
C7 : coP∩ coPt ∩ coI = J;
C8 : P∪Pt ∪ I∪ J = A2.

Definition 8.2. [70] The binary relation R = P∪ I is called the large (or weak) preference
relation of the preference structure (P, I,J). The relation R is often interpreted as expressing
the relationship ”as good as” among two alternatives, i.e., (a,b) ∈ R means that a is as
good as b.

Remark 8.1. [70] It is a well known fact that from any reflexive binary relation R in a
set of alternatives A, a classical preference structure (P, I,J) can be constructed as follows:
(i) P = R∩ coRt ; (ii) I = R∩Rt ; (iii) J = coR∩ coRt .

A beautiful interpretation of this structure can be found in [40]. Moreover any classi-
cal preference structure (P, I,J) can be reconstructed from its large relation R = P∪ I in
the following manner: (P, I,J) = (R∩ coRt ,R∩Rt ,coR∩ coRt). By their crisp nature, the
preference structures can not express the degrees of preference, indifference or incompara-
bility, and are therefore too stringent in practice. Therefore the fuzzy relations are used to
construct fuzzy preference structures.

8.2. Fuzzy preference structures [30]

At first sight, the generalization of the concept of a classical preference structure to that of a
fuzzy preference structure, expressing degrees of strict preference, indifference and incom-
parability among a set of alternatives, seems to be a rather easy, formal task. Apparently the
process should require only the choice of a fuzzy union, intersection and complementation
operation on fuzzy relations, but it is not so. If a De Morgan triplet (S,T,N) is selected, the
following are the eight different forms of the completeness conditions:

C1 : co(P∪S I) = Pt ∪S J;
C2 : co(P∪S J) = Pt ∪S I;
C3 : co(P∪S Pt) = I∪S J;
C4 : coNPt ∩T coNJ∩T coNI = P;
C5 : coNP∩T coNJ∩T coNI = Pt ;
C6 : coNP∩T coNPt ∩T coNJ = I;
C7 : coNP∩T coNPt ∩T coNI = J;
C8 : P∪S Pt ∪S I∪S J = A2.
Where, the subscripts T,S,N denote the t-norm, t-conorm and the negator to be used as

conjunction, disjunction and complementation operators.
The notable thing is that there is no interrelationship amongst these eight conditions.

Hence in the construction of fuzzy preference structure one has to take care of which com-
pleteness conditions to be used.
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Definition 8.3. [30] Consider a strong De Morgan triplet M = (T,S,N) and i∈{1,2, . . . ,8}.
An M-fuzzy preference structure on A w.r.t completeness condition (Ci) is a triplet (P, I,J)
of fuzzy binary relations in A that satisfy:

(M1) P is irreflexive, I is reflexive and J is irreflexive;
(M2) P is T -asymmetrical, I is symmetrical and J is symmetrical;
(M3) P∩T I = /0,P∩T J = /0 and I∩T J = /0;
(M4) (P, I,J) satisfies completeness condition Ci.

However it is not guaranteed that for any triplet M there exist binary fuzzy relations P, I,J
satisfying the above definition. Also note that T -asymmetry means that P∩T Pt = /0.

Theorem 8.1. [30] Consider a De Morgan triplet M = (T,S,N) with a positive t-norm
and i ∈ {1,2, . . . ,8}. Then any M−FPS on A with respect to (Ci) is a classical preference
structure.

Therefore, we can not succeed in generalizing preference to the fuzzy case if we use a
positive t-norm in the underlying de Morgan triplet. In other words T must have zero divi-
sors. Restricting ourself to continuous t-norms, there are two possibilities: T is Archimedean,
or T is not Archimedean. In case T is Archimedean, it must be nilpotent, i.e., a φ -transform
of the Lukasiewicz t-norm.

Theorem 8.2. [30] Consider a continuous strong De Morgan triplet M = (T,S,N) with T a
non-Archimedean t-norm with zero divisors and i ∈ {1,2, ...8}. Then there exists a c ∈]0,1[
such that for any M−FPS (P, I,J) on A with respect to (Ci) it holds that P, I,J can not take
values in [c,1[.

An important class of preference structures consists of those structures for which there
are no couples of incomparable alternatives. A preference structure of the form (P, I,J = /0)
is called a preference structure without incomparability, and will be denoted as: (P, I). The
following theorem provides an important characterization of a preference structure in terms
of its large preference relation. Recall that a binary relation is called complete if and only if
R∪Rt = A2.

Theorem 8.3. [70] A preference structure (P, I,J) on A is a preference structure (P, I) on A
if and only if its large preference relation is complete.

Generally the following two classes of fuzzy preference structures may be distinguished.

Theorem 8.4. [36] A fuzzy preference structure (P, I,J) on A with fuzzy large preference
relation R in A is a fuzzy preference structure (P, I) on A of type 1 if and only if for all
(a,b) ∈ A2max(R(a,b),R(b,a)) = 1.

Theorem 8.5. [36] A fuzzy preference structure (P, I,J) on A with fuzzy large preference
relation R in A is a fuzzy preference structure (P, I) on A of type 2 if and only if for all
(a,b) ∈ A2 R(a,b)+ R(b,a) ≥ 1. In both the cases the following relationship between the
fuzzy strict preference relation P and the fuzzy large preference relation R holds: P(a,b) =
1−R(b,a) for all (a,b) ∈ A2.

8.2.1 Construction of fuzzy preference structures
Now we give an overview of different proposals for constructing a fuzzy strict preference

relation from a reflexive binary fuzzy relation R in A.
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(1) Orlovski [59] was the first who explicitly defined fuzzy preference and indifference
relations as follows: P(a,b) = max(R(a,b)−R(b,a),0), I(a,b) = min(R(a,b),R(b,a));
(2) Ovchinnikov [61] investigated fuzzy relations in a different framework:
The evaluation set was a partially ordered set . The fuzzy strict preference relation P is

defined by: P(a,b) =
{

R(a,b), if R(a,b) > R(b,a),
0, otherwise;

(3) Roubens and Vincke [70] were the first to simultaneously define fuzzy strict preference,
indifference and incomparability relations. There is no doubt about the definition of I and
J: I(a,b) = min(R(a,b),R(b,a)), J(a,b) = min(1−R(a,b),1−R(b,a)). In addition to the
previously stated forms of fuzzy preference they give the following definition: P(a,b) =
min(R(a,b),1−R(b,a));
(4) Roubens [69] cosiders a t-norm T such that for all x,y∈ [0,1](x+y≤ 1 implies T (x,y) =
0). And then he gives the following definition: P(a,b) = T (R(a,b),1−R(b,a)). Orlovski’s
definition is a particular case with T = W ;
(5) Ovchinnikov and Roubens [65] give the general functional form of a fuzzy strict prefer-
ence relation P, under the extra condition of it’s min-asymmetry:P(a,b)= p(R(a,b),R(b,a)),
where p is a [0,1]2→ [0,1] mapping with increasing first and decreasing second partial map-
pings. Such a mapping is called a strict preference generator. As an example they propose
the formula: P(a,b) = T (R(a,b),N(R(b,a))), where, T is a t-norm and N is an involutive
negator. For further details and for study of the axiomatic approach see [30].

9. Continuous and linear fuzzy relations

9.1. Continuous relations

In the study of relations continuous relations or continuous multivalued mappings possess
a very important place. Generally two types of continuity are defined for multivalued map-
pings: the upper semicontinuity and the lower semicontinuity. These continuities need two
types of inverse images the direct inverse image and the lower inverse image of an open
set, in the presence of a topological space. These inverses have already been defined and
generalized to their fuzzy counterpart as R−1(A) and R−1

C (A) respectively in 3.2.2. Let us
revise Aubin’s definitions of continuity.

Definition 9.1. [2] Let X and Y are metric (or topological spaces). A set valued map
R : X  Y is: (i) upper semicontinuous if the lower inverse of any open subset in Y is open
in Y ; (ii) lower semicontinuous if the direct inverse image of any open subset in Y is open
in X.
Corollary 9.1.2 [2] Let X and Y are metric (or topological spaces). A set valued map
R : X  Y is: (i) upper semicontinuous if the direct inverse of any closed subset in Y is
closed in Y ; (ii) lower semicontinuous if the lower inverse Image of any closed subset in Y
is closed in X.

Remark 9.1. [80] As defined earlier a fuzzy relation R on a crisp universe X is a fuzzy
subset of X×X while, a fuzzy multivalued mapping F assigns to each point of the universe
X a fuzzy subset of the universe Y . The connection between the two is defined as follows:
R(x,y) = F(x).y,

A fuzzy multivalued mapping is called: (i) non-void if and only if for all F(x) 6= φ for
all x ∈ X ; (ii) surjective if and only if rng(F) = Y ; (iii) normalized if and only if for all
x ∈ X there exists a y ∈ Y such that F(x).y = 1.
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Before proceeding towards the continuity of fuzzy multivalued mappings we need to
recall the definition of fuzzy topology.

Definition 9.2. [46] Given a nonempty set X. A fuzzy topology on X is a subset Φ of IX

satisfying: (1) Φ contains every constant fuzzy set. (2) If µ1 and µ2 then µ1∧µ2 ∈Φ. (3) If
µi for each i ∈ A, then supi∈A µi ∈Φ. A set with fuzzy topology present on it is called a fuzzy
topological space.

Definition 9.3. [8] A fuzzy multivalued mapping F : X  Y between two fuzzy topological
spaces X and Y is:

(a) upper hemicontinuous at the point x, if for every open neighborhood U of F(x) in
topological space Y , F−1

B (U) is a neighborhood of x in topological space X. The fuzzy
multivalued mapping F is upper hemicontinuous on X, if it is upper hemicontinuous at
every point of X.

(b) lower hemicontinuous at the point x, if for every open fuzzy set U which intersects
with F(x), F−1(U) is a neighborhood of x in X. The fuzzy multivalued mapping F is lower
hemicontinuous on X, if it is lower hemicontinuous at every point of X.

(c) continuous if it is both lower and upper hemicontinuous.

Lemma 9.1. [8] Let F : X  Y be a fuzzy multivalued mapping between two fuzzy topolog-
ical spaces X and Y , then (i) if F is upper hemicontinuous then F−1

B (φ) is open, (ii) if F is
lower hemicontinuous then F−1(Y ) is open.

Theorem 9.1. [8] Let F : X  Y be a fuzzy multivalued mapping between two fuzzy topo-
logical spaces X and Y , then the following statements are equivalent: (i) F−1

B (V ) is open
for each open fuzzy subset V of Y . (ii) F−1(W ) is closed for each closed fuzzy subset W of
Y .

The compositions, unions and intersections of upper and lower semicontinuous multival-
ued mappings are upper and lower semicontinuous respectively.

Theorem 9.2 (Fuzzy Maximum Theorem). [8]
Let X and Y be fuzzy topological space and f : X  Y be a continuous fuzzy multivalued
function with nonempty fuzzy compact values and suppose g : X ×Y → R is a continuous
fuzzy function. Define the value fuzzy function h : X → R by h(x) = max{g(x,y) : y ∈ f (x)}
and the fuzzy multivalued function m : X→Y of maximizers by m(x) = {y ∈ f (x) : g(x,y) =
h(x)} Then the fuzzy function h is continuous and fuzzy multivalued function m is upper
hemicontinuous with compact values.

10. Conclusion

In this survey article we have presented basics of fuzzy relational calculus and some of
their applications. Fuzzy relational calculus has more impressive applications in expert
systems and in artificial intelligence, approximate reasoning, inference system, psychology,
medical diagnosis, economics, sociology, knowledge representation, knowledge acquisition
and validation, learning, in information process, in pattern analysis and classification, in
fuzzy system science for fuzzy control and modeling, in decision making, in engineering
for fault detection and diagnosis, in management, etc. In future to implement fuzziness
in more complicated situations we require to further develop the theory of fuzzy relational
calculus.
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