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Abstract. In this paper, we study nonlinear boundary value problems of fractional differ-
ential equations.

(0.1)

{
Dq

0+ x(t) = f (t,x(t)) t ∈ J = [0,T ]
g
(
x(0),x(T ),x(η)

)
= 0 η ∈ [0,T ],

where D0+ denotes the Caputo fractional derivative, 0 < q ≤ 1. Some new results on the
multiple solutions are obtained by the use of the Amann theorem and the method of upper
and lower solutions. An example is also given to illustrate our results.
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1. Introduction

Fractional derivatives provide an excellent tool for physics, mechanics, chemistry, engineer-
ing, etc, see [1, 6, 8, 13, 14, 15, 22, 28, 37]. There has been a significant development in
fractional equations in recent years, see [2, 3, 5, 10, 11, 12, 21, 31, 34, 35], some papers
deal with the existence of the solution of initial value problems [19, 20, 30, 32, 33] or linear
boundary value problems for fractional differential equations by use of techniques of non-
linear analysis, see [4, 16, 23]. Recently, there is an increasing interest in the study of the
existence on multiple solutions for the nonlinear fractional differential equations. Bai et al.
[9] considered the existence and multiplicity of positive solutions of the nonlinear fractional
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differential equation boundary-value problem

(1.1)

{
Dα

0+u(t)+ f (t,u(t)) = 0 0 < t < 1
u(0) = u(1) = 0,

where 1 < α ≤ 2, Dα

0+ denotes the Riemann-Liouville fractional derivative, by means of
Guo-Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem. In [17],
Kaufmann and Mboumi considered the existence and multiplicity of positive solutions of
the nonlinear fractional differential equation boundary-value problem

(1.2)

{
Dα

0+u(t)+a(t) f (u(t)) = 0 0 < t < 1
u(0) = u′(1) = 0,

where 1 < α ≤ 2, Dα

0+ denotes the Riemann-Liouville fractional derivative, a is a positive
and continuous function on [0,1]. Zhao et al. [36] studied the existence on multiple positive
solutions for the nonlinear fractional differential equations

(1.3)

{
Dα

0+u(t)+ f (t,u(t)) = 0 0 < t < 1
u(0) = u′(0) = u′(1) = 0,

where Dα

0+ denotes the Riemann-Liouville fractional derivative, by the properties of the
Green function, the lower and upper solution method and fixed point theorem. Liu and Jia
[23] studied the multiple solutions of the following nonlinear fractional two-point boundary
value problem

(1.4)


Dα

0+x(t) = f (t,x(t),x′(t)) t ∈ J = [0,1]
g0(x(0),x′(0)) = 0,

g1(x(1),x′(1)) = 0,

x′′(0) = x′′′(0) = · · ·= xn−1(0) = 0,

by using the Amann theorem and the method of upper and lower solutions,where Dα

0+ is the
standard Caputo derivative, n > 2 is an integer, α ∈ (n−1,n]. But, it is not sufficient for us
to define Caputo derivative Dα

0+x(t), if α ∈ (n− 1,n] and x ∈ C1[0,1] by the definition of
Caputo derivative.

Motivated by the above, we focus on the multiple solutions for nonlinear fractional dif-
ferential equations with nonlinear boundary value conditions:

(1.5)

{
Dq

0+x(t) = f (t,x(t)) t ∈ J = [0,T ]
g(x(0),x(T ),x(η)) = 0 η ∈ [0,T ],

where D0+ denotes the Caputo fractional derivative, 0 < q≤ 1, f ∈C(J×R,R), g∈C(R3,R).
Boundary value conditions in (1.5) include periodic boundary value, anti-periodic boundary
value conditions. Therefore, we extend some previous results in many respects [6, 23, 25,
26, 34].

The article is organized as follow. In Section 2, we prepare some material need to prove
our results. In Section 3, it is devoted to the multiple solutions for Equation (1.5) by means
of the Amann theorem and the method of upper and lower solutions. In Section 4, we give
an example that illustrates our results.
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2. Background material and preliminaries

For the convenience of the readers, we first present some useful definitions and fundamental
facts of fractional calculus theory, which can be found in [18, 27, 29].

Definition 2.1. [18, 27, 29] Caputo’s derivative for a function f ∈Cn[0,∞) can been written
as

(2.1) Ds
0+ f (x) =

1
Γ(n− s)

∫ x

0

f (n)(t)dt
(x− t)s+1−n , n = [s]+1

where [s] denotes the integer part of real number s > 0.

Definition 2.2. [18, 27, 29] For s > 0, the integral

(2.2) Is
0+ f (x) =

1
Γ(s)

∫ x

0

f (t)
(x− t)1−s dt,

is called Riemann-Liouville fractional integral of order s.

Lemma 2.1. (cf. [18, p. 93–96]) Let u∈Cm[0,1] and q∈ (m−1,m), m∈N and v∈C[0,1].
Then, for t ∈ [0,1],

(1) Dq
0+Iqv(t) = v(t);

(2) IqDq
0+u(t) = u(t)−

m−1

∑
k=0

tk

k!
u(k)(0);

(3) lim
t→0+

Dq
0+u(t) = lim

t→0+
Iqu(t) = 0.

Let E be a Banach space, P⊂ E be a cone. A cone P is called solid if it contains interior
points, i.e. P̊ 6= /0. Every cone P in E defines a partial ordering in E given by x � y if and
only if y−x∈P. If x� y and x 6= y, we write x≺ y, if a cone P is solid and y−x∈ P̊, we write
x ≺≺ y. A cone P is said to be normal if there exists a constant N > 0 such that 0 � x � y
implies ‖ x ‖≤N ‖ y ‖ . If P is normal, then every ordered interval [x,y] = {z∈ E | x� z� y}
is bounded. In this paper, the partial ordering ”� ” is always given by P.

Lemma 2.2. [7] Let E be a Banach space, and P ⊂ E be a normal solid cone. Suppose
that there exist α1, β1, α2, β2 ∈ E with α1 ≺ β1 ≺ α2 ≺ β2 and A : [α1, β2] −→ E is a
completely continuous strongly increasing operator such that

α1 � Aα1, Aβ1 ≺ β1, α2 ≺ Aα2, Aβ2 � β2.

Then the operator A has at least three fixed points x1, x2, x3 such that

α1 � x1 ≺≺ β1, α2 ≺≺ x2 � β2, α2 6� x3 6� β1.

3. Existence results

Let E = {x(t) | x ∈C(J)} be a Banach space endowed with the norm ‖ x ‖E= max
t∈J
| x(t) | .

And define the cone P⊂ E by

P = {x ∈ E | x(t)≥ 0, t ∈ [0,T ]}.

Obviously, P is a normal solid cone in E, and x � y ∈ E if and only if x(t) ≤ y(t) for
t ∈ [0,T ].



242 Z. Liu and J. Liang

Theorem 3.1. Let h ∈C(J), 0 < q ≤ 1, λ 6= µ + γ and d,λ ,µ,γ ∈ R. Then the solution of
the boundary problem

(3.1)

{
Dq

0+x(t) = h(t) t ∈ J = [0,T ]
λx(0)−µx(T )− γx(η) = d, η ∈ [0,T ],

can be represented by

(3.2)
x(t) =

µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds+

γ

λ − (µ + γ)
1

Γ(q)
×∫

η

0
(η− s)q−1h(s)ds+

1
Γ(q)

∫ t

0
(t− s)q−1h(s)ds+

d
λ − (µ + γ)

.

Proof. Assume x satisfies (3.1), then Lemma 2.1 implies

x(t) = Iq
0+h(t)+ c0 =

1
Γ(q)

∫ t

0
(t− s)q−1h(s)ds+ c0.

By the boundary condition, we can obtain that

c0 =
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds

+
γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1h(s)ds+

d
λ − (µ + γ)

.

Thus, we have

x(t) =
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds+

γ

λ − (µ + γ)
1

Γ(q)∫
η

0
(η− s)q−1h(s)ds+

1
Γ(q)

∫ t

0
(t− s)q−1h(s)ds+

d
λ − (µ + γ)

.

Definition 3.1. We say that x(t) is a generalized solution of the fractional differential equa-
tion (3.1) if x ∈C(J,E) and satisfies (3.2). Similarly, we may give the definition of general-
ized solutions of (1.5).

Remark 3.1. Obviously, if x(t) ∈ C1(J,E) is a solution of (3.1), it is easily to get that
x(t) ∈ C(J,E) is a generalized solution of (3.1) in virtue of Theorem 3.1. However, by
the following simple example, a generalized solution of (3.1) is not a solutions of (3.1) in
general.

Example 3.1. Let h(t) = a (a is a constant), q = 1/2. According to (3.2), we get

x(t) =
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds+

γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1h(s)ds

+
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds+

d
λ − (µ + γ)

=
2a

Γ(1/2)
t1/2 +

µ

λ − (µ + γ)
2a

Γ(1/2)
T 1/2 +

γ

λ − (µ + γ)
2a

Γ(1/2)
η

1/2 +
d

λ − (µ + γ)
,

which implies that x(t) /∈C1([0,1],E). By the definition of Caputo derivative, we could not
define Caputo derivative Dq

0+x(t).
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Theorem 3.2. If 0 < q≤ 1, x ∈C1(J), λ > µ + γ, µ, γ ≥ 0 and{
Dq

0+x(t)≥ 0 t ∈ J = [0,T ]
λx(0)−µx(T )− γx(η)≥ 0, η ∈ [0,T ],

then x(t)≥ 0.

Proof. For any h ∈C(J), h(t)≥ 0, d ≥ 0. Consider the following equation{
Dq

0+x(t) = h(t) t ∈ J = [0,T ]
λx(0)−µx(T )− γx(η) = d,

by Theorem 3.1 and Lemma 2.1, we get

x(t) =
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1h(s)ds+

γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1h(s)ds

+
1

Γ(q)

∫ t

0
(t− s)q−1h(s)ds+

d
λ − (µ + γ)

.

It is easy to see that x(t)≥ 0. We complete the proof.

Definition 3.2. Let α,β ∈C1(J). α is called a lower solution of boundary value problem
(1.5) if it satisfies {

Dq
0+α(t)≤ f (t,α(t)) t ∈ J = [0,T ]

g(α(0),α(T ),α(η))≥ 0, η ∈ [0,T ].

β is called a upper solution of boundary value problem (1.5) if it satisfies{
Dq

0+β (t)≥ f (t,β (t)) t ∈ J = [0,T ]
g(β (0),β (T ),β (η))≤ 0, η ∈ [0,T ].

In the sequel, we need the following hypotheses:

(H1) f : J×R→ R is strictly increasing with respect to the second variable.
(H2) g(u2,v2,w2)−g(u1,v1,w1)≥−λ (u2−u1)+ µ(v2− v1)+ γ(w2−w1),

where u1 ≤ u2, v1 ≤ v2, w1 ≤ w2, λ > µ + γ, µ > 0,γ ≥ 0.

Theorem 3.3. Assume that (H1) and (H2) hold. And there exist two lower solutions α1,α2
and two upper solutions β1, β2 of boundary value problem (1.5) such that α2, β1 are not the
solutions of the boundary value problem (1.5) with α1 ≺ β1 ≺ α2 ≺ β2. Then the boundary
value problem (1.5) has at least three distinct generalized solutions x1, x2, x3 and satisfies

α1 � x1 ≺≺ β1, α2 ≺≺ x2 � β2, α2 6� x3 6� β1.

Proof. We will prove the theorem in view of Lemma 2.2. For any u ∈ [α1, β2], consider the
following problem

(3.3)

{
Dq

0+x(t) = f (t,u(t)) t ∈ J = [0,T ]
λx(0)−µx(T )− γx(η) = g(u(0),u(T ),u(η))+λu(0)−µu(T )− γu(η),
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by Theorem 3.1, we have

x(t) =
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1 f (s,u(s))ds

+
γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1 f (s,u(s))ds

+
1

Γ(q)

∫ t

0
(t− s)q−1 f (s,u(s))ds

+
1

λ − (µ + γ)
[g(u(0),u(T ),u(η))+λu(0)−µu(T )− γu(η)] =: (Au)(t).

It is easy to see that x is the generalized solution of the boundary value problem (1.5) if and
only if x is the fixed point of A. We show that A : [α1,β2]−→ E is completely continuous.

First, we prove that A is continuous. For u1, u2 ∈ [α1, β2],

| Au2−Au1 |

=
∣∣∣∣ µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1[ f (s,u2(s))− f (s,u1(s))

]
ds

+
γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1[ f (s,u2(s))− f (s,u1(s))

]
ds

+
1

Γ(q)

∫ t

0
(t− s)q−1[ f (s,u2(s))− f (s,u1(s))

]
ds

+
1

λ − (µ + γ)
[
g(u2(0),u2(T ),u2(η))−g(u1(0),u1(T ),u1(η))

+λ (u2(0)−u1(0))−µ(u2(T )−u1(T ))− γ(u2(η)−u1(η))
]∣∣∣∣,

≤
(

µ

λ − (µ + γ)
T q

Γ(q+1)
+

γ

λ − (µ + γ)
ηq

Γ(q+1)
+

tq

Γ(q+1)

)
max
s∈J
| f (s,u2(s))− f (s,u1(s)) |

+
∣∣∣∣ 1
λ − (µ + γ)

[
g(u2(0),u2(T ),u2(η))−g(u1(0),u1(T ),u1(η))

+λ (u2(0)−u1(0))−µ(u2(T )−u1(T ))− γ(u2(η)−u1(η))
]∣∣∣∣,

in view of the continuity of f , g, we have A is continuous.
Next, we claim that A is a compact operator. For 0≤ t1 ≤ t2 ≤ T,

| Au(t2)−Au(t1) |

=
1

Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1 f (s,u(s))ds−

∫ t1

0
(t1− s)q−1 f (s,u(s))dsds

∣∣∣∣
≤ ϖ

Γ(q+1)

∣∣∣∣∫ t1

0
((t2− s)q−1− (t1− s)q−1)ds

∣∣∣∣+ ϖ

Γ(q+1)

∣∣∣∣∫ t2

t1
(t2− s)q−1ds

∣∣∣∣
≤ 2ϖ

Γ(q+1)
(t2− t1)q,
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where ϖ = max
s∈J
| f (s,u(s)) |, which show that A is equicontinuous. It is obvious that A is

uniformly bounded for all u ∈ [α1,β2]. Therefore, A is compact operator by Ascoli-Arzela
theorem.

We show A is strongly increasing operator. For any u1, u2 ∈ [α1,β2], with u1 ≺ u2 i.e.
u1(t)≤ u2(t) and u1(t) 6≡ u2(t). In view of (H1), we have for ∀ t ∈ J

f (t,u2(t))− f (t,u1(t))≥ 0.

There exists an interval [a,b] ⊂ [0,T ] such that u1(t) < u2(t) for t ∈ [a,b] through the fact
u1(t) 6≡ u2(t). Hence, by (H1) again

(3.4) f (t,u2(t))− f (t,u1(t)) > 0 t ∈ [a,b].

By (3.4), we have for ∀ t ∈ J,

(Au2)(t)− (Au1)(t)

=
µ

λ − (µ + γ)
1

Γ(q)

∫ T

0
(T − s)q−1[ f (s,u2(s))− f (s,u1(s))]ds

+
γ

λ − (µ + γ)
1

Γ(q)

∫
η

0
(η− s)q−1[ f (s,u2(s))− f (s,u1(s))]ds

+
1

Γ(q)

∫ t

0
(t− s)q−1[ f (s,u2(s))− f (s,u1(s))]ds

+
1

λ − (µ + γ)
[
g(u2(0),u2(T ),u2(η))−g(u1(0),u1(T ),u1(η))

+λ (u2(0)−u1(0))−µ(u2(T )−u1(T ))− γ(u2(η)−u1(η))
]

>
µ

λ − (µ + γ)
1

Γ(q)

∫ b

a
(T − s)q−1[ f (s,u2(s))− f (s,u1(s))]ds > 0.

Thus, Au1(t)≺ Au2(t), for t ∈ J, and we get A is strongly increasing operator.
Now, we prove α1 � Aα1. Consider the following problem

Dq
0+Aα1(t) = f (t,α1(t)) t ∈ J = [0,T ]

λAα1(0)−µAα1(T )− γAα1(η) = g(α1(0),α1(T ),α1(η))
+λα1(0)−µα1(T )− γα1(η).

Set α(t) = Aα1(t)−α1(t). In view of α1 a lower solution of Equation (1.1), we get

Dq
0+α(t) = Dq

0+Aα1(t)−Dq
0+α1(t) = f (t,α1(t))−Dq

0+α1(t)≥ 0,

λα(0)−µα(T )− γα(η) = λAα1(0)−µAα1(T )− γAα1(η)

− (λα1(0)−µα1(T )− γα1(η))

= g(α1(0),α1(T ),α1(η))≥ 0.

By Theorem 3.2, we know that α(t)≥ 0 and α1 � Aα1.
Similarly, we have α2 � Aα2. We know α2 6= Aα2, since α2 is a lower solution of Equa-

tion (1.5), and not is a solution of Equation (1.5). Thus α2 ≺ Aα2. According to the same
way, we can get Aβ1 ≺ β1, Aβ2 � β2.

In view of Lemma 2.2, we know that A has at least three fixed points x1, x2, x3 ∈ [α1,β2],
moreover

α1 � x1 ≺≺ β1, α2 ≺≺ x2 � β2, α2 6� x3 6� β1.
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Remark 3.2. (1) In a similar way, we can deal with multiple solutions for problem (1.5)
with more general nonlinear boundary conditions

g(x(t0), x(t1), . . . , x(tm)) = 0,

where 0 = t0 < t1 < t2 < · · ·< tm = T under some conditions.
(2) We may discuss the extension to fractional order between 1 and 2, and even higher

order in the same way.
(3) We have to consider the extension to Riemann-Liouville fractional derivatives by

different methods, because of the fact (cf. [27, p.70])

aD−p
t
(

aDp
t x(t)

)
= x(t)−

n

∑
j=1

[
aDp− j

t x(t)
]

t=a
(t−a)p− j

Γ(p− j +1)
, n−1≤ p≤ n.

See [27] for the definition of the Riemann-Liouville fractional integral aD−p
t .

4. Example

Consider the following problems

(4.1)

{
D1/2

0+ x(t) = 4t1/2/π arctan(ex(t)) t ∈ J = [0,1]
x(0)−1/4x(1) = 1/2x(η),

where f (t,x(t)) = 4t1/2/π arctan(ex(t)), g(x(0), x(1), x(η)) = x(0)− 1/4x(1)− 1/2x(η),
η = 1/2, λ = 1, µ = 1/4, γ = 1/2. We can easily verify that (H1) and (H2) hold. It is easy
to see that α1 = t +2, α2 = 2t +7 are the lower solutions, β1 = 4t2 +3,β2 = 16t2/3+8 are
the upper solutions of Equation (4.1).Thus, all the condition of Theorem 3.3 are satisfied
and the problem (4.1) has at least three fixed points x1, x2, x3 ∈ [α1,β2], moreover

α1 � x1 ≺≺ β1, α2 ≺≺ x2 � β2, α2 6� x3 6� β1.
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61263006.
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