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1. Introduction

The investigation of graphs related to various algebraic structures is a very large and grow-
ing area of research. In particular, Cayley graphs have attracted serious attention in the
literature, since they have many useful applications, see [11, 12, 15, 17, 20] for examples
of recent results and further references. Several other classes of graphs associated with
algebraic structures have been also actively investigated. For example, power graphs and
divisibility graphs have been considered in [9, 10], zero-divisor graphs have been studied
in [2–4, 6, 8], and cozero-divisor graphs have been introduced in [1].

Let R be a non-zero commutative ring with identity. In [16], Sharma and Bhatwadekar
defined the comaximal graph on R, denoted by Γ(R), with all elements of R being the
vertices of Γ(R), where two distinct vertices a and b are adjacent if and only if Ra+Rb = R.
In [13] and [18], the authors considered a subgraph Γ2(R) of Γ(R) consisting of non-unit
elements of R, and studied several properties of the comaximal graph. Also the comaximal
graph of a non-commutative ring was defined and studied in [19].

In this paper, we introduce and study the comaximal graph of a finite bounded lattice.
In Section 2, we discuss algebraic properties of a lattice L and we characterize all maximal
ideals of L. In Section 3, we define the comaximal graph of a lattice L, denoted by Γ(L), and
study some graph-theoretic properties of it. Moreover, among other things, we determine
the clique number and chromatic number of this graph. Finally, in Section 4, we completely
describe the planarity of the comaximal graph Γ(L).

Now we recall some definitions and notation on graphs. We use the standard terminology
of graphs following [5]. In a graph G, the distance between two distinct vertices a and b,
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denoted by d(a,b), is the length of the shortest path connecting a and b, if such a path exists;
otherwise, we set d(a,b) := ∞. The diameter of a graph G is diam(G) = sup{d(a,b) : a and
b are distinct vertices of G}. The girth of G, denoted by g(G), is the length of the shortest
cycle in G, if G contains a cycle; otherwise, we set g(G) := ∞. Also, for two distinct vertices
a and b in G, the notation a− b means that a and b are adjacent. A graph G is said to be
connected if there exists a path between any two distinct vertices, and it is complete if it is
connected with diameter one. We use Kn to denote the complete graph with n vertices. We
say that G is totally disconnected if no two vertices of G are adjacent. Also, G is called
an empty graph if its vertex-set is empty. A clique of a graph is a complete subgraph of it
and the number of vertices in a largest clique of G, denoted by ω(G), is called the clique
number of G. The chromatic number of a graph G, denoted by χ(G), is the minimal number
of colors which can be assigned to the vertices of G in such a way that every two adjacent
vertices have different colors. For a positive integer r, an r-partite graph is one whose
vertex-set can be partitioned into r subsets so that no edge has both ends in any one subset.
A complete r-partite graph is one in which each vertex is joined to every vertex that is not
in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n
is denoted by Km,n. A graph is said to be planar if it can be drawn in the plane so that its
edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained
from the original graph by replacing edges by paths. A remarkable simple characterization
of the planar graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says that a
graph is planar if and only if it contains no subdivision of K5 or K3,3 (cf. [5, p. 153]).

2. Basic definitions and properties

In this section, firstly we recall some definitions and notations on lattices.
A lattice is an algebra L = (L,∧,∨) satisfying the following conditions: for all a,b,c∈ L,

1. a∧a = a, a∨a = a,
2. a∧b = b∧a, a∨b = b∨a,
3. (a∧b)∧ c = a∧ (b∧ c), a∨ (b∨ c) = (a∨b)∨ c, and
4. a∨ (a∧b) = a∧ (a∨b) = a.

Note that in every lattice a∧b = a always implies that a∨b = b.
In the next theorem, we recall an equivalent definition of a lattice with respect to a partial

order relation which will be used in this paper.

Theorem 2.1. [14, Theorem 2.1] Let L be a lattice. One can define an order 6 on L as
follows:

For any a,b ∈ L, we set a 6 b if and only if a∧ b = a. Then (L,6) is an ordered set
in which every pair of elements has a greatest lower bound (g.l.b.) and a least upper
bound (l.u.b.). Conversely, let P be an ordered set such that, for every pair a,b ∈ P,
g.l.b.(a,b), l.u.b.(a,b) ∈ P. For each a and b in P, we define a∧ b := g.l.b.(a,b) and
a∨b := l.u.b.(a,b). Then (P,∧,∨) is a lattice.

A lattice L is said to be bounded if there are elements 0 and 1 in L such that 0∧ a = 0
and a∨1 = 1, for all a ∈ L.

Definition 2.1. [7, Definition 39] A non-empty subset I of a lattice L is called an ideal of L
if and only if the following conditions are satisfied:

(i) For a,b ∈ I, a∨b ∈ I.
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(ii) For a ∈ I and c ∈ L, a∧ c ∈ I.

An ideal I of L is proper if I 6= L.

Theorem 2.2. [7, Theorem 59] For an ideal I of L, the following conditions are satisfied:
(i) If a ∈ I and b 6 a, then b ∈ I.

(ii) If a∨b ∈ I, then we have a,b ∈ I.

Let I and J be ideals of a lattice L. Consider the set C of all elements c of L such that
c 6 a∨b, for some elements a ∈ I and b ∈ J. Clearly, C is non-empty, because it obviously
contains every element of I and of J. Also, by [7, Theorem 65], C is the least ideal (with
respect to inclusion) containing I and J. We write I ∨ J for C. The ideal I ∨ J is said to be
the ideal generated by the set-union S = I ∪ J. If S consists of a single element a, then the
ideal generated by the set {a} is called the principal ideal generated by a; it consists of all
x 6 a and will be denoted by [a]` (see [7, Definition 41]). It is easy to see that, for each two
principal ideals [a]` and [b]`, we have the following equalities:

[a]`∧ [b]` = [a∧b]`, [a]`∨ [b]` = [a∨b]`.

A lattice L is said to be distributive if and only if, for all elements a,b,c ∈ L,

a∧ (b∨ c) = (a∧b)∨ (a∧ c).

In a distributive lattice L, for all a,b,c ∈ L, we have

a∨ (b∧ c) = (a∨b)∧ (a∨ c).

Proposition 2.1. Let L be a distributive lattice and, I and J be ideals of L. Then

I∨ J = {a∨b | a ∈ I, b ∈ J}.
Proof. Set S := {a∨ b | a ∈ I, b ∈ J}. Since L is distributive, it is easy to check that S is
an ideal of L which contains I ∪ J. Now let K be an ideal of L which contains I ∪ J. Then
clearly K contains S. Since I ∨ J is the least ideal containing I and J, the result holds, and
so we have I∨ J = {a∨b | a ∈ I, b ∈ J}.

Proposition 2.2. Let I be an ideal of L. Then I = L if and only if 1 ∈ I.

Proof. Clearly if I = L, then 1∈ I. Now, suppose that 1∈ I and that a∈ L. Then a = a∧1∈
I. So I = L.

In the following definition, we introduce a unit element in a lattice.

Definition 2.2. An element a in L is said to be a unit if there exists an element b in L such
that a∧b = 1.

Note that 1 is the only unit element in every lattice, because if a∧b = 1, since a∧b 6 a
and a∧b 6 b, we have 1 6 a and 1 6 b which implies that a = 1 = b.

Proposition 2.3. Suppose that a,b ∈ L. Then [a]`∨ [b]` = L if and only if a∨b = 1.

Proof. First let us assume that [a]` ∨ [b]` = L. Then we have [a∨ b]` = L. Thus 1 6 a∨ b,
and also a∨b 6 1, which implies that a∨b = 1.

Conversely, suppose that a∨ b = 1. Since, for any element c ∈ L, c 6 1 we have that
c ∈ [a∨b]`. Hence [a∨b]` = L, and so [a]`∨ [b]` = L.
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Definition 2.3. 1. In a partially ordered set (P,6), we say that a covers b or b is
covered by a, in notation b≺ a, if and only if b < a and there is no element p in P
such that b < p < a.

2. An element a in L is called an atom if 0 ≺ a. Similarly, a is called a co-atom if
a ≺ 1. We denote the sets of all atoms and co-atoms in a lattice L by A(L) and
C(L), respectively.

A maximal ideal of L is a proper ideal which is maximal among all ideals of L. We
denote the set of all maximal ideals of L by Max(L). Also, one can easily check that the set

J(L) :=
⋂

m∈Max(L)

m

is an ideal of L. We call it the Jacobson radical of L.
In the following theorem, we characterize all maximal ideals of L in terms of the co-

atoms of L.

Theorem 2.3. In a lattice L, we have

Max(L) = {[m]` |m ∈C(L)},
and so the number of maximal ideals in L is equal to the number of co-atoms of L; in other
words, we have |Max(L)|= |C(L)|.
Proof. Let I be a maximal ideal of L. Then we have the following cases:
Case 1. There exists a co-atom m ∈ C(L) such that m ∈ I. Then clearly I ⊇ [m]`. Now,
if there is an element a ∈ I \ [m]`, then we have that a∨m ∈ I. Since m 6 a∨m, one can
conclude that a∨m = 1 or a∨m = m. If a∨m = 1, then, by Proposition 2.2, I = L which is
impossible. Otherwise, a∨m = m. In this situation, a 6 m, and so a ∈ [m]` which is again
impossible. Thus I = [m]`.
Case 2. Assume that I doesn’t contain any co-atom. Let S be the set of all maximal elements
in I. If |S|> 1, then assume that a and b are two distinct elements in S. Since I is an ideal,
we have a∨b ∈ I. Also a 6 a∨b and b 6 a∨b. Since a and b are maximal elements in I,
we have a = a∨b = b, which is impossible. Therefore, S is singleton. Let a be the unique
maximal element in I. Then a 6 m, for some m ∈C(L). Thus I ⊂ [m]` which is impossible.

Also, it is easy to check that, for each m ∈C(L), [m]` is a maximal ideal in L. Hence the
results follow.

3. Comaximal graph of a lattice

In the rest of the paper, we assume that L is a finite bounded lattice. We define the comaximal
graph of a lattice L, denoted by Γ(L), as an undirected graph with all elements of L being
the vertices, and two distinct vertices a and b are adjacent if and only if [a]` ∨ [b]` = L or
equivalently a∨b = 1.

In the comaximal graph Γ(L), the vertex 1, which is the only unit element in L, is adja-
cent to all other vertices, and so Γ(L) is a refinement of a star graph with center 1. Thus
we consider all non-unit elements L \ {1} as vertex-set and denote this set by W (L). By
Theorem 2.3, one can easily see that W (L) is the set

⋃
m∈Max(L) m.

We begin this section with the following proposition.

Proposition 3.1. An induced subgraph of Γ(L) with vertex-set J(L) is totally disconnected
and it is disjoint from an induced subgraph with vertices in W (L)\ J(L).
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Proof. Suppose that a and b are arbitrary elements in J(L). If a and b are adjacent, then we
have a∨ b = 1. Also, since a,b ∈ J(L), there exists m ∈C(L) such that a 6 m and b 6 m.
This implies that 1 = a∨b 6 m which is impossible. So a is not adjacent to b.

Now, suppose that a ∈ J(L) and b ∈W (L)\ J(L). Since there exists m ∈C(L) such that
a 6 m and b 6 m, again one can conclude that a is not adjacent to b.

In Proposition 3.1, we showed that all vertices in J(L) are isolated vertices. Therefore
we ignore these isolated vertices and consider an induced subgraph of Γ(L) with vertex-set
W (L)\ J(L), which will be denoted by Γ2(L). Note that Γ(L) is totally disconnected if and
only if |C(L)| = 1 and, in this situation, by Theorem 2.3, we have W (L) = J(L). So in the
rest of this section, for studying some basic properties of Γ2(L), we assume that |C(L)|> 2.

In the next theorem, we study the connectedness and diameter of Γ2(L).

Theorem 3.1. The graph Γ2(L) is connected and diam(Γ2(L)) 6 3.

Proof. Let x and y be two distinct vertices in W (L) \ J(L). Since x,y /∈ J(L), there exist
maximal ideals [m]` and [m′]` such that x /∈ [m]` and y /∈ [m′]`. Thus x∨m = 1 and y∨m′ = 1.
This means that x is adjacent to m and y is adjacent to m′. Now, if m = m′, then we have
the path x−m− y. Otherwise, m 6= m′. Therefore m 6 m∨m′ and since m is a co-atom,
m∨m′ = m or m∨m′ = 1. Now, if m∨m′ = m, then we have that m′ 6 m which is
impossible. So m∨m′ = 1 and one can find the path x−m−m′ − y between x and y.
Therefore Γ2(L) is connected, and with the above discussion, we have diam(Γ2(L)) 6 3.

Proposition 3.2. The graph Γ2(L) is complete if and only if W (L)\ J(L) = C(L).

Proof. First suppose that Γ2(L) is complete. Suppose to the contrary that there exists an
element x ∈ (W (L) \ J(L)) \C(L). So there is a co-atom m in C(L) such that x 6 m. Thus
x∨m 6= 1. This means that x and m are not adjacent which is a contradiction.

Conversely, suppose that W (L) \ J(L) = C(L). Since, for each two distinct elements m
and m′ in C(L), m∨m′ = 1, we have m is adjacent to m′. Thus the induced subgraph of
Γ2(L) with vertex-set C(L) is complete, and hence the result holds.

In the following theorem, we study complete n-partite comaximal graphs.

Theorem 3.2. For a positive integer n, the graph Γ2(L) is a complete n-partite graph if and
only if |C(L)| = n and, for each two distinct maximal ideals [m]` and [m′]`, [m]` ∩ [m′]` =
J(L).

Proof. At first suppose that Γ2(L) is a complete n-partite graph. If |C(L)| > n, then there
exists a part with at least two co-atoms, say m and m′. But we have m∨m′ = 1, and so m
is adjacent to m′ which is impossible. Hence |C(L)| 6 n. If |C(L)| < n, then there exists
a part which doesn’t contain any co-atom. Let x belong to this part. Then x 6 m, for
some m ∈ C(L). Clearly, x∨m 6= 1, and so x is not adjacent to m which is impossible,
since by our assumption Γ2(L) is a complete n-partite graph. Thus we have |C(L)| = n.
Now, assume to the contrary that there exist two distinct maximal ideals [m]` and [m′]` with
[m]` ∩ [m′]` 6= J(L). Let V and V ′ be two parts that contain m and m′, respectively. Also,
suppose that x ∈ ([m]`∩ [m′]`)\ J(L). Then we have x∨m 6= 1 and x∨m′ 6= 1. So x is not
adjacent to both m and m′. Since Γ2(L) is a complete n-partite graph, we have x ∈ V ∩V ′,
which is a contradiction.

For the converse statement, set Vi := [mi]` \ J(L), where mi ∈C(L). Then one can easily
check that Γ2(L) is a complete n-partite graph with parts Vi, for i = 1, . . . ,n.
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Corollary 3.1. (i) If Γ2(L) is n-partite, then |C(L)|6 n.
(ii) The graph Γ2(L) is a complete bipartite graph if and only if |C(L)|= 2.

In the following result, we investigate the girth of Γ2(L).

Theorem 3.3. In the graph Γ2(L), we have g(Γ2(L)) ∈ {3,4,∞}.

Proof. If |C(L)| > 3, then, by choosing distinct elements m1,m2,m3 in C(L), we have the
cycle m1−m2−m3−m1, and so g(Γ2(L)) = 3. If |C(L)|= 2, then Max(L) = {[m]`, [m′]`}
and Γ2(L) is a complete bipartite graph. In this situation, if |[m]` \ [m′]`|, |[m′]` \ [m]`| > 2,
then clearly g(Γ2(L)) = 4. Otherwise, we have g(Γ2(L)) = ∞.

In the next result, we determine the clique number and chromatic number of Γ2(L).

Theorem 3.4. In the graph Γ2(L), we have

χ(Γ2(L)) = ω(Γ2(L)) = |C(L)|.
Proof. Assume that t is the number of co-atoms in L and Max(L) = {[m1]`, . . . , [mt ]`}.
Put S1 := [m1]` and Si := [mi]` \

⋃i−1
j=1[m j]`, for i = 2, . . . , t. Clearly there is no adjacency

between vertices in Si and Si ∩ S j = /0, for all i 6= j. Also W (L) =
⋃t

i=1 Si. Thus we have
χ(Γ2(L)) 6 t. Now, since the set {m1, . . . ,mt} forms a clique for Γ2(L), one can conclude
that t 6 ω(Γ2(L)). On the other hand, it is clear that ω(Γ2(L)) 6 χ(Γ2(L)). So the result
holds.

Since 1 is the only unit element in L which is adjacent to all other vertices, by Theorem
3.4, we have the following result.

Corollary 3.2. The following equalities hold.

χ(Γ(L)) = ω(Γ(L)) = |C(L)|+1

We end this section with the following proposition.

Proposition 3.3. Let L′ be a finite bounded lattice such that Γ2(L)∼= Γ2(L′). Then we have
|C(L)|= |C(L′)| and |L\ J(L)|= |L′ \ J(L′)|.
Proof. Since Γ2(L)∼= Γ2(L′), we have ω(Γ2(L)) = ω(Γ2(L′)). Therefore, by Theorem 3.4,
we conclude that |C(L)|= |C(L′)|. Also, clearly |L\ J(L)|= |L′ \ J(L′)|.

4. Planar comaximal graph of a lattice

In this section, we investigate the planarity of the graph Γ(L). Since the vertices in the set
J(L) are isolated vertices, one can easily see that Γ(L) is planar if and only if Γ2(L) is planar.
Therefore, we ignore the isolated vertices and study the planarity of Γ2(L).

We begin this section with the following lemma.

Lemma 4.1. If Γ2(L) is planar, then |C(L)|6 4.

Proof. Assume to the contrary that |C(L)|> 5. Let m1, . . . ,m5 be distinct elements in C(L).
Clearly, for each i, j with 1 6 i 6= j 6 5, we have mi∨m j = 1, and so mi is adjacent to m j.
Thus K5 is a subgraph of Γ2(L), and hence, by Kuratowski’s Theorem, it is not planar which
is a contradiction. Hence |C(L)|6 4.
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If |C(L)|= 1, then Γ2(L) is an empty graph. Now, suppose that |C(L)|= 2. By part (ii)
of Corollary 3.1, we have that Γ2(L) is a complete bipartite graph. So Γ2(L) is planar if and
only if |[m1]` \ [m2]`|6 2 or |[m2]` \ [m1]`|6 2, where C(L) = {m1,m2}.

Hence the only remaining cases to consider are |C(L)|= 3 and |C(L)|= 4.

Notations 4.1. To simplify notation, we denote the maximal ideal [m]`, where m ∈ C(L),
by m. Suppose that Max(L) = {m1, . . . ,mt}, where t > 1. We set S j := m j \⋃

mi 6=m j
mi,

S j1 j2 := (m j1 ∩m j2)\
⋃

i/∈{ j1, j2}mi and S j1 j2 j3 := (m j1 ∩m j2 ∩m j3)\
⋃

i/∈{ j1, j2, j3}mi, where
1 6 j1 < j2 < j3 6 t.

Note that each element in Si is adjacent to all elements of S j, for i 6= j, and also it is
adjacent to all elements in S j1 j2 and S j1 j2 j3 , where j1, j2, j3 /∈ {i}.

Now consider the case where |C(L)| = 3. Put Max(L) := {m1,m2,m3}. If there exist
distinct i and j with 1 6 i, j 6 3 such that |Si|, |S j|> 3, then K3,3 is a subgraph of Γ2(L), and
so it is not planar.

Assume that there exists a unique Si, say S1, such that |S1| > 3. In this situation Γ2(L)
is planar if and only if |S2| = |S3| = 1 and S23 = /0. Now, suppose that, for all 1 6 i 6 3,
|Si|6 2. At first assume that, for all i, |Si|= 2. If there exists a non-empty Si j, then without
loss of generality, we may assume that S12 6= /0 and in this situation, we have the subdivision
of K3,3 in Γ2(L) as it is shown in Figure 1, where a1,a′1 ∈ S1, a2,a′2 ∈ S2, a3,a′3 ∈ S3 and
b ∈ S12. Thus Γ2(L) is not planar.

Figure 1. A subdivision of K3,3

Suppose that there are distinct Si and S j, without loss of generality, S2 and S3 with |S2|=
|S3| = 2. In this situation, if S1,3,S1,2 6= /0, then Γ2(L) has the following subdivision of K5,
where a1 ∈ S1, a2,a′2 ∈ S2, a3,a′3 ∈ S3, b ∈ S13 and c ∈ S12. Hence Γ2(L) is not planar.
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Figure 2. A subdivision of K5

If there exists only one Si with |Si| = 2 or, for all i, |Si| = 1, then one can easily check
that Γ2(L) is planar.

By the above discussions, we have the following theorem.

Theorem 4.2. Suppose that |C(L)| = 3. Then Γ2(L) is planar if and only if one of the
following conditions hold.

(i) |Si|> 3 and |S j|= 1, for all j 6= i, and S jk = /0, for j 6= i 6= k, where 1 6 i, j,k 6 3.
(ii) |Si|= 2, for all 1 6 i 6 3, and Si j = /0, for all 1 6 i < j 6 3.

(iii) |Si| = |S j| = 2, for some i and j with 1 6 i < j 6 3, and Ski = /0 or Sk j = /0, where
k /∈ {i, j} and 1 6 k 6 3.

(iv) There is a unique Si with |Si|= 2, and |S j|= 1, for all j 6= i, where 1 6 i, j 6 3.
(v) For all 1 6 i 6 3, |Si|= 1.

Now, to complete the study of planarity of Γ2(L), we only need to consider the case
where |C(L)|= 4.

Theorem 4.3. Assume that |C(L)| = 4. Then Γ2(L) is planar if and only if one of the
following conditions hold.

(i) For all 1 6 i 6 4, |Si|= 1.
(ii) There exists only one Si with |Si|= 2 and, in this situation, S jk = /0 for all j,k /∈ {i},

and S jkl = /0 for j,k, l /∈ {i}.

Proof. If one of the conditions (i) or (ii) holds true, then one can easily check that Γ2(L) is
planar.

Conversely, suppose that Γ2(L) is planar and assume to the contrary that neither (i) nor
(ii) is satisfied. So there is some i with 1 6 i 6 4, say i = 1, such that |S1|> 2. Now we have
the following cases:
Case 1. There exists some j with 2 6 j 6 4, say j = 2, such that |S2|> 2. Then the vertices
of the set {a1,a2,c}∪{b1,b2,d} form the graph K3,3, where a1,a2 ∈ S1, b1,b2 ∈ S2, c ∈ S3
and d ∈ S4. Thus Γ2(L) is not planar which is the required contradiction.
Case 2. For all 2 6 j 6 4, |S j| = 1 and we have S jk 6= /0, for some 1 < j < k, say S23 6= /0
or S234 6= /0. If S23 6= /0, then the vertices of the set {a1,a2,d}∪ {b,c,e} form the graph
K3,3, where a1,a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4 and e ∈ S23. Thus Γ2(L) is not planar, a
contradiction. Now if S234 6= /0, then the vertices of the set {a1,a′1,a2,a3,a4,b} form a
subdivision of K5, where a1,a′1 ∈ S1, a2 ∈ S2, a3 ∈ S3, a4 ∈ S4 and b ∈ S234. Therefore
Γ2(L) is not planar which is again a contradiction.
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Therefore, if Γ2(L) is planar, then one of the conditions (i) or (ii) holds.

Acknowledgement. The authors are deeply grateful to the referee for careful reading of the
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