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Abstract. In this paper, we investigate the rectangular mixed finite element methods for
the quadratic convex optimal control problem governed by nonlinear elliptic equations with
pointwise control constraints. The state and the co-state are approximated by the lowest or-
der Raviart-Thomas mixed finite element spaces and the control is approximated by piece-
wise constant functions. We derive L∞-error estimates for the rectangular mixed finite el-
ement approximation of nonlinear quadratic optimal control problems. Finally, we present
some numerical examples which confirm our theoretical results.

2010 Mathematics Subject Classification: 49J20, 65N30

Keywords and phrases: Optimal control problem, nonlinear elliptic equations, rectangular
mixed finite element methods, L∞-error estimates.

1. Introduction

Optimal control problems are playing increasingly important role in the design of modern
life. They have various application backgrounds in the operation of physical, social, and
economic processes. Efficient numerical methods are essential to successful applications of
optimal control in practical problems. Finite element methods for state equations are widely
used to solve optimal control problems. The finite element approximation of optimal control
problem by piecewise constant functions is well investigated by Falk [13] and Geveci [14].
Arada et al. [1] discussed the discretization for semilinear elliptic optimal control problems.
In [26], Malanowski discussed a constrained parabolic optimal control problems. Casas et
al. presented the numerical results for elliptic boundary control problems in [7]. All of these
papers are mainly focused on L2-estimates. Systematic introductions of the finite element
method for optimal control problems can be found in [20, 21]. Error estimates in the L∞-
norm can be obtained by other concepts in Hinze [16]. Moreover, Meyer and Rösch have
studied the L∞-error estimates and superconvergence property for linear quadratic optimal
control problem in [27].
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In many control problems, the objective functional contains gradient of the state vari-
ables. Thus the accuracy of gradient is important in numerical approximation of the state
equations. Mixed finite element methods are appropriate for the state equations in such
cases since both the scalar variable and its flux variable can be approximated to the same
accuracy by using such methods, see, for example, [2, 5, 6, 17]. However, there is only very
limited research work on analyzing such elements for optimal control problems. Recently,
we have done some preliminary work on error estimates and superconvergence of mixed
finite element methods for optimal control problems in [8, 9, 10, 11, 12, 24, 25].

In this paper we discuss the L∞-error estimates of optimal order for nonlinear quadratic
optimal control problem with pointwise control constraints using rectangular mixed finite
element methods. We consider the following nonlinear quadratic optimal control problem:

(1.1) min
u∈K⊂U

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

λ

2
‖u‖2

}
subject to the state equations

(1.2) divp+φ(y) = f +u, p =−A(x)∇y, x ∈Ω,

with the boundary condition

(1.3) y = 0, x ∈ ∂Ω,

where Ω is a bounded open set in R2 with Lipschitz continuous boundary ∂Ω, pd and yd
are the desirable objective functionals. We shall assume that f ∈ H1(Ω), U = L∞(Ω), and
λ > 0 is fixed. Here, K denotes the admissible set of the control variable, defined by

(1.4) K = {u ∈ L∞(Ω) : α(x)≤ u≤ β (x) a.e. in Ω} ,

where α(x) and β (x) are real functions in R.
Let us state the assumptions on the functions A(x) and φ(y).

(A1) The coefficient matrix A(x) = (ai, j(x))2×2 ∈ L∞(Ω;R2×2) is a symmetric 2× 2-
matrix and there are constants c0, c1 > 0 satisfying for any vector X∈R2, c0‖X‖2

R2

≤ XtAX≤ c1‖X‖2
R2 .

(A2) φ is of class C2 with respect to the variable y, for any R > 0 the function φ(·) ∈
W 2,∞(−R,R), φ ′(y) ∈ L2(Ω) for any y ∈ H1(Ω), and φ ′(y)≥ 0.

(A3) The two given functions satisfy the regularity pd ∈ (W 2,s(Ω))2, yd ∈W 1,s(Ω), s≥
2.

For 1≤ s < ∞ and m any nonnegative integer let W m,s(Ω) = {v∈ Ls(Ω); Dα v∈ Ls(Ω) if
|α| ≤ m} denote the Sobolev spaces endowed with the norm ‖v‖s

m,s = ∑|α|≤m ‖Dα v‖s
Ls(Ω),

and the semi-norm |v|sm,s = ∑|α|=m ‖Dα v‖s
Ls(Ω). We set W m,s

0 (Ω) = {v ∈W m,s(Ω) : v|∂Ω =

0}. For s = 2, we denote Hm(Ω) =W m,2(Ω), Hm
0 (Ω) =W m,2

0 (Ω), and ‖·‖m = ‖·‖m,2, ‖·‖=
‖ · ‖0,2. Let ‖ · ‖0,∞ denote the maximum norm.

The outline of this paper is as follows. In next section, we construct the rectangular mixed
finite element discretization for optimal control problems governed by nonlinear elliptic
equations with pointwise control constraints. In Section 3, we derive a L∞-error estimates
of optimal order for the lowest order Raviart-Thomas mixed finite element approximation
for the optimal control problem. Numerical examples are presented in Section 4.
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2. Mixed methods of optimal control problem

In this section, we shall describe the mixed finite element discretization of nonlinear convex
optimal control problem (1.1)–(1.3). First, we introduce the co-state elliptic equation

(2.1) −div(A(x)(∇z+ p− pd))+φ
′(y)z = y− yd , x ∈Ω,

with the boundary condition

(2.2) z = 0, x ∈ ∂Ω.

It is assumed that both the elliptic Equations (1.2) and (2.1) have sufficient regularity.
Then, we recall the following existed results from Proposition 6.2 and Proposition 6.3 in

[1] which is very useful for our work.

Lemma 2.1. Let u1, u2 be in L∞(Ω), y1, y2 be the corresponding solutions of (1.2), and let
z1, z2 be the corresponding solutions of (2.1). Then y1− y2, z1− z2 satisfy the estimate

‖y1− y2‖2 ≤C‖u1−u2‖0,(2.3)

‖z1− z2‖2 ≤C‖y1− y2‖0,(2.4)

where C > 0 does not depend on u1, u2 and y1, y2.

Let
V = H(div;Ω) =

{
v ∈ (L2(Ω))2,divv ∈ L2(Ω)

}
, W = L2(Ω),

endowed with the norm given by

‖v‖div = ‖v‖H(div;Ω) =
(
‖v‖2

0,Ω +‖divv‖2
0,Ω

)1/2
.

We recast (1.1)–(1.3) as the following weak forms: find (p,y,u) ∈V ×W ×U such that

min
u∈K⊂U

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

λ

2
‖u‖2

}
(2.5)

(A−1 p,v)− (y,divv) = 0, ∀v ∈V ,(2.6)

(divp,w)+(φ(y),w) = ( f +u,w), ∀w ∈W.(2.7)

It is well known (see e.g., [19]) that the optimal control problem (2.5)–(2.7) has a solution
(p,y,u), and that a triplet (p,y,u) is the solution of (2.5)–(2.7) if and only if there is a co-
state (q,z) ∈V ×W such that (p,y,q,z,u) satisfies the following optimality conditions:

(A−1 p,v)− (y,divv) = 0, ∀v ∈V ,(2.8)

(divp,w)+(φ(y),w) = ( f +u,w), ∀w ∈W,(2.9)

(A−1q,v)− (z,divv) =−(p− pd ,v), ∀v ∈V ,(2.10)

(divq,w)+(φ ′(y)z,w) = (y− yd ,w), ∀w ∈W,(2.11)

(z+λu, ũ−u)U ≥ 0, ∀ũ ∈ K,(2.12)

where (·, ·)U is the inner product of U . In the rest of the paper, we shall simply write the
product as (·, ·) whenever no confusion should be caused.

Introducing the following projection [3]:

(2.13) Π[α,β ] (g(x)) = max(α(x),min(g(x),β (x))) , a.e. x ∈Ω,
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we can directly express the control from above optimality condition:

(2.14) u(x) = Π[α,β ]

(
− 1

λ
z(x)

)
.

Let Th be regular rectangulation of Ω, with boundary elements only allowed to have one
curved side. They are assumed to satisfy the angle condition which means that there is a
positive constant C such that for all T ∈Th, C−1h2

T ≤ |T | ≤Ch2
T , where |T | is the area of T

and hT is the diameter of T . Let h = maxhT . In addition C or c denotes a general positive
constant independent of h.

Let V h×Wh ⊂V ×W denote the Raviart-Thomas space [30] of the lowest order associ-
ated with the rectangulation Th of Ω. Pk denotes the space of polynomials of total degree at
most k, Qm,n indicates the space of polynomials of degree no more than m and n in x and y,
respectively. Let V (T ) = {v ∈ Q1,0(T )×Q0,1(T )}. We define

V h := {vh ∈V : ∀T ∈Th, vh|T ∈V (T )},
Wh := {wh ∈W : ∀T ∈Th, wh|T ∈ P0(T )},
Kh := {ũh ∈ K : ∀T ∈Th, ũh|T ∈ P0(T )}.

By the definition of finite element subspace, the mixed finite element discretization of (2.5)–
(2.7) is as follows: compute (ph,yh,uh) ∈V h×Wh×Kh such that

min
uh∈Kh

{
1
2
‖ph− pd‖2 +

1
2
‖yh− yd‖2 +

λ

2
‖uh‖2

}
(2.15)

(A−1 ph,vh)− (yh,divvh) = 0, ∀vh ∈V h,(2.16)

(divph,wh)+(φ(yh),wh) = ( f +uh,wh), ∀wh ∈Wh.(2.17)

It is well known that the optimal control problem (2.15)–(2.17) again has a solution
(ph,yh,uh), and that a triplet (ph,yh,uh) is the solution of (2.15)–(2.17) if and only if there
is a co-state (qh,zh) ∈V h×Wh such that (ph,yh,qh,zh,uh) satisfies the following optimality
conditions:

(A−1 ph,vh)− (yh,divvh) = 0, ∀vh ∈V h,(2.18)

(divph,wh)+(φ(yh),wh) = ( f +uh,wh), ∀wh ∈Wh,(2.19)

(A−1qh,vh)− (zh,divvh) =−(ph− pd ,vh) ∀vh ∈V h,(2.20)

(divqh,wh)+(φ ′(yh)zh,wh) = (yh− yd ,wh), ∀wh ∈Wh,(2.21)

(zh +λuh, ũh−uh)≥ 0, ∀ũh ∈ Kh.(2.22)

By using (2.13) and (2.22), we can easily obtain the following results:

Lemma 2.2. Let (ph,yh,qh,zh,uh) is the optimal solution of (2.18)–(2.22), then uh is given
by

(2.23) uh = Π[α,β ]

(
− 1

λ
zh

)
.

Let Ph : W →Wh be the orthogonal L2-projection into Wh define by [2]:

(2.24) (Phw−w,χ) = 0, w ∈W, χ ∈Wh,
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which satisfies

‖Phw−w‖0,q ≤C‖w‖t,qht , 0≤ t ≤ 1, if w ∈W ∩W t,q(Ω),(2.25)

‖Phw−w‖−r ≤C‖w‖thr+t , 0≤ r, t ≤ 1, if w ∈ Ht(Ω),(2.26)

(divv,w−Phw) = 0, w ∈W, v ∈V h.(2.27)

Let πh : V →V h be the Raviart-Thomas projection [28], which satisfies

(div(πhv− v),w) = 0, v ∈V , w ∈Wh,(2.28)

‖πhv− v‖0,q ≤C‖v‖t,qht , 1/q < t ≤ 1, if v ∈V ∩W t,q(Ω)2,(2.29)

‖div(πhv− v)‖0,∞ ≤C‖divv‖tht , 0≤ t ≤ 1, if v ∈V ∩Ht(div;Ω).(2.30)

We have the commuting diagram property

(2.31) div◦πh = Ph ◦div : V →Wh and div(I−πh)V ⊥Wh.

Furthermore, we also define the standard L2-orthogonal projection Qh : K → Kh, which
satisfies: for any ũ ∈ K

(ũ−Qhũ, ũh)U = 0, ∀ũh ∈ Kh,(2.32)

‖ũ−Qhũ‖−t,r,U ≤C|ũ|1,r,U h1+t , t = 0,1 for ũ ∈W 1,r(Ω).(2.33)

For ϕ ∈Wh, we shall write

(2.34) φ(ϕ)−φ(ρ) =−φ̃
′(ϕ)(ρ−ϕ) =−φ

′(ρ)(ρ−ϕ)+ φ̃
′′(ϕ)(ρ−ϕ)2,

where

(2.35) φ̃
′(ϕ) =

∫ 1

0
φ
′(ϕ + t(ρ−ϕ))dt, φ̃

′′(ϕ) =
∫ 1

0
(1− t)φ ′′(ρ + t(ϕ−ρ))dt

are bounded functions in Ω̄[15, 29].

3. Error estimates for the intermediate error

In the rest of the paper, we shall use some intermediate variables. For any control function
ũ∈K, we first define the state solution (p(ũ),y(ũ),q(ũ),z(ũ)) associated with ũ that satisfies

(A−1 p(ũ),v)− (y(ũ),divv) = 0, ∀v ∈V ,(3.1)

(divp(ũ),w)+(φ(y(ũ)),w) = ( f + ũ,w), ∀w ∈W,(3.2)

(A−1q(ũ),v)− (z(ũ),divv) =−(p(ũ)− pd ,v), ∀v ∈V ,(3.3)

(divq(ũ),w)+(φ ′(y(ũ))z(ũ),w) = (y(ũ)− yd ,w), ∀w ∈W.(3.4)

By Lemma 3.1 in [23], we can obtain the following results:

Lemma 3.1. Suppose that the assumptions (A1)–(A3) are valid. For any uh ∈ Kh, there is
a positive constant C independent of h such that

‖p(uh)− ph‖div +‖y(uh)− yh‖0 ≤Ch,(3.5)

‖q(uh)−qh‖div +‖z(uh)− zh‖0 ≤Ch.(3.6)
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Let J(·) : K→R be a G-differential uniform convex functional near the solution u which
satisfies the following form:

J(u) =
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

λ

2
‖u‖2,

J(uh) =
1
2
‖p(uh)− pd‖2 +

1
2
‖y(uh)− yd‖2 +

λ

2
‖uh‖2.

It can be shown that
(J′(u),v) = (λu+ z,v),

(J′(uh),v) = (λuh + z(uh),v),
where (p(uh),y(uh),q(uh),z(uh)) is the solution of (3.1)–(3.4) with ũ = uh. An additional
assumption is needed. We assume that the cost function J is strictly convex near the solution
u, i.e.,

(A4) For the solution u there exists a neighborhood of u in L2 such that J is convex in the
sense that there is a constant c > 0 satisfying:

(3.7) (J′(u)− J′(v),u− v)≥ c‖u− v‖2
U ,

for all v in this neighborhood of u. The convexity of J(·) is closely related to the
second order sufficient optimality conditions of optimal control problems, which
are assumed in many studies on numerical methods of the problem. For instance,
in many references, the authors assume the following second order sufficiently op-
timality condition (see [3]): there is c > 0 such that J′′(u)v2 ≥ c‖v‖2

0.

Theorem 3.1. Suppose that the assumptions (A1)–(A4) are valid. Let (p,y,q,z,u) ∈ (V ×
W )2×K and (ph,yh,qh,zh,uh)∈ (V h×Wh)2×Kh be the solution of (2.8)–(2.12) and (2.18)–
(2.22), respectively. We assume that λu+ z ∈ H1(Ω). Then, we have

(3.8) ‖u−uh‖0 ≤Ch.

Proof. For the proof the reader can consult Theorem 3.1 in [23].
Now, we introduce the weighted L2-norms which will play a central role in our work to

derive L∞-error estimates. Let x0 ∈ Ω̄ and ρ > 0. We define the weight function

(3.9) µ = |x− x0|2 +ρ
2, x ∈ Ω̄.

For any r ∈ R we define the r-weighted norm by

(3.10) ‖v‖r,µ = ‖µ−
r
2 v‖0, v ∈ L2(Ω) or (L2(Ω))2.

By Lemma 3.1 in [17], we can obtain the following technical results:

Lemma 3.2. Let µ be given by (3.9), if v ∈ (L2(Ω))2, then

(3.11) ‖∇µ
−1 · v‖0 ≤Cρ

−2‖v‖1,µ .

Lemma 3.3. If v ∈ (L∞(Ω))2, then

(3.12) ‖v‖0 ≤C‖v‖1,µ .

Furthermore, we introduce the following relations between weighted L2-norms and L∞-
norms and super-approximability results [31]:

‖v‖1,µ ≤C| lnh|
1
2 ‖v‖0,∞, v ∈ L∞(Ω),(3.13)
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‖µ−1
η−πh(µ

−1
η)‖−1,µ ≤Chρ

−1‖η‖1,µ , η ∈Vh.(3.14)

If v ∈Wh is a fixed element and x0 ∈ Ω̄ is chosen so that ‖v‖0,∞ = |v(x0)|, then

‖v‖0,∞ ≤Cκ h−1
ρ‖v‖1,µ , for ρ ≤ κh.(3.15)

Now we recall a priori regularity estimate for the following auxiliary problems:

−div(A∗∇ξ )+Φξ = F1, x ∈Ω, ξ |∂Ω = 0,(3.16)

−div(A∇ζ )+φ
′(y(uh))ζ = F2, x ∈Ω, ζ |∂Ω = 0,(3.17)

where

Φ =


φ(y(uh))−φ(yh)

y(uh)− yh
, y(uh) 6= yh,(3.18a)

φ
′(yh), y(uh) = yh.(3.18b)

The next lemma gives the desired a priori estimate. (See [22], for example.)

Lemma 3.4. Let ξ and ζ be the solutions of (3.16) and (3.17), respectively. Assume that Ω

is convex, A ∈ (W 1,∞(Ω))(2×2), X tAX ≥ c‖X‖2
R2 for all X ∈ R2. Then

‖ξ‖H2(Ω) ≤C‖F1‖L2(Ω),(3.19)

‖ζ‖H2(Ω) ≤C‖F2‖L2(Ω).(3.20)

Let

ε1 := p(uh)− ph, r1 := y(uh)− yh,(3.21)

ε2 := q(uh)−qh, r2 := z(uh)− zh.(3.22)

From (2.18)–(2.19), (3.1)–(3.2), and (2.34), we have

(A−1
ε1,vh)− (r1,divvh) = 0, ∀vh ∈V h,(3.23)

(divε1,wh)+(φ̃ ′(y(uh))r1,wh) = 0, ∀wh ∈Wh.(3.24)

Now, we will prove two important theorems.

Theorem 3.2. Let (p,y,q,z) and (p(uh),y(uh),q(uh),z(uh)) be the solution of (2.8)–(2.12)
and (3.1)–(3.4), respectively. Suppose that the assumptions (A1)–(A4) are fulfilled. Then,
we have

(3.25) ‖Phy(uh)− yh‖0 +‖Phz(uh)− zh‖0 ≤Ch2.

Proof. Here, we only prove ‖Phy(uh)−yh‖0 ≤Ch2, the other part of (3.25) can be estimated
in the same way. By (2.24), we can rewrite (3.23)–(3.24) as

(A−1
ε1,vh)− (Phy(uh)− yh,divvh) = 0, ∀vh ∈V h,(3.26)

(divε1,wh)+(φ̃ ′(y(uh))r1,wh) = 0, ∀wh ∈Wh.(3.27)

Let τ = Phy(uh)− yh and ξ be the solution of (3.16) with F1 = Phy(uh)− yh, then it follows
from (2.28), (3.23)–(3.24), (3.16), and (3.26)–(3.27) that

‖τ‖2
0 = (τ,−div(A∗∇ξ )+Φξ ) = (divε1,ξ )+(φ̃ ′(y(uh))r1,ξ )

= (divε1,ξ −Phξ )+(φ̃ ′(y(uh))r1,ξ −Phξ ).(3.28)
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We then estimate the two terms on the right side of (3.28). First, from Lemma 3.1 and (2.25)
it follows that

(divε1,ξ −Phξ )≤ ‖ε1‖div · ‖ξ −Phξ‖0 ≤Ch2‖ξ‖2 ≤Ch2‖τ‖0.(3.29)

Now, we estimate the second term

(3.30) (φ̃ ′(y(uh))r1,ξ −Phξ )≤C‖r1‖0 · ‖ξ −Phξ‖0 ≤Ch2‖τ‖0.

Inserting (3.29) and (3.30) into (3.28) and we can deduce that ‖τ‖0 ≤Ch2, from which the
theorem follows immediately.

Theorem 3.3. Let (p,y,q,z) and (p(uh),y(uh),q(uh),z(uh)) be the solution of (2.8)–(2.12)
and (3.1)–(3.4), respectively. Suppose that the assumptions (A1)–(A4) are fulfilled. Then,
we have

(3.31) ‖πh p(uh)− ph‖0,∞ +‖πhq(uh)−qh‖0,∞ ≤C| lnh|
1
2 h

1
2 .

Proof. Let us denote σ = πh p(uh)− ph. Note that

‖σ‖2
1,µ ≤C(A−1

σ ,µ
−1

σ)

≤C
{
(A−1

σ ,µ
−1

σ −πh(µ
−1

σ))+(A−1
ε1,πh(µ

−1
σ))

+(A−1(πh p(uh)− p(uh)),πh(µ
−1

σ))
}

≤C
{

hρ
−1‖σ‖1,µ +(A−1

ε1,πh(µ
−1

σ))

+ | lnh|
1
2 (1+hρ

−1)sup
T
‖πh p(uh)− p(uh)‖0,∞,T · ‖σ‖1,µ

}
,(3.32)

using ε-Cauchy inequality and for hρ−1 sufficiently small, we then have

(3.33) ‖σ‖2
1,µ ≤C(A−1

ε1,πh(µ
−1

σ))+C| lnh|sup
T
‖πh p(uh)− p(uh)‖2

0,∞,T .

For the first term of the right hand of (3.33), integrating in polar coordinates, we obtain
‖µ−1‖0 ≤Cρ−1, thus using Equation (3.23), we obtain

(A−1
ε1,πh(µ

−1
σ)) = (r1,div◦πh(µ

−1
σ)) = (r1,Ph ◦div(µ

−1
σ))

= (τ,div(µ
−1

σ)) = (τ,∇µ
−1

σ)+(τ,µ
−1divσ)

≤ ‖τ‖0 · ‖∇µ
−1

σ‖0 +‖τ‖0 · ‖µ−1‖0 · ‖divσ‖0,∞

≤Ch2 (
ρ
−2‖σ‖1,µ +ρ

−1 · ‖divσ‖0,∞

)
.(3.34)

Using (3.27) and definition of Ph, we can easily see that

(3.35) Ph ◦divε1 =−Ph
[
φ̃
′(y(uh))r1

]
,

then, using (2.31), we can see that

(3.36) divσ = div◦πhε1 = Ph ◦divε1 =−Ph
[
φ̃
′(y(uh))r1

]
,

thus we have

(3.37) ‖divσ‖0,∞ ≤ ‖φ̃ ′(y(uh))r1‖0,∞ ≤ ‖r1‖0,∞ ≤Ch,

where we used the priori estimate ‖r1‖0,∞ ≤Ch, which was demonstrated in [28]. Inserting
(3.37) to (3.34) yields the bound

(3.38) (A−1
ε1,πh(µ

−1
σ))≤Ch2

ρ
−2‖σ‖1,µ +Ch3

ρ
−1.
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For the second term of the right side of (3.33), let T̂ be the reference element of T , using
the transformation formula (6.8) in [4] and Bramble-Hilbert Lemma, we have

‖p(uh)−πh p(uh)‖0,∞,T ≤C‖p̂(uh)− π̂h p(uh)‖0,∞,T̂ ≤C|p̂(uh)|1,T̂

≤ChT |p(uh)|1,T ≤Ch|y(uh)|2,T ≤Ch‖y(uh)‖2.(3.39)

Inserting (3.38) and (3.39) into (3.33), and using ε-Cauchy inequality, we have

(3.40) ‖σ‖2
1,µ ≤C(ε)h2| lnh|+ ε‖σ‖2

1,µ .

Let hρ−2 = C−2, that is to say ρ = Ch
1
2 . Combining (3.15) and (3.40), we then have

(3.41) ‖σ‖0,∞ ≤Ch−
1
2 ‖σ‖1,µ ≤Ch

1
2 | lnh|

1
2 .

The proof of ‖πhq(uh)− qh‖0,∞ ≤ h
1
2 | lnh| 12 is quite similar with above and we omitted

here.

4. L∞-error estimates

In this section, we will give the L∞-error estimates of optimal order both for the control
variable and the state variables.

Theorem 4.1. Let (p,y,q,z,u) and (ph,yh,qh,zh,uh) be the solution of (2.8)–(2.12) and
(2.18)–(2.22), respectively. Suppose that the assumptions (A1)–(A4) are fulfilled. Then, we
have

‖u−uh‖0,∞ ≤Ch,(4.1)

‖y− yh‖0,∞ +‖z− zh‖0,∞ ≤Ch,(4.2)

‖p− ph‖0,∞ +‖q−qh‖0,∞ ≤Ch
1
2 | lnh|

1
2 .(4.3)

Proof.
Part I. By (2.3)–(2.4), (2.25)–(2.26), (3.25), (3.31), and the classical imbedding theorem

H2(Ω)⊂C(Ω̄), we can see that

‖y− yh‖0,∞ ≤ ‖y− y(uh)‖0,∞ +‖y(uh)− yh‖0,∞

≤C‖y− y(uh)‖C(Ω̄) +‖y(uh)−Phy(uh)‖0,∞ +‖Phy(uh)− yh‖0,∞

≤C‖y− y(uh)‖2 +Ch+‖Phy(uh)− yh‖0,∞

≤C
(
‖u−uh‖0 +h+h−1‖Phy(uh)− yh‖0

)
≤Ch,(4.4)

and

‖z− zh‖0,∞ ≤ ‖z− z(uh)‖0,∞ +‖z(uh)− zh‖0,∞

≤C‖z− z(uh)‖C(Ω̄) +‖z(uh)−Phz(uh)‖0,∞ +‖Phz(uh)− zh‖0

≤C‖z− z(uh)‖2 +Ch+‖Phz(uh)− zh‖0,∞

≤C
(
‖u−uh‖0 +h+h−1‖Phz(uh)− zh‖0

)
≤Ch.(4.5)
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Part II. Note that the projection Π[α,β ] defined in (2.13) is Lipschitz continuous. Then,
from (2.14) and (2.23), we obtain that

(4.6) |u−uh|=
∣∣∣∣Π[α,β ]

(
− 1

λ
z
)
−Π[α,β ]

(
− 1

λ
zh

)∣∣∣∣≤ |z− zh|
λ

,

hence, combining (4.5) and (4.6), we have

(4.7) ‖u−uh‖0,∞ ≤C‖z− zh‖0,∞ ≤Ch.

Part III. By (2.3)–(2.4), (2.29), (3.25), (3.31), and the classical imbedding theorem
W 2,3(Ω)⊂W 1,∞(Ω) and W 0,3(Ω)⊂W 2,3(Ω), we can see that

‖p− ph‖0,∞ ≤ ‖p− p(uh)‖0,∞ +‖p(uh)− ph‖0,∞

≤C‖∇y−∇y(uh)‖0,∞ +‖p(uh)−πh p(uh)‖0,∞

+‖πh p(uh)− ph‖0,∞

≤C
(
‖y− y(uh)‖2,3 +h+h

1
2 | lnh|

1
2

)
≤C

(
‖u−uh‖0,3 +h+h

1
2 | lnh|

1
2

)
≤C

(
‖u−uh‖0,∞ +h+h

1
2 | lnh|

1
2

)
≤Ch

1
2 | lnh|

1
2 ,(4.8)

and

‖q−qh‖0,∞ ≤ ‖q−q(uh)‖0,∞ +‖q(uh)−qh‖0,∞

≤ ‖∇(z− z(uh))+ p− p(uh)‖0,∞ +‖q(uh)−πhq(uh)‖0,∞

+‖πhq(uh)−qh‖0,∞

≤C
(

h+h
1
2 | lnh|

1
2

)
≤Ch

1
2 | lnh|

1
2 .(4.9)

Thus, we completed the proof.

5. Numerical examples

In this section, we are going to validate the L∞-error estimates for the error in the con-
trol, state, and co-state numerically. The optimization problem were dealt numerically with
codes developed based on AFEPACK. The package is freely available and the details can
be found at [18].

Our numerical example is the following optimal control problem:

min
u∈K

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

1
2
‖u‖2

}
(5.1)

divp+ y5 = u+ f , p =−A∇y, x ∈Ω, y|∂Ω = 0,(5.2)

divq+5y4z = y− yd , q =−A(∇z+ p− pd), x ∈Ω, z|∂Ω = 0.(5.3)

In our examples, we choose the domain Ω = [0,1]× [0,1] and A = I. We present two
examples to illustrate the theoretical results for the optimal control problem.
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Example 5.1. First, we will consider the case where the constrained set is given by K =
{u ∈ L∞(Ω) : u≥ 0}. We set the known function as follows:

y = x1x2(1− x1)(1− x2),

z = 2x1x2(1− x1)(1− x2),

u = max(−z,0),

f = 2x2(1− x2)+2x1(1− x1)+ y5−u,

yd = y+4x2(1− x2)+4x1(1− x1)−5y4z,

p =−((1−2x1)x2(1− x2),(1−2x2)x1(1− x1)) ,

q = 2pd =−(2(1−2x1)x2(1− x2),2(1−2x2)x1(1− x1)) .

Table 1. The numerical errors on uniformly rectangle mesh grid

h
Errors

‖u−uh‖0,∞ rate ‖p− ph‖0,∞ rate ‖y− yh‖0,∞ rate ‖q−qh‖0,∞ rate ‖z− zh‖0,∞ rate
1/16 8.519e-03 - 4.259e-03 - 8.519e-03 - 1.283e-01 - 1.815e-01 -
1/32 4.377e-03 0.96 2.189e-03 0.97 4.377e-03 0.96 9.286e-02 0.48 1.313e-01 0.47
1/64 2.221e-03 0.98 1.110e-03 0.98 2.221e-03 0.98 6.641e-02 0.49 9.392e-02 0.48
1/128 1.119e-03 0.99 5.595e-04 1.00 1.119e-03 0.99 4.723e-02 0.50 6.679e-02 0.49

Figure 1. The numerical solution on the 64×64 rectangle mesh grids.

In this numerical tests, the numerical results are presented in Table 1, it is obvious that
the results of Theorem 4.1 (L∞-error estimates) remain in our data. The profiles of the
numerical solution on the 64×64 rectangle are plotted in Figure 1.

Example 5.2. In the next example, we set the constrained set K = {u∈ L∞(Ω) : α(x)≤ u≤
β (x)}. We assume that

α(x1,x2) = 0.02+0.04
|x1− x2|√

2
,
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β (x1,x2) = 0.04+0.06
|1− x1− x2|√

2
.

Then not only the constraints depend on the coordinates (x1,x2), but also there are some
weak discontinuities in both constraints.

Now, we define the optimal state function by

y = x1x2(1− x1)(1− x2),

thus the state variable p can be given by

p =−((1−2x1)x2(1− x2),(1−2x2)x1(1− x1)),

and the source function f is given by

f =


f1 + y5−α(x), if u f < α(x),

f1 + y5−u f , if u f ∈ [α(x),β (x)],

f1 + y5−β (x), if u f > β (x),

with f1(x1,x2) = 2x1(1− x1)+ 2x2(1− x2) and u f (x1,x2) = 2x1x2(1− x1)(1− x2). Due to
the state equation (5.2), we obtain for the exact control function u as follows:

u =


α(x), if u f < α(x),
u f , if u f ∈ [α(x),β (x)],
β (x), if u f > β (x).

For the optimal co-state function z, we find

z =−2x1x2(1− x1)(1− x2),

then the desired state variables can be given by

pd =−((1−2x1)x2(1− x2),(1−2x2)x1(1− x1)) ,

yd = y+4x1(1− x1)+4x2(1− x2)−5y4z.

Table 2. The numerical errors on uniformly rectangle mesh grid

h
Errors

‖u−uh‖0,∞ rate ‖p− ph‖0,∞ rate ‖y− yh‖0,∞ rate ‖q−qh‖0,∞ rate ‖z− zh‖0,∞ rate
1/16 7.735e-03 - 4.260e-03 - 8.519e-03 - 1.284e-01 - 1.815e-01 -
1/32 3.937e-03 0.97 2.189e-03 0.96 4.377e-03 0.96 9.288e-02 0.47 1.313e-01 0.47
1/64 1.988e-03 0.99 1.111e-03 0.98 2.221e-03 0.98 6.642e-02 0.49 9.392e-02 0.48
1/128 9.991e-04 0.99 5.595e-04 1.00 1.119e-03 1.00 4.723e-02 0.49 6.679e-02 0.49

The profiles of the numerical solution are presented in Figure 2. From the error data
on the uniform refined rectangle meshes, as listed in Table 2, it can be seen that the L∞-
estimates results remain in our data.
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Figure 2. The numerical solution on the 64×64 rectangle mesh grids.
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[29] M. S. Petković, On optimal multipoint methods for solving nonlinear equations, Novi Sad J. Math. 39 (2009),
no. 1, 123–130.

[30] P. -A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Math-
ematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome,
1975), 292–315. Lecture Notes in Math., 606, Springer, Berlin.

[31] R. Scholz, A remark on the rate of convergence for a mixed finite-element method for second order problems,
Numer. Funct. Anal. Optim. 4 (1981/82), no. 3, 269–277.


