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Abstract. It is well known that for an associative ring R, if ab is Drazin invertible then
ba is Drazin invertible. In this case, (ba)D = b((ab)D)2a. This formula is so-called Cline’s
formula. In this note, we generalize Cline’s formula to the case of the generalized Drazin
invertibility.

2010 Mathematics Subject Classification: 15A09, 16S10

Keywords and phrases: Associative ring, generalized Drazin inverse, Drazin inverse.

1. Introduction

Let R be an associative ring with unity 1 6= 0. The notation R−1 means the group of units of
R. Following Koliha and Patricio [14], the commutant and double commutant of an element
a in R are defined by

comm(a) = {x ∈ R : ax = xa} and comm2(a) = {x ∈ R : xy = yx for all y ∈ comm(a)},

respectively. Let Rqnil = {a : 1+ax ∈ R−1 for every x ∈ comm(a)}, and if a ∈ Rqnil then a is
said to be quasinilpotent [11]. Let Rnil be the set of all nilpotents of R. Clearly, Rnil ⊆ Rqnil.
Drazin introduced the notion of Drazin inverses in a ring in 1958. Recall that an element
a ∈ R is said to have a Drazin inverse [10] if there exists b ∈ R such that

bab = b, b ∈ comm(a), a−a2b ∈ Rnil.

The element b above is unique if it exists and is denoted by aD. According to [14], aD ∈
comm2(a); and the nilpotency index of a−a2b is called the Drazin index of a, denoted by
ind(a) (cf. [10]). If ind(a) = 1, then a is group invertible and the group inverse of a is
denoted by a#. Cline proved in 1965 [4] that if ab is Drazin invertible then so is ba. In this
case, (ba)D = b((ab)D)2a. This equation is called Cline’s formula. It plays an important
role in revealing the relationship between the Drazin inverse of a sum of two elements and
the Drazin inverse of a block matrix of the form

(
a b
0 c

)
(cf. [15]). In this note we extend this

formula to the case of the generalized Drazin inverse. The concept of the generalized Drazin
inverse in a Banach algebra was introduced in 1996 by Koliha [13]. Later, this notion was
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extended to elements in a ring by Koliha and Patricio (cf. [14]). Recall that an element a of
R is generalized Drazin invertible [14] in case there is an element b ∈ R satisfying

bab = b, b ∈ comm2(a), a−a2b ∈ Rqnil.

Such b, if it exists, is unique; it is called a generalized Drazin inverse of a, and will be
denoted by ad . Equivalently, an element a∈ R is generalized Drazin invertible if there exists
p2 = p ∈ R satisfying p ∈ comm2(a), a + p ∈ R−1, and ap ∈ Rqnil. In this situation, ad =
(a+ p)−1(1− p) and p = 1−ada. The generalized Drazin inverse was deeply investigated
in complex Banach algebras and bounded linear operators over a complex Banach space.
One may refer to [1, 3, 5, 6, 7, 8, 9], etc. In a Banach algebra, the condition b ∈ comm2(a)
in the above definition can be weakened as b ∈ comm(a). It seems that it is more difficult
to study generalized Drazin inverses in rings, and there are fewer results on this topic. In
this note, we extend the Cline’s formula to the case of the generalized Drazin invertibility
by means of methods of ring theory.

2. Main results

We begin with the following result known as Jacobson’s lemma.

Lemma 2.1. Let a, b ∈ R. If 1+ab is invertible, then 1+ba is invertible and (1+ba)−1 =
1−b(1+ab)−1a.

Theorem 2.1. (Cline’s Formula). Let a, b ∈ R. If ab is generalized Drazin invertible, then
so is ba, and

(ba)d = b((ab)d)2a.

Proof. Let α = ab, β = ba, p = 1−αdα and q = 1−bαda. Then p∈ comm2(α), α + p∈
R−1 and α p ∈ Rqnil. In what follows, we prove that (i) β +q ∈ R−1; (ii) βq ∈ Rqnil; and (iii)
q2 = q ∈ comm2(β ).

First, we note that 1+(a−αda)b = α +(1−αdα) = α + p ∈ R−1. By Lemma 2.1,

β +q = β +(1−bα
da) = 1+b(a−α

da) ∈ R−1.

So we obtain (i).
To prove (ii), we write c = βq. Then

c = ba(1−bα
da) = ba−babα

da = b(1−αα
d)a = bpa.

Let z ∈ R with cz = zc. Next we show that 1− zc ∈ R−1. From cz = zc, we have cz2 = z2c,
i.e.,

bpaz2 = z2bpa.

Multiplying this equation by a on the left and by b on the right yields

α p(az2b) = abpaz2b = az2bpab = (az2b)α p.

Thus az2b ∈ comm(α p). Since α p ∈ Rqnil, we have

1−α p(az2b) = 1− (α pa)(z2b) ∈ R−1.

In view of Lemma 2.1, 1− (z2b)α pa is invertible. Since c2 = bpabpa = bpα pa = bα pa
and cz = zc, it follows that

(1− zc)(1+ zc) = (1+ zc)(1− zc) = 1− z2c2 ∈ R−1.

Hence 1− zc ∈ R−1, as required.
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To show (iii), we first prove that q is an idempotent. Indeed,

q2 = (1−bα
da)(1−bα

da) = 1−2bα
da+bα

d
αα

da = 1−bα
da = q.

Note that

(2.1) βq = ba(1−bα
da) = ba−babα

da = ba−bα
daba = (1−bα

da)β = qβ .

Let y ∈ R be such that yβ = βy, i.e.,

(2.2) y(ba) = (ba)y.

Then we obtain
(ayb)ab = ab(ayb)

by multiplying by a on the left and by b on the right. Thus ayb ∈ comm(α). Since αd ∈
comm2(α), ayb ∈ comm(αd). It follows that ayb ∈ comm(αd− (αd)2), i.e.,

ayb(αd− (αd)2) = (αd− (αd)2)ayb.

Then by Equation (2.2),

bayb(αd− (αd)2)a = ybab(αd− (αd)2)a = ybα(αd− (αd)2)a = ybαα
da− ybα

da

and

b(αd− (αd)2)ayba = b(αd− (αd)2)abay = b(αd− (αd)2)αay = bα
d
αay−bα

day.

Hence,
ybαα

da− ybα
da = bα

d
αay−bα

day.
Applying Equation (2.2) to this result, we obtain after a calculation

yq− yβq = qy−βqy.

Combining this with Equations (2.1) and (2.2), one has

(1−βq)yq(1−βq) = (1−βq)qy(1−βq).

By (ii), βq ∈ Rqnil. So 1−βq ∈ R−1. Hence, yq = qy, and so (iii) follows.
Therefore, β = ba has a generalized Drazin inverse and

(ba)d = β
d = (β +q)−1(1−q).

Further, let t = a−αda. Then we have

1+ tb = α + p and 1+bt = β +q.

So
(β +q)−1 = (1+bt)−1 = 1−b(1+ tb)−1t = 1−b(α + p)−1t.

Note that
α

d = (α + p)−1(1− p) = (α + p)−1
αα

d .

Then

(ba)d = (β +q)−1(1−q) = [1−b(α + p)−1t]bα
da

= bα
da−b(α + p)−1

αα
da+b(α + p)−1

α
d
αα

da

= b(αd)2a = b((ab)d)2a.

This completes the proof.
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Cline formula for the Drazin inverse was investigated variously, one can refer to [12] and
[15]. However, the proof of Theorem 2.1 can be slightly modified to obtain the following
result.

Corollary 2.1. Let a, b ∈ R. If ab is Drazin invertible with ind(ab) = k, then ba is Drazin
invertible with k−1≤ ind(ba)≤ k +1, and

(ba)D = b((ab)D)2a.

Proof. Let c = b((ab)D)2a. In view of Theorem 2.1, ba is generalized Drazin inverse with
(ba)d = c. By hypothesis, (ab)k = (ab)k+1(ab)D, which implies that

[ba− (ba)2c]k+1 = b[(ab)k− (ab)k+1(ab)D]a = 0.

Thus ba− (ba)2c ∈ Rnil, and so (ba)D = c = b((ab)D)2a. From the above argument, one
also has

ind(ba)≤ k +1 = ind(ab)+1.

By symmetry, ind(ab)≤ ind(ba)+1. Hence, ind(ba)≥ k−1, and so we obtain the required
result.

Letting k = 1 in Corollary 2.1, we get a result for the group inverse.

Corollary 2.2. Let a, b ∈ R. If ab is group invertible, then one of the following holds:
(1) ba is invertible;
(2) ba is group invertible with (ba)# = b((ab)#)2a;
(3) ba is Drazin invertible with ind(ba) = 2, and (ba)D = b((ab)#)2a.

Remark 2.1.
(1) For a, b ∈ R, if ab is invertible, then ba need not be invertible. For instance, let

N be the set of positive integers and R be the set of real numbers. Denote by
R = CFMN(R) the ring of column finite N×N matrices over R. Let Ei j be an
element of R with (i, j)-entry is 1 and 0 elsewhere. Take

A =
∞

∑
i=1

Ei(i+1) =

 0 1 0 0 ...
0 0 1 0 ...
0 0 0 1 ...
...

...
...

...
...

 ∈ R, B =
∞

∑
i=1

E(i+1)i =

 0 0 0 0 ...
1 0 0 0 ...
0 1 0 0 ...
...

...
...

...
...

 ∈ R.

Then AB is the identity, but BA is not invertible since its first row are zero vector.
However, in this case BA is group invertible, and (BA)# = B(AB)−2A. (This shows
that the indices of ab and ba need not be equal.)

(2) Jacobson’s lemma states that for any a, b ∈ R, 1 + ab is invertible if and only if
1 + ba is invertible. In [2, 16], the authors generalized Jacobson’s lemma to the
Drazin invertibility and showed that for a, b ∈ R, if 1+ab is Drazin invertible with
ind(1 + ab) = k, then 1 + ba is Drazin invertible with ind(1 + ba) = k; Zhuang et
al. [16] presented Jacobson’s lemma for the generalized Drazin invertibility, and
proved that 1+ab is generalized Drazin invertible if and only if so is 1+ba.

A special case of Theorem 2.1 is an application of Cline’s formula to a Banach algebra
A . In a Banach algebra it is enough to require that the generalized Drazin inverse ad of
an element a merely commutes with a. To show how much difference this makes, we give
an alternative proof of Cline’s formula recalling that an element w of a Banach algebra is
quasinilpotent if and only if ‖wn‖1/n→ 0 as n→ ∞.
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Corollary 2.3. Let a,b ∈A and let ab be generalized Drazin invertible. Then so is ba, and

(ba)d = b((ab)d)2a.

Proof. Let c = b((ab)d)2a. To show that c = (ba)d , we need to prove:
(i) bac = cba, (ii) bac2 = c, (iii) w = ba− (ba)2c ∈A qnil:

(i) bac = bab((ab)d)2a = b(ab)da, and cba = b((ab)d)2aba = b(ab)da.
(ii) bac2 = (bac)c = b(ab)dab((ab)d)2a = b((ab)d)2a = c.
(iii) Write p = 1−ab(ab)d ; then p is idempotent and pab ∈A qnil. Then w = bpa, and

induction shows that
wn+1 = b(pab)na, n≥ 1.

Hence
‖wn+1‖1/n ≤ ‖b‖1/n‖(pab)n‖1/n‖a‖1/n→ 0 as n→ ∞,

and also ‖wn‖1/n→ 0.

3. Cline’s formula for rectangular matrices and operators

For positive integers m, n, let Rm×n be the set of all m× n matrices over the ring R. Let
k = m+n. Given matrices A ∈ Rm×n and B ∈ Rn×m, we define two k× k matrices C, D by

(3.1) C =
(

0 0
A 0

)
, D =

(
0 B
0 0

)
.

We observe that

CD =
(

0 0
0 AB

)
, DC =

(
BA 0
0 0

)
.

Since CD and DC belong to the same ring Rk×k, Theorem 2.1 applies to give the following
result: If CD is generalized Drazin invertible, then so is DC, and Cline’s formula holds:

(3.2) (DC)d = D((CD)d)2C.

This leads to Cline’s formula for rectangular matrices.

Corollary 3.1. Let A ∈ Rm×n and B ∈ Rn×m. If AB ∈ Rm×m is generalized Drazin invertible,
then so is BA ∈ Rn×n, and

(3.3) (BA)d = B((AB)d)2A.

Proof. Write k = m + n. A direct verification of the conditions for the generalized Drazin
inverse shows that any m×m matrix T over R is generalized Drazin invertible if and only if(

T 0
0 0

)
∈ Rk×k is, while (

T 0
0 0

)d

=
(

T d 0
0 0

)
.

Similarly, S ∈ Rn×nis generalized Drazin invertible if and only if
(

0 0
0 S

)
∈ Rk×k is, and(

0 0
0 S

)d

=
(

0 0
0 Sd

)
.

Define matrices C and D as in Equation (3.1). Setting S = AB and T = BA in the above
argument and applying Equation (3.2), we obtain the result by matrix calculation:
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(
(BA)d 0

0 0

)
= (DC)d = D((CD)d)2C =

(
B((AB)d)2A 0

0 0

)
.

Let B(X ,Y ) denote the set of all bounded linear operators between Banach spaces Xand
Y , and let B(X) = B(X ,X). We observe that if A ∈B(X ,Y ) and B ∈B(Y,X), then the
operator matrices C and D defined by (3.1) belong to the algebra B(X ⊕Y ). Using these
matrices we obtain the operator case of Cline’s formula.

Corollary 3.2. Let X ,Y be Banach spaces, let A∈B(X ,Y ) and B∈B(Y,X). If AB∈B(Y )
is generalized Drazin invertible, then so is BA ∈B(X), and Cline’s formula (3.3) holds.
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