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Abstract. Let S be a compactly cancellative foundation semigroup with identity. It is
well-known that L∞

0 (S ;Ma(S ))∗ can be equipped with a multiplication that extends the
original multiplication on Ma(S ) and makes L∞

0 (S ;Ma(S ))∗ a Banach algebra. In this
paper, among the other things, it is shown that if S is a nondiscrete compactly cancella-
tive foundation semigroup with an identity, then the radical of L∞

0 (S ;Ma(S ))∗ is infinite-
dimensional.

2010 Mathematics Subject Classification: Primary: 43A05; Secondary: 46H10

Keywords and phrases: Compactly cancellative semigroup, foundation semigroup, right
ideal, radical, semigroup algebra.

1. Introduction and notations

Let S be a locally compact, Hausdorff topological semigroup with identity e. Let M(S )
be the space of all complex Borel measures on S. Then M(S ) is the continuous dual
of C0(S ), the space of all continuous functions on S vanishing at infinity. The set of
all measures µ ∈ M(S ) for which both the mappings x 7→ δx ∗ |µ| and x 7→ |µ| ∗ δx are
weakly continuous will denoted by Ma(S ), where δx denotes the Dirac measure at x. A
topological semigroup S is called a foundation semigroup if S coincides with the closure
of ∪{supp(µ); µ ∈Ma(S )}. If S is a foundation topological semigroup, then Ma(S ) is
a closed L-ideal of M(S ) called the semigroup algebra S [4]. More information on this
matter can be found in [1, 4, 5].

A complex-valued function f on S is said to be Ma(S )-measurable if it is µ-measurable
for all µ ∈Ma(S ). Denote by L∞(S ;Ma(S )) the space of all bounded Ma(S )-measurable
functions on S formed by identifying functions that agree µ-almost every where for all
µ ∈Ma(S ). Observe that L∞(S ;Ma(S )) with complex cojugation as involution, the point-
wise operations and the norm ‖.‖ is a commutative C∗-algebra. It is well-known from [11]
that if S is a foundation semigroup with an identity, then L∞(S ;Ma(S )) can be identi-
fied with Ma(S )∗. We say that a function f ∈ L∞(S ;Ma(S )) vanishes at infinity if for
each ε > 0, there is a compact subset K of S for which ‖ f χS \K‖ < ε , that is, for each
µ ∈Ma(S ), | f (x)| < ε for µ-almost all x ∈S \K (µ ∈Ma(S )). Let L∞

0 (S ;Ma(S )) be
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the C∗-algebra of all Ma(S )-measurable functions f on S such that f vanishes at infinity.
Finally, let us recall that S is said to be compactly cancellative if C−1D and CD−1 are
compact subsets of S for all compact subsets C and D of S [8]. Compactly cancellative
foundation semigroups form a large class of locally compact semigroups which includes lo-
cally compact groups as elementary examples. As another example, consider the semigroup

S = {0}∪
{

1
n

; n≥ 1
}
∪
{

1
2

+
1
n

; n≥ 1
}

and set

B =
{
{x}; x 6= 0

}
∪
{
{0}∪

{
1
n

; n≥ k
}

; k ≥ 1
}

.

Then S with B as a base of the topology and the operation xy = max{x,y} defines a com-
pactly cancellative foundation semigroup with identity. For an extensive study of L∞

0 (S ;
Ma(S )) in the compactly cancellative foundation semigroup case of S , see [7, 8, 9].

2. Main results

Let S be a compactly cancellative foundation semigroup with identity. Given any µ ∈
Ma(S ) and f ∈ L∞

0 (S ;Ma(S )), define the complex-valued functions f oµ and µo f on S
by f oµ(x) = µ(Lx f ) and µo f (x) = µ(Rx f ), where Lx f (y) = f (xy) and Rx f (y) = f (yx) for
all x,y ∈S . It is known that f oµ and µo f are in L∞

0 (S ;Ma(S )) with ‖ f oµ‖ ≤ ‖ f‖‖µ‖
and ‖µo f‖ ≤ ‖ f‖‖µ‖. For f ∈ L∞

0 (S ;Ma(S )) and F ∈ L∞
0 (S ;Ma(S ))∗ we define F f ∈

L∞
0 (S ;Ma(S )) as a linear functional on Ma(S ) by 〈F f ,µ〉 = 〈F,µo f 〉, see [8, Proposi-

tion 3.2]. We define the Arens product of G and F , denoted by G.F to be the functional
defined by 〈G.F, f 〉 = 〈G,F f 〉 for f ∈ L∞

0 (S ;Ma(S )). Equipped with this multiplication,
L∞

0 (S ;Ma(S ))∗ is a Banach algebra and this multiplication agrees on Ma(S ) with the
given product [8].

Theorem 2.1. Let S be a compactly cancellative foundation semigroup with an iden-
tity. Then C0(S )⊥ is a closed two-sided ideal of L∞

0 (S ;Ma(S ))∗ and L∞
0 (S ;Ma(S ))∗/

C0(S )⊥ is isometrically isomorphic as an algebra to M(S ).

Proof. By [9, Theorem 3.6], C0(S )⊥ is a weak∗ closed two-sided ideal of L∞
0 (S ; Ma(S ))∗,

and so C0(S )⊥ is a norm closed ideal of L∞
0 (S ;Ma(S ))∗. From Banach space theory,

there is an isometric linear space isometric between L∞
0 (S ;Ma(S ))∗/C0(S )⊥ and C0(S )∗

[10]. In addition, there is an isometric linear space isomorphism between C0(S )∗ and
M(S ). The composite isometric isomorphism T is defined by T (F +C0(S )⊥) = µ , where
〈F, f 〉=

∫
f (x)dµ(x) for all f ∈C0(S ). It remains for us to see that T is an algebra isomor-

phism when L∞
0 (S ;Ma(S ))∗/C0(S )⊥ is given the quotient space multiplication induced

from the multiplication in L∞
0 (S ;Ma(S ))∗ and multiplication in M(S ) is convolution.

For F1,F2 ∈ L∞
0 (S ;Ma(S ))∗, we put µ1 = T (F1 +C0(S )⊥) and µ2 = T (F2 +C0(S )⊥).

Let µ3 = T (F1.F2 +C0(S )⊥). Then for each f ∈ C0(S ), F2 f ∈ C0(S ). Indeed, any
f ∈C0(S ) can be written in the form f = µoh with µ ∈Ma(S ) and h ∈ L∞

0 (S ;Ma(S )),
see [8, Proposition 2.6]. On the other hand, F2 f = F2µoh = µoF2h. By [9, Proposition
3.1], L∞

0 (S ;Ma(S )) is a left introverted subspace of L∞
0 (S ;Ma(S )). This shows that

F2h ∈ L∞
0 (S ;Ma(S )). Hence F2 f = µoF2h ∈ C0(S ) again by [8, Proposition 2.6]. It is
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easy to see that F2 f (x) = 〈F2,Lx f 〉 for all x ∈S . Now, let f ∈C0(S ). We have∫
f (z)dµ3(z) = 〈F1.F2, f 〉= 〈F1,F2 f 〉=

∫
〈F2,Lx f 〉dµ1(x)

=
∫ ∫

f (xy)dµ1(x)dµ2(y) =
∫

f (z)dµ1 ∗µ2(z).

Since this holds for all f ∈ C0(S ), we conclude that µ3 = µ1 ∗ µ2 and so T defines an
isometric algebra isomorphism from L∞

0 (S ;Ma(S ))∗/C0(S )⊥ onto M(S ).

Theorem 2.2. Let S be a nondiscrete and compactly cancellative foundation semigroup
with an identity. Then L∞

0 (S ;Ma(S ))∗ is not semisimple and is not commutative.

Proof. Since S is not discrete, it is an immediate consequence of the Hahn-Banach the-
orem that C0(S )⊥ 6= {0}. Now if F ∈ L∞

0 (S ;Ma(S ))∗, let F ′ be an extension of F to
L∞(S ;Ma(S ))∗ such that ‖F‖ = ‖F ′‖. By [11], L∞(S ;Ma(S )) can be identified with
Ma(S )∗. Since Ma(S ) is weak∗ dense in Ma(S )∗∗ [10], so that we can find a net {µα} in
Ma(S ) such that µα → F ′ in the weak∗ topology of Ma(S )∗∗. We conclude that µα → F
in the weak∗ topology of L∞

0 (S ;Ma(S ))∗. For G ∈C0(S )⊥ and f ∈C0(S ), we have

〈F.G, f 〉= 〈F,G f 〉= lim
α
〈µα ,G f 〉= lim

α
〈G,µα o f 〉= 0,

since µα o f ∈C0(S ) for all α , see [8, Proposition 2.1]. This shows that L∞
0 (S ;Ma(S ))∗

C0(S )⊥ = {0}. By [3, Proposition 1.5.6], we have 0 6= C0(S )⊥ ⊆ rad(L∞
0 (S ;Ma(S ))∗)

and consequently L∞
0 (S ;Ma(S ))∗ is not semisimple.

It remains for us to see that L∞
0 (S ;Ma(S ))∗ is not commutative. Suppose that L∞

0 (S ;
Ma(S ))∗ is commutative. Let F ∈ L∞

0 (S ;Ma(S ))∗. Clearly, the map G 7→ F.G = G.F
is weak∗ weak∗ continuous on L∞

0 (S ;Ma(S ))∗. This says that L∞
0 (S ;Ma(S ))∗ is Arens

regular. By [8, Theorem 4.3 ], S is discrete which is contradiction.

Corollary 2.1. Let S be a nondiscrete compactly cancellative foundation semigroup with
an identity. Then the radical of L∞

0 (S ;Ma(S ))∗ is infinite-dimensional.

Proof. For any integer n, there are n mutually disjoint relatively compact open subsets
U1, ...,Un in S , whose union is not all of S . For 1 ≤ i ≤ n, 1Ui denotes the characteristic
function of Ui. Since 1U1 is not in the closure of C0(S ), there exists F1 ∈ L∞

0 (S ;Ma(S ))∗

such that 〈F1,1U1〉= 1 but 〈F1, f 〉= 0 for every f ∈C0(S ). For 1≤ i≤ n−1, 〈1U1 , ...,1Ui〉⊕
C0(S ) is a closed subspace of L∞

0 (S ;Ma(S )), see [10, Theorem 1.42]. [10, Theorem
3.5] furnishes then a Fi+1 ∈ C0(S )⊥ such that 〈Fi+1,1Ui+1〉 = 1 and 〈Fi+1,1U j〉 = 0 for
all 1 ≤ j ≤ i. Clearly {F1, ...,Fn} is a linearly independent subset of C0(S )⊥. By Theo-
rem 2.2 and its proof, the radical L∞

0 (S ;Ma(S ))∗ is an infinite-dimensional subspace of
L∞

0 (S ;Ma(S ))∗.

By a semicharacter on S we mean a non-zero function χ in B(S ) such that χ(xy) =
χ(x)χ(y) for all x,y ∈S . We denote the set of all continuous semicharacters on S by Ŝ .
Let A be a closed subalgebra of M(S ). By a multiplicative linear functional on A we mean
a non-zero functional h∈ A∗ such that 〈h,µ ∗ν〉= 〈h,µ〉〈h,ν〉 for all µ,ν ∈ A. The set of all
multiplicative linear functionals on A is denoted by Â. There exists a one-to-one mapping τ

of Ŝ onto ˆM(S ) such that χ̂(µ) =
∫

χ(x)dµ(x) for all χ̂ ∈ ˆMa(S ) where τ(χ) = χ̂ is in
Ŝ , see [4, Theorem 5.3].
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Example 2.1. Let S be the additive semigroup Z+ of all nonnegative integer numbers.
Then S with the discrete topology is a compactly cancellative foundation semigroup with
identity. A character χ of Z+ is plainly determined by the number χ(1), since χ(n) = χ(1)n

(n ∈ Z+), and χ(1) can be any number in T. Then clearly Ŝ separates the points of S .

Let S be a compactly cancellative foundation semigroup with an identity. A function
f ∈ L∞

0 (S ;Ma(S )) is said to be almost periodic if the set {Lx f ; x ∈S } of left translates
of f is norm relatively compact in L∞

0 (S ;Ma(S )). The set of all almost periodic functions
on S is denoted by AP(S ).

Theorem 2.3. Let S be a compactly cancellative foundation semigroup with an identity
which is not compact. Further, suppose that S is commutative and Ŝ separates the points
of S . Then

AP(S )⊥ * rad(L∞
0 (S ;Ma(S ))∗).

Proof. Assume that AP(S )⊥ ⊆ rad(L∞
0 (S ;Ma(S ))∗). By [4, Theorem 5.9], M(S ) is

semisimple. It follows from Theorem 2.1 and [3, Theorem 1.5.21] that

rad(L∞
0 (S ;Ma(S ))∗)⊆C0(S )⊥.

We conclude that AP(S )⊥ ⊆ C0(S )⊥, and consequently C0(S ) ⊆ AP(S ). However,
since S is not compact, C0(S )∩AP(S ) = {0} is a consequence of the theory of almost
periodic functions on semigroups [2].

Remark 2.1.
(i) Let S be a compactly cancellative foundation semigroup with an identity. By [9,

Theorem 3.3 ], Ma(S ) is a closed ideal in L∞
0 (S ;Ma(S ))∗. Further, suppose that

S is commutative and Ŝ separates the points of S . By [4, Theorem 5.9], Ma(S )
is semisimple. Since rad(Ma(S )) = Ma(S )∩ rad(L∞

0 (S ;Ma(S ))∗), see [3, The-
orem 1.5.4], we conclude that Ma(S )∩ rad(L∞

0 (S ;Ma(S ))∗) = {0}. Now, let S

be a compact abelian group. Then Ŝ separates the points of S [6]. Consequently,
if S is a compact abelian group, then

rad(L1(S )∗∗)∩L1(S ) = {0}.

(ii) Let S be a nondiscrete and compactly cancellative foundation semigroup with an
identity. By Theorem 2.2 and its proof, it is easy to see that

rad(L∞
0 (S ;Ma(S ))∗) = {F ; L∞

0 (S ;Ma(S ))∗F = {0}}.

(iii) Let S be a compact foundation semigroup with identity. Let f ∈ ˆMa(S ), µ ∈
Ma(S ). Clearly µo f ∈ ˆMa(S ). It follows that L∞

0 (S ;Ma(S ))∗ ˆMa(S )
⊥

= {0},
and so ˆMa(S )

⊥
⊆ rad(L∞

0 (S ;Ma(S ))∗). But L∞
0 (S ;Ma(S ))∗/ ˆMa(S )

⊥
is semi-

simple. We conclude that

ˆMa(S )
⊥

= rad(L∞
0 (S ;Ma(S ))∗).

Theorem 2.4. Let S be a compactly cancellative foundation semigroup with an identity.
Further, suppose that Ma(S ) is a semisimple Banach algebra. Then L∞

0 (S ;Ma(S ))∗/
rad(L∞

0 (S ;Ma(S ))∗)∼= Ma(S ) if and only if S is a discrete semigroup.
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Proof. Let S be a discrete semigroup. By [8, Proposition 3.4], we have L∞
0 (S ;Ma(S ))∗

∼= Ma(S ). It follows that

L∞
0 (S ;Ma(S ))∗/ rad(L∞

0 (S ;Ma(S ))∗)∼= Ma(S ).

Suppose S is not discrete. Let U denote the family of relatively compact neighborhoods
of e and regard U as a directed set in the usual way: U � V if U ⊆ V . Since S is a foun-
dation semigroup, we can find a probability measure eU ∈Ma(S ) such that eU (U) = 1 for
all U ∈ U . It is easy to see that {eU}U∈U is a bounded approximate identity for Ma(S )
[4]. By the Banach-Alaoglu’s theorem, without loss of generality, we may assume that
eα → E in the weak∗ topology of L∞

0 (S ;Ma(S ))∗. It is known that E is a right iden-
tity for L∞

0 (S ;Ma(S ))∗ [3]. We conclude that E.F −F ∈ rad(L∞
0 (S ;Ma(S ))∗) for all

F ∈ L∞
0 (S ;Ma(S ))∗. Thus E + rad(L∞

0 (S ;Ma(S ))∗) is an identity for L∞
0 (S ;Ma(S ))∗/

rad(L∞
0 (S ;Ma(S ))∗). By assumption, Ma(S ) has an identity, say µ . Since {eU}U∈U is

a bounded approximate identity for Ma(S ), eU = eU ∗ µ → µ in the norm topology. It is
not hard to see that eU → δe in the σ(M(S ),C0(S )) topology of M(S ). It follows that
δe = µ ∈Ma(S ). This is a contradiction, see [4, Exercise 3.10].

Let S be a locally compact foundation semigroup with an identity. If i : C0(S )→
L∞

0 (S ;Ma(S )) is the inclusion map, then the restriction i∗(F) of F ∈ L∞
0 (S ;Ma(S ))∗ to

the subspace C0(S ) of L∞
0 (S ;Ma(S )) determines a quotient mapping i∗ : L∞

0 (S ;Ma(S ))∗

→M(S ). Notice that i∗ is the identity on Ma(S ).

Theorem 2.5. Let S be a compactly cancellative foundation semigroup with identity. Then
S is compact if there is a finite-dimensional right ideal I in L∞

0 (S ;Ma(S ))∗ such that
i∗(I )∩M(S ) 6= {0}.

Proof. Suppose that S is non-compact. Assume towards a contradiction that I is a finite-
dimensional right ideal in L∞

0 (S ;Ma(S ))∗ such that i∗(I )∩M(S ) 6= {0}. If x ∈S , let
G be an extension of δx (regarded as a functional on C0(S )) to L∞

0 (S ;Ma(S )) such that
‖G‖= ‖δx‖ [10]. Then, for every F ∈I , we have Fδx = Fi∗(G) = F.G ∈I . This shows
that I is a right translation invariant subspace of L∞

0 (S ;Ma(S ))∗. Take F ∈I such that
i∗(F) 6= 0 and ‖i∗(F)‖= 1. Take ν ∈Ma(S ) such that i∗(F)∗ν 6= 0. Otherwise, i∗(F) = 0.
Thus, without loss of generality, we may assume that i∗(F) ∈Ma(S ). Since I is a finite-
dimensional subspace of L∞

0 (S ;Ma(S ))∗, X := {i∗(F)∗δx; x∈S } is finite-dimensional.
Let dim(X ) = n. Let i∗(F) ∗ δx1 , ..., i

∗(F) ∗ δxn generate X as a subspace of Ma(S ). It
is evident that the mapping ϕ : Cn →X defined by ϕ(c1, ...,cn) = ∑

n
j=1 c ji∗(F) ∗ δx j is

a homeomorphism [10]. Hence, there is a constant c > 0 such that each µ ∈X can be
written as ∑

n
j=1 c ji∗(F) ∗ δx j with c1, ...,cn ∈ C and ∑

n
j=1 |c j| ≤ c‖µ‖. Choose ε ∈ (0,1)

with ε(1+ c) < 1. Let K be a compact subset of S such that |i∗(F)|(K) > 1− ε . Since the
semigroup is non-compact, there exists x ∈S such that Kx is disjoint from Kx1∪·· ·∪Kxn.
Clearly

1− ε < |i∗(F)∗δx|(Kx)≤
n

∑
j=1
|α j||i∗(F)∗δx j |(Kx) < cε.

We conclude that ε(1+ c) > 1 which is contradiction.

Theorem 2.6. Let S be a compactly cancellative foundation semigroup with an identity.
Let I be a right ideal of Ma(S ) of dimension n≥ 1. Then I rad(L∞

0 (S ;Ma(S ))∗)⊂I .
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Proof. Let F ∈ rad(L∞
0 (S ;Ma(S ))∗, µ ∈I and {eα}α∈J be a bounded approximate iden-

tity for Ma(S ) [4]. For α ∈ J we have eα .F ∈ Ma(S ), since Ma(S ) is an ideal in
L∞

0 (S ;Ma(S ))∗ (see [8, Proposition 3.3]). Since I is finite-dimensional, I is a closed
right ideal in Ma(S ), see [10, Theorem 1.21]. Clearly ‖µ ∗eα .F−µ.F‖→ 0 and µ ∗eα .F ∈
I for all α ∈ J. We conclude that µ.F ∈I and so I L∞

0 (S ;Ma(S ))∗ ⊆I . We assume
that a contrario that I = I L∞

0 (S ;Ma(S ))∗. If I is cyclic, say I = µMa(S ), then

I = I rad(L∞
0 (S ;Ma(S ))∗) = µ rad(L∞

0 (S ;Ma(S ))∗).

We must have µ = µ.F for some F ∈ rad(L∞
0 (S ;Ma(S ))∗). By [3, Corollary 1.5.3], we

have µ = 0 and thus I = 0 which is a contradiction. Now suppose that I = µ1Ma(S )+
· · ·+ µnMa(S ), and that the Theorem holds for right L∞

0 (S ;Ma(S ))∗-modules with n−1
generators. Since I /µ1Ma(S ) has n−1 generators, and since

I /µ1Ma(S ) rad(L∞
0 (S ;Ma(S ))∗) = I /µ1Ma(S ),

it follows that I /µ1Ma(S ) = {0}. This shows that I = µ1Ma(S ). Therefore, by cyclic
case, I = 0. This is contradiction.
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