BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On the Radical Banach Algebras Related to Semigroup Algebras

ALI GHAFFARI

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran aghaffari@semnan.ac.ir

Abstract. Let \mathscr{S} be a compactly cancellative foundation semigroup with identity. It is well-known that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ can be equipped with a multiplication that extends the original multiplication on $M_a(\mathscr{S})$ and makes $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ a Banach algebra. In this paper, among the other things, it is shown that if \mathscr{S} is a nondiscrete compactly cancellative foundation semigroup with an identity, then the radical of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is infinite-dimensional.

2010 Mathematics Subject Classification: Primary: 43A05; Secondary: 46H10

Keywords and phrases: Compactly cancellative semigroup, foundation semigroup, right ideal, radical, semigroup algebra.

1. Introduction and notations

Let \mathscr{S} be a locally compact, Hausdorff topological semigroup with identity e. Let $M(\mathscr{S})$ be the space of all complex Borel measures on S. Then $M(\mathscr{S})$ is the continuous dual of $C_0(\mathscr{S})$, the space of all continuous functions on \mathscr{S} vanishing at infinity. The set of all measures $\mu \in M(\mathscr{S})$ for which both the mappings $x \mapsto \delta_x * |\mu|$ and $x \mapsto |\mu| * \delta_x$ are weakly continuous will denoted by $M_a(\mathscr{S})$, where δ_x denotes the Dirac measure at x. A topological semigroup \mathscr{S} is called a *foundation* semigroup if \mathscr{S} coincides with the closure of $\cup \{ \operatorname{supp}(\mu); \mu \in M_a(\mathscr{S}) \}$. If \mathscr{S} is a foundation topological semigroup, then $M_a(\mathscr{S})$ is a closed *L*-ideal of $M(\mathscr{S})$ called the semigroup algebra \mathscr{S} [4]. More information on this matter can be found in [1, 4, 5].

A complex-valued function f on \mathscr{S} is said to be $M_a(\mathscr{S})$ -measurable if it is μ -measurable for all $\mu \in M_a(\mathscr{S})$. Denote by $L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ the space of all bounded $M_a(\mathscr{S})$ -measurable functions on \mathscr{S} formed by identifying functions that agree μ -almost every where for all $\mu \in M_a(\mathscr{S})$. Observe that $L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ with complex cojugation as involution, the pointwise operations and the norm $\|.\|$ is a commutative C^* -algebra. It is well-known from [11] that if \mathscr{S} is a foundation semigroup with an identity, then $L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ can be identified with $M_a(\mathscr{S})^*$. We say that a function $f \in L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ vanishes at infinity if for each $\varepsilon > 0$, there is a compact subset K of \mathscr{S} for which $\|f\chi_{\mathscr{S}\setminus K}\| < \varepsilon$, that is, for each $\mu \in M_a(\mathscr{S}), |f(x)| < \varepsilon$ for μ -almost all $x \in \mathscr{S} \setminus K$ ($\mu \in M_a(\mathscr{S})$). Let $L^{\infty}_0(\mathscr{S}; M_a(\mathscr{S}))$ be

Communicated by Mohammad Sal Moslehian.

Received: November 22, 2011; Revised: February 8, 2012.

A. Ghaffari

the C^* -algebra of all $M_a(\mathscr{S})$ -measurable functions f on \mathscr{S} such that f vanishes at infinity. Finally, let us recall that \mathscr{S} is said to be compactly cancellative if $C^{-1}D$ and CD^{-1} are compact subsets of \mathscr{S} for all compact subsets C and D of \mathscr{S} [8]. Compactly cancellative foundation semigroups form a large class of locally compact semigroups which includes locally compact groups as elementary examples. As another example, consider the semigroup

$$\mathscr{S} = \{0\} \cup \left\{\frac{1}{n}; n \ge 1\right\} \cup \left\{\frac{1}{2} + \frac{1}{n}; n \ge 1\right\}$$

and set

$$\mathscr{B} = \left\{ \{x\}; x \neq 0 \right\} \cup \left\{ \{0\} \cup \left\{ \frac{1}{n}; n \ge k \right\}; k \ge 1 \right\}.$$

Then \mathscr{S} with \mathscr{B} as a base of the topology and the operation $xy = \max\{x, y\}$ defines a compactly cancellative foundation semigroup with identity. For an extensive study of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ in the compactly cancellative foundation semigroup case of \mathscr{S} , see [7, 8, 9].

2. Main results

Let \mathscr{S} be a compactly cancellative foundation semigroup with identity. Given any $\mu \in M_a(\mathscr{S})$ and $f \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$, define the complex-valued functions $fo\mu$ and μof on \mathscr{S} by $fo\mu(x) = \mu(L_x f)$ and $\mu of(x) = \mu(R_x f)$, where $L_x f(y) = f(xy)$ and $R_x f(y) = f(yx)$ for all $x, y \in \mathscr{S}$. It is known that $fo\mu$ and μof are in $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ with $||fo\mu|| \leq ||f||||\mu||$ and $||\mu of|| \leq ||f|||\mu||$. For $f \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ and $F \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ we define $Ff \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ as a linear functional on $M_a(\mathscr{S})$ by $\langle Ff, \mu \rangle = \langle F, \mu of \rangle$, see [8, Proposition 3.2]. We define the Arens product of G and F, denoted by G.F to be the functional defined by $\langle G.F, f \rangle = \langle G, Ff \rangle$ for $f \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$. Equipped with this multiplication, $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is a Banach algebra and this multiplication agrees on $M_a(\mathscr{S})$ with the given product [8].

Theorem 2.1. Let \mathscr{S} be a compactly cancellative foundation semigroup with an identity. Then $C_0(\mathscr{S})^{\perp}$ is a closed two-sided ideal of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ and $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*/$ $C_0(\mathscr{S})^{\perp}$ is isometrically isomorphic as an algebra to $M(\mathscr{S})$.

Proof. By [9, Theorem 3.6], $C_0(\mathscr{S})^{\perp}$ is a weak* closed two-sided ideal of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$, and so $C_0(\mathscr{S})^{\perp}$ is a norm closed ideal of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. From Banach space theory, there is an isometric linear space isometric between $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*/C_0(\mathscr{S})^{\perp}$ and $C_0(\mathscr{S})^*$ [10]. In addition, there is an isometric linear space isomorphism between $C_0(\mathscr{S})^{\perp}$ and $M(\mathscr{S})$. The composite isometric isomorphism T is defined by $T(F + C_0(\mathscr{S})^{\perp}) = \mu$, where $\langle F, f \rangle = \int f(x)d\mu(x)$ for all $f \in C_0(\mathscr{S})$. It remains for us to see that T is an algebra isomorphism when $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*/C_0(\mathscr{S})^{\perp}$ is given the quotient space multiplication induced from the multiplication in $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ and multiplication in $M(\mathscr{S})$ is convolution. For $F_1, F_2 \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$, we put $\mu_1 = T(F_1 + C_0(\mathscr{S})^{\perp})$ and $\mu_2 = T(F_2 + C_0(\mathscr{S})^{\perp})$. Let $\mu_3 = T(F_1.F_2 + C_0(\mathscr{S})^{\perp})$. Then for each $f \in C_0(\mathscr{S})$, $F_2f \in C_0(\mathscr{S})$. Indeed, any $f \in C_0(\mathscr{S})$ can be written in the form $f = \mu oh$ with $\mu \in M_a(\mathscr{S})$ and $h \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$, see [8, Proposition 2.6]. On the other hand, $F_2f = F_2\mu oh = \mu oF_2h$. By [9, Proposition 3.1], $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ is a left introverted subspace of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$. This shows that $F_2h \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$. Hence $F_2f = \mu oF_2h \in C_0(\mathscr{S})$ again by [8, Proposition 2.6]. It is easy to see that $F_2f(x) = \langle F_2, L_x f \rangle$ for all $x \in \mathscr{S}$. Now, let $f \in C_0(\mathscr{S})$. We have

$$\int f(z)d\mu_3(z) = \langle F_1, F_2, f \rangle = \langle F_1, F_2 f \rangle = \int \langle F_2, L_x f \rangle d\mu_1(x)$$
$$= \int \int f(xy)d\mu_1(x)d\mu_2(y) = \int f(z)d\mu_1 * \mu_2(z) d\mu_2(y)$$

Since this holds for all $f \in C_0(\mathscr{S})$, we conclude that $\mu_3 = \mu_1 * \mu_2$ and so *T* defines an isometric algebra isomorphism from $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* / C_0(\mathscr{S})^{\perp}$ onto $M(\mathscr{S})$.

Theorem 2.2. Let \mathscr{S} be a nondiscrete and compactly cancellative foundation semigroup with an identity. Then $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is not semisimple and is not commutative.

Proof. Since \mathscr{S} is not discrete, it is an immediate consequence of the Hahn-Banach theorem that $C_0(\mathscr{S})^{\perp} \neq \{0\}$. Now if $F \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$, let F' be an extension of F to $L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ such that ||F|| = ||F'||. By [11], $L^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ can be identified with $M_a(\mathscr{S})^*$. Since $M_a(\mathscr{S})$ is weak* dense in $M_a(\mathscr{S})^{**}$ [10], so that we can find a net $\{\mu_{\alpha}\}$ in $M_a(\mathscr{S})$ such that $\mu_{\alpha} \to F'$ in the weak* topology of $M_a(\mathscr{S})^{**}$. We conclude that $\mu_{\alpha} \to F$ in the weak* topology of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. For $G \in C_0(\mathscr{S})^{\perp}$ and $f \in C_0(\mathscr{S})$, we have

$$\langle F.G, f \rangle = \langle F, Gf \rangle = \lim_{\alpha} \langle \mu_{\alpha}, Gf \rangle = \lim_{\alpha} \langle G, \mu_{\alpha} of \rangle = 0,$$

since $\mu_{\alpha} of \in C_0(\mathscr{S})$ for all α , see [8, Proposition 2.1]. This shows that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ $C_0(\mathscr{S})^{\perp} = \{0\}$. By [3, Proposition 1.5.6], we have $0 \neq C_0(\mathscr{S})^{\perp} \subseteq \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$ and consequently $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is not semisimple.

It remains for us to see that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is not commutative. Suppose that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is commutative. Let $F \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. Clearly, the map $G \mapsto F.G = G.F$ is weak* weak* continuous on $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. This says that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is Arens regular. By [8, Theorem 4.3], \mathscr{S} is discrete which is contradiction.

Corollary 2.1. Let \mathscr{S} be a nondiscrete compactly cancellative foundation semigroup with an identity. Then the radical of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is infinite-dimensional.

Proof. For any integer *n*, there are *n* mutually disjoint relatively compact open subsets $U_1, ..., U_n$ in \mathscr{S} , whose union is not all of \mathscr{S} . For $1 \le i \le n$, 1_{U_i} denotes the characteristic function of U_i . Since 1_{U_1} is not in the closure of $C_0(\mathscr{S})$, there exists $F_1 \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ such that $\langle F_1, 1_{U_1} \rangle = 1$ but $\langle F_1, f \rangle = 0$ for every $f \in C_0(\mathscr{S})$. For $1 \le i \le n-1$, $\langle 1_{U_1}, ..., 1_{U_i} \rangle \oplus C_0(\mathscr{S})$ is a closed subspace of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$, see [10, Theorem 1.42]. [10, Theorem 3.5] furnishes then a $F_{i+1} \in C_0(\mathscr{S})^{\perp}$ such that $\langle F_{i+1}, 1_{U_{i+1}} \rangle = 1$ and $\langle F_{i+1}, 1_{U_j} \rangle = 0$ for all $1 \le j \le i$. Clearly $\{F_1, ..., F_n\}$ is a linearly independent subset of $C_0(\mathscr{S})^{\perp}$. By Theorem 2.2 and its proof, the radical $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ is an infinite-dimensional subspace of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$.

By a semicharacter on \mathscr{S} we mean a non-zero function χ in $B(\mathscr{S})$ such that $\chi(xy) = \chi(x)\chi(y)$ for all $x, y \in \mathscr{S}$. We denote the set of all continuous semicharacters on \mathscr{S} by \mathscr{P} . Let *A* be a closed subalgebra of $M(\mathscr{S})$. By a multiplicative linear functional on *A* we mean a non-zero functional $h \in A^*$ such that $\langle h, \mu * v \rangle = \langle h, \mu \rangle \langle h, v \rangle$ for all $\mu, v \in A$. The set of all multiplicative linear functionals on *A* is denoted by \hat{A} . There exists a one-to-one mapping τ of \mathscr{S} onto $M(\mathscr{S})$ such that $\hat{\chi}(\mu) = \int \chi(x) d\mu(x)$ for all $\hat{\chi} \in M_a(\mathscr{S})$ where $\tau(\chi) = \hat{\chi}$ is in \mathscr{S} , see [4, Theorem 5.3]. **Example 2.1.** Let \mathscr{S} be the additive semigroup \mathbb{Z}^+ of all nonnegative integer numbers. Then \mathscr{S} with the discrete topology is a compactly cancellative foundation semigroup with identity. A character χ of \mathbb{Z}^+ is plainly determined by the number $\chi(1)$, since $\chi(n) = \chi(1)^n$ $(n \in \mathbb{Z}^+)$, and $\chi(1)$ can be any number in \mathbb{T} . Then clearly $\hat{\mathscr{S}}$ separates the points of \mathscr{S} .

Let \mathscr{S} be a compactly cancellative foundation semigroup with an identity. A function $f \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ is said to be almost periodic if the set $\{L_x f; x \in \mathscr{S}\}$ of left translates of f is norm relatively compact in $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$. The set of all almost periodic functions on \mathscr{S} is denoted by $AP(\mathscr{S})$.

Theorem 2.3. Let \mathscr{S} be a compactly cancellative foundation semigroup with an identity which is not compact. Further, suppose that \mathscr{S} is commutative and $\hat{\mathscr{S}}$ separates the points of \mathscr{S} . Then

$$AP(\mathscr{S})^{\perp} \nsubseteq \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*).$$

Proof. Assume that $AP(\mathscr{S})^{\perp} \subseteq \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$. By [4, Theorem 5.9], $M(\mathscr{S})$ is semisimple. It follows from Theorem 2.1 and [3, Theorem 1.5.21] that

$$\operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) \subseteq C_0(\mathscr{S})^{\perp}.$$

We conclude that $AP(\mathscr{S})^{\perp} \subseteq C_0(\mathscr{S})^{\perp}$, and consequently $C_0(\mathscr{S}) \subseteq AP(\mathscr{S})$. However, since \mathscr{S} is not compact, $C_0(\mathscr{S}) \cap AP(\mathscr{S}) = \{0\}$ is a consequence of the theory of almost periodic functions on semigroups [2].

Remark 2.1.

(i) Let *S* be a compactly cancellative foundation semigroup with an identity. By [9, Theorem 3.3], *M_a(S)* is a closed ideal in *L*₀[∞](*S*;*M_a(S))**. Further, suppose that *S* is commutative and *Ŷ* separates the points of *S*. By [4, Theorem 5.9], *M_a(S)* is semisimple. Since rad(*M_a(S)*) = *M_a(S)* ∩ rad(*L*₀[∞](*S*;*M_a(S))**), see [3, Theorem 1.5.4], we conclude that *M_a(S)* ∩ rad(*L*₀[∞](*S*;*M_a(S))**) = {0}. Now, let *S* be a compact abelian group. Then *S* separates the points of *S* [6]. Consequently, if *S* is a compact abelian group, then

$$\operatorname{rad}(L^1(\mathscr{S})^{**}) \cap L^1(\mathscr{S}) = \{0\}.$$

(ii) Let \mathscr{S} be a nondiscrete and compactly cancellative foundation semigroup with an identity. By Theorem 2.2 and its proof, it is easy to see that

$$\operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) = \{F; L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*F = \{0\}\}.$$

(iii) Let \mathscr{S} be a compact foundation semigroup with identity. Let $f \in M_a(\mathscr{S}), \mu \in M_a(\mathscr{S})$. Clearly $\mu of \in M_a(\mathscr{S})$. It follows that $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* M_a(\mathscr{S})^{\perp} = \{0\}$, and so $M_a(\mathscr{S})^{\perp} \subseteq \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$. But $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* / M_a(\mathscr{S})^{\perp}$ is semisimple. We conclude that

$$M_a(\mathscr{S})^{\perp} = \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*).$$

Theorem 2.4. Let \mathscr{S} be a compactly cancellative foundation semigroup with an identity. Further, suppose that $M_a(\mathscr{S})$ is a semisimple Banach algebra. Then $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* / \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) \cong M_a(\mathscr{S})$ if and only if \mathscr{S} is a discrete semigroup. *Proof.* Let \mathscr{S} be a discrete semigroup. By [8, Proposition 3.4], we have $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* \cong M_a(\mathscr{S})$. It follows that

$$L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* / \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) \cong M_a(\mathscr{S}).$$

Suppose \mathscr{S} is not discrete. Let \mathscr{U} denote the family of relatively compact neighborhoods of e and regard \mathscr{U} as a directed set in the usual way: $U \succeq V$ if $U \subseteq V$. Since \mathscr{S} is a foundation semigroup, we can find a probability measure $e_U \in M_a(\mathscr{S})$ such that $e_U(U) = 1$ for all $U \in \mathscr{U}$. It is easy to see that $\{e_U\}_{U \in \mathscr{U}}$ is a bounded approximate identity for $M_a(\mathscr{S})$ [4]. By the Banach-Alaoglu's theorem, without loss of generality, we may assume that $e_\alpha \to E$ in the weak* topology of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. It is known that E is a right identity for $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ [3]. We conclude that $E.F - F \in \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$ for all $F \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. Thus $E + \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$ is an identity for $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*/$ $\operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$. By assumption, $M_a(\mathscr{S})$ has an identity, say μ . Since $\{e_U\}_{U \in \mathscr{U}}$ is a bounded approximate identity for $M_a(\mathscr{S}), e_U = e_U * \mu \to \mu$ in the norm topology. It is not hard to see that $e_U \to \delta_e$ in the $\sigma(M(\mathscr{S}), C_0(\mathscr{S}))$ topology of $M(\mathscr{S})$. It follows that $\delta_e = \mu \in M_a(\mathscr{S})$. This is a contradiction, see [4, Exercise 3.10].

Let \mathscr{S} be a locally compact foundation semigroup with an identity. If $i: C_0(\mathscr{S}) \to L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ is the inclusion map, then the restriction $i^*(F)$ of $F \in L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ to the subspace $C_0(\mathscr{S})$ of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$ determines a quotient mapping $i^*: L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^* \to M(\mathscr{S})$. Notice that i^* is the identity on $M_a(\mathscr{S})$.

Theorem 2.5. Let \mathscr{S} be a compactly cancellative foundation semigroup with identity. Then \mathscr{S} is compact if there is a finite-dimensional right ideal \mathscr{I} in $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ such that $i^*(\mathscr{I}) \cap M(\mathscr{S}) \neq \{0\}$.

Proof. Suppose that \mathscr{S} is non-compact. Assume towards a contradiction that \mathscr{I} is a finitedimensional right ideal in $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ such that $i^*(\mathscr{I}) \cap M(\mathscr{S}) \neq \{0\}$. If $x \in \mathscr{S}$, let G be an extension of δ_x (regarded as a functional on $C_0(\mathscr{S})$) to $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))$) such that $\|G\| = \|\delta_x\|$ [10]. Then, for every $F \in \mathscr{I}$, we have $F\delta_x = Fi^*(G) = F.G \in \mathscr{I}$. This shows that \mathscr{I} is a right translation invariant subspace of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$. Take $F \in \mathscr{I}$ such that $i^*(F) \neq 0$ and $\|i^*(F)\| = 1$. Take $v \in M_a(\mathscr{S})$ such that $i^*(F) * v \neq 0$. Otherwise, $i^*(F) = 0$. Thus, without loss of generality, we may assume that $i^*(F) \in M_a(\mathscr{S})$. Since \mathscr{I} is a finitedimensional subspace of $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$, $\mathscr{X} := \{i^*(F) * \delta_x; x \in \mathscr{S}\}$ is finite-dimensional. Let dim $(\mathscr{X}) = n$. Let $i^*(F) * \delta_{x_1}, ..., i^*(F) * \delta_{x_n}$ generate \mathscr{X} as a subspace of $M_a(\mathscr{S})$. It is evident that the mapping $\varphi : \mathbb{C}^n \to \mathscr{X}$ defined by $\varphi(c_1, ..., c_n) = \sum_{j=1}^n c_j i^*(F) * \delta_{x_j}$ is a homeomorphism [10]. Hence, there is a constant c > 0 such that each $\mu \in \mathscr{X}$ can be written as $\sum_{j=1}^n c_j i^*(F) * \delta_{x_j}$ with $c_1, ..., c_n \in \mathbb{C}$ and $\sum_{j=1}^n |c_j| \leq c \|\mu\|$. Choose $\varepsilon \in (0, 1)$ with $\varepsilon(1+c) < 1$. Let K be a compact subset of \mathscr{S} such that $|i^*(F)|(K) > 1 - \varepsilon$. Since the semigroup is non-compact, there exists $x \in \mathscr{S}$ such that Kx is disjoint from $Kx_1 \cup \cdots \cup Kx_n$. Clearly

$$1-\varepsilon < |i^*(F)*\delta_x|(Kx) \le \sum_{j=1}^n |\alpha_j||i^*(F)*\delta_{x_j}|(Kx) < c\varepsilon.$$

We conclude that $\varepsilon(1+c) > 1$ which is contradiction.

Theorem 2.6. Let \mathscr{S} be a compactly cancellative foundation semigroup with an identity. Let \mathscr{I} be a right ideal of $M_a(\mathscr{S})$ of dimension $n \ge 1$. Then $\mathscr{I} \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) \subset \mathscr{I}$.

A. Ghaffari

Proof. Let $F \in \operatorname{rad}(L_{0}^{\infty}(\mathscr{S}; M_{a}(\mathscr{S}))^{*}, \mu \in \mathscr{I}$ and $\{e_{\alpha}\}_{\alpha \in J}$ be a bounded approximate identity for $M_{a}(\mathscr{S})$ [4]. For $\alpha \in J$ we have $e_{\alpha}.F \in M_{a}(\mathscr{S})$, since $M_{a}(\mathscr{S})$ is an ideal in $L_{0}^{\infty}(\mathscr{S}; M_{a}(\mathscr{S}))^{*}$ (see [8, Proposition 3.3]). Since \mathscr{I} is finite-dimensional, \mathscr{I} is a closed right ideal in $M_{a}(\mathscr{S})$, see [10, Theorem 1.21]. Clearly $\|\mu * e_{\alpha}.F - \mu.F\| \to 0$ and $\mu * e_{\alpha}.F \in \mathscr{I}$ for all $\alpha \in J$. We conclude that $\mu.F \in \mathscr{I}$ and so $\mathscr{I}L_{0}^{\infty}(\mathscr{S}; M_{a}(\mathscr{S}))^{*} \subseteq \mathscr{I}$. We assume that a contrario that $\mathscr{I} = \mathscr{I}L_{0}^{\infty}(\mathscr{S}; M_{a}(\mathscr{S}))^{*}$. If \mathscr{I} is cyclic, say $\mathscr{I} = \mu M_{a}(\mathscr{S})$, then

$$\mathscr{I} = \mathscr{I} \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) = \mu \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*).$$

We must have $\mu = \mu$. *F* for some $F \in \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*)$. By [3, Corollary 1.5.3], we have $\mu = 0$ and thus $\mathscr{I} = 0$ which is a contradiction. Now suppose that $\mathscr{I} = \mu_1 M_a(\mathscr{S}) + \cdots + \mu_n M_a(\mathscr{S})$, and that the Theorem holds for right $L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*$ -modules with n-1 generators. Since $\mathscr{I}/\mu_1 M_a(\mathscr{S})$ has n-1 generators, and since

$$\mathscr{I}/\mu_1 M_a(\mathscr{S}) \operatorname{rad}(L_0^{\infty}(\mathscr{S}; M_a(\mathscr{S}))^*) = \mathscr{I}/\mu_1 M_a(\mathscr{S}),$$

it follows that $\mathscr{I}/\mu_1 M_a(\mathscr{S}) = \{0\}$. This shows that $\mathscr{I} = \mu_1 M_a(\mathscr{S})$. Therefore, by cyclic case, $\mathscr{I} = 0$. This is contradiction.

References

- M. Amini and A. Medghalchi, Fourier algebras on topological foundation *-semigroups, *Semigroup Forum* 68 (2004), no. 3, 322–334.
- [2] J. F. Berglund, H. D. Junghenn and P. Milnes, *Analysis on Semigroups*, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley, New York, 1989.
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24, Oxford Univ. Press, New York, 2000.
- [4] H. A. M. Dzinotyiweyi, *The Analogue of the Group Algebra for Topological Semigroups*, Research Notes in Mathematics, 98, Pitman, Boston, MA, 1984.
- [5] A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, *Semigroup Forum* 76 (2008), no. 1, 95–106.
- [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I, second edition, Grundlehren der Mathematischen Wissenschaften, 115, Springer, Berlin, 1979.
- [7] S. Maghsoudi and R. Nasr-Isfahani, Arens regularity of semigroup algebras with certain locally convex topologies, *Semigroup Forum* 75 (2007), no. 2, 345–358.
- [8] S. Maghsoudi and R. Nasr-Isfahani, The Arens regularity of certain Banach algebras related to compactly cancellative foundation semigroups, *Bull. Belg. Math. Soc. Simon Stevin* 16 (2009), no. 2, 205–221.
- [9] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, Arens multiplication on Banach algebras related to locally compact semigroups, *Math. Nachr.* 281 (2008), no. 10, 1495–1510.
- [10] W. Rudin, Functional Analysis, second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
- [11] G. L. G. Sleijpen, The dual of the space of measures with continuous translations, *Semigroup Forum* 22 (1981), no. 2, 139–150.