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1. Introduction

Generally speaking, a hybrid dynamic system is a system with different kinds of time dy-
namics, e.g., continuous, discrete or impulsive, in different interacting parts of the systems.
As a result, it is more practical to depict the real world, for example, it has vast applications
on modeling, design and so on. Naturally, it has caused considerable interesting to investi-
gate the property of the hybrid systems, especially for their stability [1, 2, 5, 6, 11, 15, 16].

There are various concepts of stability, such as absolute stability, asymptotically stability,
conditional stability and so on. But there is an evident defect that a system may be stable
or asymptotically stable in theory, however, it is unstable in practice actually, because of
the stable domain or the attraction domain is not large enough to solve the problem. To
settle this contradiction, LaSalle and Lefschetz first brought forth the concept of practical
stability in 1961 [7]. Furthermore, Lakshmikantham et al. [3] presented a systematic study
of practical stability in 1990. In recent years, Lakshmikantham and Vatsala [5] studied
the practical stability of hybrid system on time scales, Martynyuk and Sun [12] also gave
a fairly comprehensive description of the application of practical stability. Liu and Zhao
[9] investigated the practical stability in terms of two measures for impulsive functional
differential equations. As for [16], Wang and Wu examined the practical stability in terms
of two measures for discrete hybrid system. Liu and Hill [10] considered the uniformly
stability and ISS for discrete-time impulsive hybrid systems. Apart from these works, [18,
19] are also the results of this nature. Xuping Xu, Guisheng Zhai and Shouling He [17]
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studied the practical stability for a class of discrete hybrid system–switched system and
give an example.

Obviously, most of those works investigated the situation with unchanged starting time,
however, it is impossible not to make any error on the starting time. Consequently, it is
of great significance to study the nonlinear equations with solutions starting with different
initial times. Many scholars have done works with respect to the problems with initial time
difference. For example, Song et al. [14] focused on the practical stability of nonlinear
differential equations with initial time difference, so as McRae [13], Li et al. [8] and so on.
In the last decade, plenty of results were obtained for hybrid system or practical stability of
nonlinear systems or nonlinear systems with initial time difference. Nevertheless, so far as
we know, there is hardly any result for the combining of these problems.

In this paper, we study the practical stability of discrete hybrid system with initial time
difference which presses closer to our real lives. Lyapunov method is a powerful tool for
our research, it provides a convenient way to transform a given complicated differential
system into a relatively simpler system. Using Lyapunov functions, we obtain some new
comparison theorems first, and on this basis, we get some criteria for several types of
practical stability of discrete hybrid system with initial time difference by employing two
Lyapunov-like functions. The method of two Lyapunov-like functions offers us a more
accurate tool and involuntary we obtain some better new results, see [4, 14]. The paper is
organized as follows. In Section 2, we present some necessary definitions and notations
relative to discrete hybrid system with initial time difference. In Section 3, we introduce
two new comparison theories first, then some sufficient conditions for practical stability for
discrete hybrid system with initial time difference are obtained.

2. Preliminary

Consider the discrete hybrid system

(2.1)
∆x(n) = f (n,x(n),λr(τr,xr)), n ∈ [τr,τr+1),

x(τr) = xr, r = 0,1,2, . . .

where f ∈C[N+
n0
×Rn×Rn,Rn], λr ∈C[N+

n0
×Rn,Rn], N+

n0
= {n0,n0 + 1,n0 + 2, . . .}, and

xr ∈ Rn. Let x(n,n0,x0) and y(n,m0,y0) be the solutions of (2.1) through two initial values
(n0,x0) and (m0,y0), respectively. Without loss of generality, we may assume that m0 > n0
and η = m0− n0, where m0,n0 ∈ [τ0,τ1), 0 ≤ n0 = τ0 < τ1 < τ2 < · · · < τr < · · · , τr → ∞

as r→ ∞, and denote S(ρ) = {x ∈ Rn : ‖x‖ < ρ}. By the solutions x(n,n0,x0) of (2.1) we
mean the following:

x(n) = xr(n), for n ∈ [τr,τr+1), r = 0,1,2, . . .

where xr(n) = xr(n,τr,xr) is the solution of the discrete hybrid system

∆xr(n) = f (n,xr(n),λr(τr,xr)), xr(τr) = xr,

for each r = 0,1,2, . . . and τr ≤ n < τr+1, n∈N+
n0

. The description of the solution y(n,m0,y0)
is similar to x(n,n0,x0) and we omit the details.

We also need the scalar comparison hybrid system

(2.2)
∆u(n;k) = g1(k,u(k),σr(ur)), n ∈ [τr,τr+1), k ∈ [τr,n],

u(τr) = ur, r = 0,1,2, . . .
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(2.3)
∆v(n;k) = g2(k,v(k),µr(vr)), n ∈ [τr,τr+1), k ∈ [τr,n],

v(τr) = vr, r = 0,1,2, . . .

where g1, g2 ∈C[N+
n0
×R+×R+,R], and σr, µr ∈C[R+,R+]. By the solution u(k) of (2.2)

we mean the following:

u(k) = ur(n;k), for τr ≤ n < τr+1, τr ≤ k ≤ n

where ur(n;k) is the solution of the discrete hybrid system

∆ur(n;k) = g1(k,ur(k),σr(ur)), ur(τr) = ur, r = 0,1,2, . . . .

We can describe the solution of system (2.3) similarly to the solution of system (2.2).
We assume the following assumption (H) holds for the system (2.1):
(H) The solution x(n,n0,x0) (or y(n,m0,y0)) of (2.1) exists for all n ≥ n0 (n ≥ m0),

unique and continuous with respect to the initial data, and ‖x(n,n0,x0)‖ (‖y(n,m0,y0)‖) is
locally Lipschitzian in x0 (y0).

For the sake of convenience, we employ the following notations where x(n,n0,x0) and
y(n,m0,y0) are the solutions of system (2.1) through the initial values (n0,x0) and (m0,y0),
respectively:

(i) xr = xr−1(τr,τr−1,xr−1), xk = xr(k,τr,xr) for τr ≤ n < τr+1, τr ≤ k ≤ n;
(ii) set z = z(k) = y(k +η ,m0,y0)− x(k,n0,x0), which means

z(k) = zr(k), for τr ≤ n < τr+1, τr ≤ k ≤ n

z0 = y0− x0 and zr = zr(τr) = y(τr + η ,m0,y0)− x(τr,n0,x0), f̃ (k,z,η) = f (k +
η ,z+ x(k,n0,x0))− f (k,x(k,n0,x0)), k ≥ n0;

(iii) for n1 ∈ [τi,τi+1), n2 ∈ [τ j,τ j+1), we say that n1 precedes n2, denoted by n1 ≺ n2,
if n1 < n2, or if i < j;

(iv) two classes of functions
K = {a ∈ C(R+,R+) : a is strictly increasing and a(0) = 0},
C K = {a ∈ C(R2

+,R+) : a(t,u) ∈K f or each t ∈ R+}.
For any V ∈C[N+

n0
×Rn,Rn] and any fixed n ∈ [n0,∞), we define

∆V (k,x(n,k,xk)) = V (k +1,x(n;k +1,xk + f (k,xk)))−V (k,x(n;k,xk)),

for n0 ≤ k ≤ n, and xk ∈ Rn.

Definition 2.1. The solution x(n) = x(n,n0,x0) of the system (2.1) is said to be
(S1) practically stable, if given (λ ,A) with 0 < λ < A, there exists a σ(λ ,A) ≥ 0 such

that ‖y0− x0‖< λ , η ≤ σ implies ‖y(n+η ,m0,y0)− x(n,n0,x0)‖< A, n≥ n0 for
some n0 ∈ N+

n0
;

(S2) uniformly practically stable, if (S1) holds for all n0 ∈ N+
n0

;
(S3) practically quasi-stable, if for given (λ ,B,N) > 0 and some n0 ∈ N+

n0
, there

exists a σ(λ ,B,N)≥ 0 such that ‖y0−x0‖< λ , η ≤ σ implies ‖y(n+η ,m0,y0)−
x(n,n0,x0)‖< B, n≥ n0 +N;

(S4) strongly practically quasi-stable, if (S1) and (S3) hold simultaneously;
(S5) attractive, if given δ ≥ 0, ε ≥ 0 and n0 ∈ N+

n0
, there exists T = T (n0,ε), σ =

σ(δ ,ε), such that ‖y0− x0‖< δ , η ≤ σ implies ‖y(n+η ,m0,y0)− x(n,n0,x0)‖<
ε, n≥ n0 +T , for some n0 ∈ N+

n0
;

(S6) practically asymptotically stable, if (S1) and (S6) hold simultaneously with δ = λ ;
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(S7) uniformly practically asymptotically stable, if (S7) holds for all n0 ∈ N+
n0

.

3. Main results

We can now prove a new comparison result for ordinary difference system.

Lemma 3.1. Let x(n,n0,x0) and y(n,m0,y0) be the solutions of ∆x(n) = f (n,x(n)) through
two initial values (n0,x0) and (m0,y0) respectively where m0 > n0, and set η = m0− n0,
V ∈C[N+

n0
×Rn,R+], and V (t,u) is locally Lipschitz in u. Assume that for fixed n, n0 ≤ k≤

n,
(i) ∆V (k,h,η) = V (k+1,h+ f̃ (k,h,η))−V (k,h)≤ g(k,V (k,h),η) where h = h(k) =

y(k+η ,m0,y0)−x(k,n0,x0), f̃ (k,h,η)= f (k+η ,h+x(k,n0,x0))− f (k,x(k,n0,x0)),
k ≥ n0, g ∈C[N+

n0
×R+,R], and g(k,u) is increasing in u for each fixed (n,k);

(ii) w(n;k,n0,w0,η) is any solution of ∆w(k) = g(k,w(k)), w(n0) = w0.

Then V (n0,y0− x0)≤ w0 implies V (n,y(n+η ,m0,y0)− x(n,n0,x0))≤ r(n;n,n0,w0,η).

Proof. Set m(k) = V (k,y(k + η ,m0,y0)− x(k,n0,x0)), n0 ≤ k ≤ n. Then we claim that
m(n0)≤ w0 implies that

(3.1) m(k)≤ w(n;k,n0,w0,η), n0 ≤ k ≤ n.

If (3.1) is not true, then there would exist k1 ≥ n0, such that

m(k1)≤ w(n;k1,n0,w0,η) but m(k1 +1) > w(n;k1 +1,n0,w0,η),

we obtain from the above conditions
g(k1,w(n;k1,n0,w0,η)) = ∆w(n;k1,n0,w0,η)

= w(n;k1 +1,n0,w0,η)−w(n;k1,n0,w0,η)

< m(k1 +1)−m(k1) = ∆m(k1)≤ g(k1,m(k1))

≤ g(k1,w(n;k1,n0,w0,η)),

which is contradictive, hence (3.1) is valid. Setting k = n, we get the desired result.
Now, we shall prove the corresponding comparison result for the hybrid system (2.1).

Theorem 3.1. Assume that the assumption (H) holds, x(n,n0,x0) and y(n,m0,y0) are the
solutions of (2.1) through two initial values (n0,x0) and (m0,y0), respectively, and

(i) V ∈C[N+
n0
×Rn,R+], V (n,u) is locally Lipschitz in u, for τr ≤ n < τr+1, τr ≤ k ≤

n, r = 0,1,2, . . . and

∆V (k,z,η) =V (k+1,z(k)+ f̃ (k,z,η))−V (k,z(k))≤ g(k,V (k,z),σr(V (τr,zr)),η),

where g∈C[N+
n0
×R+×R+,R], and g(k,u,v) is increasing in u for each fixed (k,v)

and in v for each fixed (k,u). Also, σr(v) is increasing in v for all r;
(ii) u(k) = u(k,n0,u0,η) is any solution of the system (2.2).

Then V (n0,y0− x0)≤ u0 implies V (n,y(n+η ,m0,y0)− x(n,n0,x0))≤ u(n;n,n0,u0,η).

Proof. Let xr(n,τr,xr) and yr(n,τr,yr) be the solutions of (2.1) in the interval [τr,τr+1)
through the initial values (n0,x0) and (m0,y0), respectively. Set m(k) = V (k,z), then by
assumption (i), it is easy to derive the difference inequality

∆m(k)≤ g(k,m(k),σr(mr)),

where mr = V (τr,zr).
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Consider the interval [n0,τ1), and m0 = m(n0) = V (n0,z(n0)) = V (n0,y0−x0)≤ u0. For
n0 ≤ k ≤ n < τ1, we have

∆m(k)≤ g(k,m(k),σ0(m0)).
Hence, by Lemma 3.1, we get

V (n,z0(n))≤ u0(n;n,n0,V (n0,z0)), n ∈ [n0,τ1),

where u0(n,n0,u0) is the solution of

∆u0(n) = g(n,u0(n),σ0(u0)), u0(n0) = u0, n ∈ [n0,τ1).

Next, consider the interval [τ1,τ2), choosing u1 = u0(τ1,n0,u0), we have

∆m(k)≤ g(k,m(k),σ1(m1)), m1 = m(τ1), n ∈ [τ1,τ2),

where m1 = V (τ1,z(τ1,n0,x0))≤ u0(τ1,n0,u0) = u1, then using assumption (i) and the non-
decreasing properties of g(k,u,v) and σr(v) in v, we have

∆m(k)≤ g(k,m(k),σ1(u1)), m1 ≤ u1.

Therefore, by Lemma 3.1, we have

V (n,z1(n))≤ u1(n;n,τ1,u1), n ∈ [τ1,τ2),

where u1(n,τ1,u1) is the solution of

∆u1(n) = g(n,u1(n),σ0(u1)), u1(τ1) = u1, n ∈ [τ1,τ2).

We repeat the process in the interval [τr,τr+1), r = 0,1,2, . . . using the special choice of
ur = ur−1(τr,τr−1,ur−1) to get

V (n,zr(n))≤ ur(n,τr,ur), n ∈ [τr,τr+1),

where ur(n,τr,ur) is the solution of

∆ur(n) = g(n,ur(n),σr(ur)), ur(τr) = ur, n ∈ [τr,τr+1).

Then by mathematical induction we get the desired estimate for n ≥ n0, and the proof is
completed.

Theorem 3.2. Assume that
(i) V1 ∈ C[N+

n0
× S(ρ),R+], V1(n,x) is locally Lipschitz in x, for (n,x) ∈ N+

n0
× S(ρ),

a1 ∈ C K , V1(n,x)≤ a1(n,‖x‖) and

∆V1(k,x(n),η))≤ g1(k,V1(k,x(n)),σr(V (τr,x(τr))),η), τr ≤ k ≤ n < τr+1,

where g1 ∈C[N+
n0
×R+×R+,R];

(ii) V2 ∈C[N+
n0
×S(ρ)∩Sc(λ ),R+], V2(t,x) is locally Lipschitz in x, for (n,x) ∈N+

n0
×

S(ρ)∩Sc(λ ), b ∈K , b(‖x‖)≤V2(n,x)≤ a2(‖x‖), a2 and

∆V1(k,x(n),η)+∆V2(k,x(n),η)≤ g2(k,V1(k,x(n)+V2(k,x(n))),σr(V (τr,x(τr))),η),

where g2 ∈C[N+
n0
×R+×R+,R], and τr ≤ n < τr+1, τr ≤ k ≤ n;

(iii) 0 < λ < A < ρ , and a1(n0,λ )+a2(λ ) < b(A) for some n0 ∈ N+
n0

;
(iv) u0 < a1(n0,λ ) implies u(n;k,n0,u0) < a1(n0,λ ) for n ≥ n0, where u(n;k,n0,u0)

is any solution of the comparison system (2.2). v0 < a1(n0,λ ) + a2(λ ) implies
v(n;k,n0,w10) < b(A) for n≥ n0, where v(n;k,n0,w20) is any solution of the com-
parison system (2.3).

Then the solution x(n) = x(n,n0,x0) of (2.1) is practically stable.
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Proof. We claim that for given (λ ,A), there exists a σ(λ ,A)≥ 0, such that ‖y0− x0‖< λ ,
η ≤ σ implies

‖y(n+η ,m0,y0)− x(n,n0,x0)‖< A, n≥ n0,

where x(n,n0,x0) and y(n,m0,y0) are the solutions of (2.1) through two initial values (n0,x0)
and (m0,y0).

If it is not true, the solutions x(n,n0,x0) and y(n,m0,y0) of system (2.1) that for every
given σ(λ ,A)≥ 0, η ≤ σ , there exists n2 � n1 � n0, such that

‖y(n1 +η ,m0,y0)− x(n1,n0,x0)‖= λ , ‖y(n2 +η ,m0,y0)− x(n2,n0,x0)‖= A,

and
λ ≤ ‖y(n+η ,m0,y0)− x(n,n0,x0)‖ ≤ A, n1 ≤ n≤ n2.

We can easily obtain from the above that for n0 ≤ n ≤ n1, ‖z(n)‖ ≤ λ ≤ ρ . Then using
condition (ii), we get by Theorem 3.1

(3.2) V1(n,z(n))≤ r1(n,n0,V1(n0,y0− x0),η), n0 ≤ n≤ n1,

where r1(n,n0,V1(n0,y0− x0),η) is the maximal solution of the comparison system (2.2)
through (n0,V1(n0,y0− x0)). Similarly, by condition (iii), we have

(3.3) V1(n,z(n))+V2(n,z(n))≤ r2(n,n1,V1(n1,z(n1))+V2(n1,z(n1)),η), n1 ≤ n≤ n2,

where r2(n,n1,V1(n1,z(n1))+V2(n1,z(n1)),η) is the maximal solution of the comparison
system (2.3) through (n1,V1(n1,z(n1))+V2(n1,z(n1))). Since ‖y0−x0‖< λ < ρ , it follows
from (ii) that

(3.4) V1(n0,y0− x0)≤ a1(n0,‖y0− x0‖) < a1(n0,λ ).

Applying (3.2), (3.4) and condition (v), we have

V1(n1,z(n1))≤ a1(n0,λ ).

From (iii), V2(n1,z(n1))≤ a2(‖z(n1)‖) = a2(λ ). Consequently,

V1(n1,z(n1))+V2(n1,z(n1)) < a1(n0,λ )+a2(λ ).

Then we combine (3.3) with condition (v) to get

V1(n2,z(n2))+V2(n2,z(n2))≤ r2(n2,n1,V1(n1,z(n1))+V2(n1,z(n1))) < b(A).

But, by condition (iii), we get

V1(n2,z(n2))+V2(n2,z(n2))≥V2(n2,z(n2))≥ b(‖z(n2)‖) = b(A),

which is a contradiction, so the claim is proved.
From definition 2.1, we can get the following result easily.

Corollary 3.1. Assume that the assumptions of Theorem 3.2 holds, instead of a1(n,‖x‖) ∈
C K , the condition a1(‖x‖) ∈ K holds, then the solution x(n) = x(n,n0,x0) of (2.1) is
uniformly practically stable.

Theorem 3.3. Suppose that the assumption of Theorem 3.2 hold except that the condition
(ii) being replaced by (ii)∗ and (iii)∗:

(ii)∗ w(n,x) ∈ C[N+
n0
× S(ρ),R+], w(n,x) is locally Lipschitz in x; for (n,x) ∈ N+

n0
×

S(ρ), w(n,x)≥ b0(‖x‖), where b0 ∈K , w(n,x) ∈ C K , and there exists a M such
that ∆w(n,z)≤M.
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(iii)∗ V1 ∈ C[N+
n0
× S(A),R+], and V1(n,x) is locally Lipschitz in x; for (n,x) ∈ N+

n0
×

S(A), V1(n,x)≤ a1(n,‖x‖), a1 ∈ C K , and

(3.5) ∆V1(n,z,η)+ p(w(n,x))≤ g1(n,V1(n,z,η),σr(V (τr,zr),η), τr ≤ n < τr+1,

where p ∈K , g1 ∈C[N+
n0
×R+×R+,R], and g1(n,v,η) is nondecreasing in v.

Then the solution x(n) = x(n,n0,x0) of system (2.1) is practically asymptotical stable.

Proof. Firstly, the solution x(n) = x(n,n0,x0) of (2.1) is practical stable by Theorem 3.2.
For each given (λ1,A1), 0 < λ1 < A1, there exists a σ1(λ1,A1)≥ 0 such that ‖y0−x0‖< λ1,
η ≤ σ1 implies

‖y(n+η ,m0,y0)− x(n,n0,x0)‖< A1, n≥ n0.

We need to show that ‖y(n + η ,m0,y0)− x(n,n0,x0)‖ → 0, as n→ ∞, when ‖x0− y0‖ <
λ1, η ≤ σ1. Since w(n,x) ∈ C K and w(n,x)≥ b0(‖x‖), we only to show that

lim
n→∞

w(n,y(n+η ,m0,y0)− x(n,n0,x0)) = 0

when ‖y0− x0‖< λ1, η ≤ σ1.
Now, we claim that lim

n→∞
w(n,y(n + η ,m0,y0)− x(n,n0,x0)) = 0, when ‖y0− x0‖ < λ1,

η ≤ σ1. If it is not true, then there exist two different sequences {kn}, {k∗n}, such that

(3.6) w(ki,y(ki +η ,m0,y0)− x(ki,n0,x0)) = γ/2,

(3.7) w(k∗i ,y(k
∗
i +η ,m0,y0)− x(k∗i ,n0,x0)) = γ,

and
γ/2≤ w(k,y(k +η ,m0,y0)− x(k,n0,x0))≤ γ, k ∈ [ki,k∗i ], i = 1,2, . . .

or
w(ki,y(ki +η ,m0,y0)− x(ki,n0,x0)) = γ,

w(k∗i ,y(k
∗
i +η ,m0,y0)− x(k∗i ,n0,x0)) = γ/2,

and

γ/2≤ w(k,y(k +η ,m0,y0)− x(k,n0,x0))≤ γ, k ∈ [k∗i ,ki], i = 1,2, . . . .

For similarity of these two cases, we can only consider the first one. Since ∆w(n,z) ≤M,
we have

k∗i

∑
ki

∆w(n,z)≤M(k∗i − ki).

Combining (3.6) with (3.7), we obtain k∗i − ki ≥ γ/2M for each i.
Let

G(n,z,η) = V1(n,z,η)+
n

∑
n0

p(w(n,z(n))).

As a result of assumption (3.5), we have

∆G(n,z,η)≤∆V1(n,z,η)+ p(w(n,z(n)))≤ g1(n,V1(n,z),η)≤ g1(n,G(n,z),η), n∈ [τr,τr+1).

By Theorem 3.1, we get

G(n,z,η)≤ r1(n,n0,V1(n0,y0− x0),η), n≥ n0,
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where r1(n,n0,V1(n0,y0− x0),η) is the maximal solution of the comparison system (2.3)
through (n0,V1(n0,y0− x0)). Then we can get for sufficiently large n

0≤V1(n,y(n+η ,m0,y0)− x(n,n0,x0))

≤ r1(n,n0,V1(n0,y0− x0),η))−
n

∑
n0

p(w(n,z(n)))

≤ a1(n0,λ )− c(γ/2) ∑
1≤i≤n

(k∗i − ki)

≤ a1(n0,λ )− c(γ/2)nγ/2M < 0.

This is a contradiction, hence we can get

lim
n→∞

w(n,y(n+η ,m0,y0)− x(n,n0,x0)) = 0,

when ‖y0− x0‖< λ1, η ≤ σ1. That is to say

lim
n→∞

y(n+η ,m0,y0)− x(n,n0,x0) = 0,

when ‖y0− x0‖< λ1, η ≤ σ1. So the proof is completed.

Corollary 3.2. Under the assumptions of Theorem 3.3, Let a1(n,‖x‖)∈C K be substituted
for a1(‖x‖) ∈ K . Then the solution x(n) = x(n,n0,x0) of (2.1) is uniformly practically
asymptotically stable.

Theorem 3.4. Assume that
(i) V ∈C[N+

n0
×S(ρ),R+], V (n,x) is locally Lipschitz in x, for (n,x) ∈ N+

n0
×S(ρ),

b(n,‖x‖)≤V (n,x)≤ a(n,‖x‖),
a, b ∈ C K and

(3.8) ∆V (n,z,η)≤ g1(n,V (n,z),η),

where τr ≤ n < τr+1, r = 0,1,2, . . . and g1 ∈C[N+
n0
×R+×R+,R];

(ii) r(n,n0,u0) is any solution of the comparison system (2.2).
Then the practical stability properties of the solution of comparison system (2.2) implies the
corresponding practical stability properties of system (2.1), respectively.

Proof. Firstly, we prove practical stability of system (2.1). Suppose that the solution of (2.2)
is practically stable, i.e., for given (λ ,A), with 0 < λ < A, there exists a σ1 = σ1(λ ,A) > 0
such that u0 < a(λ ), η ≤ σ1 implies

(3.9) u(n,n0,u0,η) < b(A), n≥ n0.

We claim that the solutions of (2.1) is practically stable. If not, there exists solutions
x(n,n0,x0) and y(n,m0,y0) of (2.1). Although ‖y0− x0‖ ≤ λ , η ≤ σ1 but there exists a
k1 > n0 such that

(3.10) ‖y(k1 +η ,m0,y0)− x(k1,n0,x0)‖= A,

(3.11) ‖y(k +η ,m0,y0)− x(k,n0,x0)‖< A, n0 ≤ k < k1.

Let u0 = a(n0,‖y0− x0‖). Then by Theorem 3.1 we obtain

(3.12) V (n,z(n))≤ r(n,n0,u0,η), n0 ≤ k < k1.
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From (3.10)− (3.14), we have

b(A) = b(‖y(k1 +η ,m0,y0)− x(k1,n0,x0)‖)≤V (k1,y(k1 +η ,m0,y0)− x(k1,n0,x0))

≤ r(k1,n0,a(‖y0− x0‖),η) < b(A).

This is a contradiction, i.e., the solution of (2.1) is practically stable.
Next, we shall prove that the system (2.1) is strongly practically stable for (λ ,A,B,N) >

0. To do this, we need to prove only the practical quasi-stability of system (2.1). Suppose
that (2.2) is strongly practically stable for (a(λ ),b(B),N), i.e.,

u0 < a(λ ) implies u(n,n0,u0) < b(B), n≥ n0 +N.

We claim that the solution of system (2.1) is practical quasi-stability. If it is not true, there
exists solutions x(n,n0,x0) and y(n,m0,y0) of (2.1), although ‖y0− x0‖ ≤ λ , η ≤ σ1, but
there exists a k2 > n0 +N, such that

‖y(k2 +η ,m0,y0)− x(k2,n0,x0)‖= A,

‖y(k +η ,m0,y0)− x(k,n0,x0)‖< A, n0 +N ≤ k < k2.

From the foregoing argument, we get for all n≥ n0 +N,

b(B) = b(‖y(k2 +η ,m0,y0)− x(k2,n0,x0)‖)≤V (k2,y(k2 +η ,m0,y0)− x(k2,n0,x0))

≤ r(k2,n0,a(‖y0− x0‖),η) < b(B),

which is a contradiction, hence the system (2.1) is practical quasi-stability.
At last, suppose that system (2.2) is practically asymptotically stable, i.e., for any given

ε , there exists a T = T (n0,ε), such that

0 < u0 < λ implies u(n,n0,u0,η) < b(ε), n≥ n0 +T.

In order to prove the practical asymptotical stability of (2.1), we only need to prove that it is
attractive. Setting y(n+η ,m0,y0)− x(n,n0,x0) < λ , then it follows from condition (i) and
(3.12) that

b(‖y(n+η ,m0,y0)− x(n,n0,x0)‖)≤V (n,y(n+η ,m0,y0)− x(n,n0,x0))

≤ r(n,n0,u0,η) < b(ε), n≥ n0 +T.

Since b ∈K , then

‖y(n+η ,m0,y0)− x(n,n0,x0)‖< ε, n≥ n0 +T,

that is to say, (2.1) is practically asymptotically stable, and our proof is completed.

4. Conclusion

In this paper, we develop some new comparison principles for discrete hybrid system with
initial time difference, and generalized the concepts of practical stability of common discrete
hybrid systems with unchanged initial time to the discrete hybrid system which has different
initial values for each solution. Meanwhile, several stability criteria relative to initial time
difference are obtained.
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