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Abstract. In the present paper, we study dynamics of Lotka-Volterra (LV) type operators
defined in finite dimensional simplex. We introduce a new class of LV-type operators, called
MLV type. Some concrete examples are also provided. We prove that trajectories of such
kind of operators converge, and moreover, we find an estimation for fixed points of the
introduced operators.
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1. Introduction

It is known that Lotka-Volterra (LV) systems typically model the time evolution of conflict-
ing species in biology [1,6,16]. On the other hand, the use of LV discrete-time systems is a
well-known subject of applied mathematics [4, 8]. They were first introduced in a biomath-
ematical context by Moran [11], and later popularized in [9, 10]. Since then, LV systems
have proved to be a rich source of analysis for the investigation of dynamical properties and
modelling in different domains (see for example, [5, 7]). Typically in all these applications,
the LV systems are taken quadratic. It is natural to investigate non-quadratic LV systems.
It is well known that even for one species the dynamics may be extremely complex, and it
may be very difficult to predict the detailed asymptotic behavior. In [4,10] it was introduced,
generalization of the LV systems, to model the interaction among biochemical populations.
In [14] it is established new sufficient conditions for global asymptotic stability of the posi-
tive equilibrium in some LV-type discrete models. The mentioned papers show importance
the study of limiting behavior of discrete LV type operators. One the other hand, one of
the most important questions from a biological point of view concerns the conditions under
which long term survival of all the species is assured. Therefore, in the paper our aim is to
provide some sufficient conditions for the stability of LV type operators. Namely, we intro-
duce a new class of LV type operators, called MLV type. We then prove that trajectories of
such kind of operators converge, and moreover, we find an estimation for fixed points of the
introduced operators.
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2. Preliminaries

In this section we are going to provide some necessary notions and definitions.
Let

Sm−1 =

{
x = (x1,x2, . . . ,xm) ∈ Rm :

m

∑
k=1

xk = 1,xk ≥ 0

}
be the (m−1)-dimensional simplex. One can see that the points ek = (δ1k,δ2k, . . . ,δmk) are
the extremal points of the simplex Sm−1, where δik is the Kronecker’s symbol.

Let I = {1,2, . . . ,m} and α be an arbitrary subset of I. The set Γα = {x ∈ Sm−1 : xk =
0, k /∈ α} is called a face of the simplex. A relatively interior riΓα of the face Γα is defined
by riΓα = {x ∈ Γα : xk > 0,k ∈ α}.

Given a mapping f : x ∈ Sm−1→ ( f1(x), f2(x), . . . , fm(x)) ∈ Rm in what follows, we are
interested in the following operator defined by

(2.1) (V x)k = xk(1+ fk(x)), k = 1,m x ∈ Sm−1.

Proposition 2.1. Let V be an operator given by (2.1). The following conditions are equiv-
alent:

(i) The operator V is continuous in Sm−1 and V (Sm−1)⊂ Sm−1. Moreover, V (riΓα)⊂
riΓα for all α ⊂ I.

(ii) The mapping f≡ ( f1, f2, . . . , fm) : Sm−1→ Rm satisfies the following conditions:
10 f is continuous in Sm−1;
20 for every x ∈ Sm−1 one has fk(x)≥−1, for all k = 1,m;
30 for every x ∈ Sm−1 one has ∑

m
k=1 xk fk(x) = 0;

40 for every α ⊂ I one holds fk(x) >−1 for all x ∈ riΓα and k ∈ α.

Proof. (i)⇒(ii). The continuity of V implies 10. Take x∈ Sm−1 and it yields that (a) (V x)k ≥
0; (b) ∑

m
k=1(V x)k = 1. Hence, from (a) it follows that xk(1 + fk(x)) ≥ 0 which implies 20.

From (b) one has
m

∑
k=1

xk +
m

∑
k=1

xk fk(x) = 1

which immediately yields 30.
Let x ∈ riΓα , then V x ∈ riΓα which with (2.1) and xk > 0 for all k ∈ α implies that

fk(x) >−1 for all k ∈ α this means 40.
The implication (ii)⇒(i) is evident.
We say that an operator V defined by (2.1) is Lotka-Volterra (LV) type if one of the

conditions of Proposition 2.1 is satisfied. The corresponding mapping f is called generating
mapping for V. From Proposition 2.1 we immediately infer that any LV type operator maps
the simplex Sm−1 into itself. By V we denote the set of all LV type operators. Note that
for fk(x) = exp

{
rk−∑

n
j=1 ak jx j

}
the mapping (2.1) has been investigated in [4, 10]. Other

particular cases were studied in [2, 13] (see also [3] for review). Note that some biological
interpretations of LV-type operators have been provided in [12]. Some examples are also
given there.

Given x0 ∈ Sm−1, then the sequence
{

x0,V x0,V 2x0, . . . ,V nx0, . . .
}

is called a trajectory
of V starting from the point x0, where V n+1x0 = V (V nx0),n = 1,2, . . . By ω(x0) we denote
the set of all limiting points of such a trajectory.
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A point x ∈ Sm−1 is called fixed if V x = x and by Fix(V ) we denote the set of all fixed
points of V. A point x ∈ Sm−1 is called r-periodic if V rx = x and V ix 6= x for all i ∈ 1,r−1.

3. M−Lotka-Volterra type operators

In this section we introduce a class of LV type operators, called M-LV, and study their
asymptotic behavior.

Given x ∈ Sm−1 put

M(x) =
{

i ∈ I : xi = max
k=1,m

xk

}
,

here as before I = {1, . . . ,m}.
We say that an LV type operator given by (2.1) is called M1-Lotka-Volterra (for shortness

M1LV) (resp. M0-Lotka-Volterra (M0LV)) if for each x∈ Sm−1 and for all k ∈M(x), j = 1,m
the functional ϕ(x) = xk−x j is increasing (resp. decreasing and ϕ(V n(x))≥ 0 for all n≥ 0)
along the trajectory of V starting from the point x, i.e. ϕ(V nx) ≤ ϕ(V n+1x), n ≥ 0 (resp.
ϕ(V nx)≥ ϕ(V n+1x), n≥ 0).

By V M 1 and V M 0 we denote the sets of all M1LV and M0LV type operators, respec-
tively.

Remark 3.1. It immediately follows from the definition that

V M 1∩V M 0 = {Id},

where Id : Sm−1→ Sm−1 is an identity mapping.

Proposition 3.1. Let V0 and V1 be M1LV (resp. M0LV) type operators. Then the following
conditions are satisfied:

(i) The operator V1 ◦V0 is M1LV (res. M0LV) type.
(ii) For each λ ∈ [0,1] the operator (1−λ )V0 +λV1 is M1LV (resp. M0LV) type.

Proof. Without loss of generality we may suppose that the operators V0 and V1 are M1LV
type. Then for each x ∈ Sm−1 and for all k ∈M(x), j = 1,m we have

xk− x j ≤ (V0x)k− (V0x) j ≤ (V1(V0x))k− (V1(V0x)) j

which implies that V1 ◦V2 ∈ V M 1.
Now for all λ ∈ [0,1] one finds

xk− x j = (1−λ )(xk− x j)+λ (xk− x j)

≤ (1−λ )((V0x)k− (V0x) j)+λ ((V1x)k− (V1x) j)

= ((1−λ )V0x+λV1x)k− ((1−λ )V0x+λV1x) j,

that yields the required assertion.
By the similar argument one can prove the statements for the case of M0LV type opera-

tors.

Corollary 3.1. The sets V M 1 and V M 0 are convex.

Let us provide some examples of M1LV and M0LV type operators, respectively.
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Example 3.1. Let us consider an operator Vε,` defined by

(3.1) (Vε,`x)k = xk

(
1+ ε

(
x`

k−
m

∑
i=1

x`+1
i

))
, k = 1,m

where 0 < ε ≤ 1 and ` ∈ N. One can show that Vε,` is an M1LV type operator.

Example 3.2. Let us consider an operator Wε,` : Sm−1→ Sm−1 defined by

(Wε,`x)k = xk

(
1+ ε

(
m

∑
i=1

x`+1
i − x`

k

))
, k = 1,m(3.2)

where 0 < ε ≤ 1 and ` ∈ N. Then Wε,` is an M0LV type operator.

Observe that by means of the provided examples and Proposition 3.1 one can construct
lots of nontrivial examples of M1LV and M0LV type operators, respectively. To study sta-
bility properties of M0LV and M1LV type operators we need the following auxiliary result.

Lemma 3.1. If for a sequence {x(n)}∞
n=0 ⊂ Sm−1 and some k ∈ I the limits

(3.3) lim
n→∞

(
x(n)

k − x(n)
j

)
, ∀ j = 1,m,

exist, where x(n) =
(
x(n)

1 ,x(n)
2 , . . . ,x(n)

m
)
, then the sequence

{
x(n)}∞

n=0 converges.

Proof. The convergence of the sequences
{

x(n)
k − x(n)

j

}∞

n=0, for all j = 1,m, implies the

convergence of a sequence
{

∑
m
j=1
(
x(n)

k − x(n)
j

)}∞

n=0. Then the equality

mx(n)
k =

m

∑
j=1

(
x(n)

k − x(n)
j

)
+

m

∑
j=1

x(n)
j =

m

∑
j=1

(
x(n)

k − x(n)
j

)
+1.

implies the convergence of the sequence
{

x(n)
k

}∞

n=0. From (3.3) we obtain the convergence

of
{

x(n)
j

}∞

n=0, for all j = 1,m which yields the required assertion.
Now we are ready to prove stability property of M0LV and M1LV type operators.

Theorem 3.1. Let V be a M1LV (resp. M0LV) type operator. Then the trajectory {V nx}∞
n=0

converges for every x ∈ Sm−1, i.e. ω(x) is a single point and ω(x) ∈ Fix(V ).

Proof. Let V be a M1LV type operator. Then for some k ∈M(x) and all j = 1,m we have

xk− x j ≤ (V x)k− (V x) j ≤ · · · ≤ (V nx)k− (V nx) j ≤ ·· · ≤ 1

Therefore the sequence
{
(V nx)k− (V nx) j

}∞

n=0 converges. It follows from Lemma 3.1 that
the trajectory {V nx}∞

n=0 converges.
By the similar way the statement can be proved for a M0LV case.
From this theorem we conclude that M0LV and M1LV type operators do not have periodic

points.

Lemma 3.2. Let V be a M1LV type operator. Then for every x ∈ Sm−1 and for all n ∈N one
has

M(V nx) = M(x).
Moreover, if there exists limn→∞ V nx = x∗ then M(x∗) = M(x).
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Proof. Take any x ∈ Sm−1, and assume that k ∈M(x). Since V is M1LV type then for every
j = 1,m one has

(3.4) 0≤ xk− x j ≤ (V x)k− (V x) j ≤ · · · ≤ (V nx)k− (V nx) j ≤ · · ·
which implies that k ∈M(V nx) i.e.

(3.5) M(x)⊂M(V nx).

Now let us show M(V nx)⊂M(x). Assume from the contrary, i.e. there is k0 ∈M(V nx) that
k0 /∈ M(x). Take any k1 ∈ M(x), then from (3.5) we infer that k1 ∈ M(V nx) which means
(V nx)k1 − (V nx)k0 = 0. On the other hand, from (3.4), (3.5) one has

0 < xk1 − xk0 ≤ (V x)k1 − (V x)k0 ≤ ·· · ≤ (V nx)k1 − (V nx)k0 = 0

which is a contradiction, hence M(V nx) ⊂ M(x). Thus, we have M(V nx) = M(x), for any
n ∈ N.

Now assume that {V nx}∞
n=0 converges to x∗. Then from (3.4) one has

(3.6) xk− x j ≤ x∗k− x∗j

for all k ∈M(x) and j = 1,m. Then (3.6) yields that

(3.7) M(x)⊂M(x∗).

Now let us establish M(x∗) ⊂ M(x). Again, assume from the contrary, i.e. there is k0 ∈
M(x∗) that k0 /∈M(x). Then we use the same argument as above, i.e. for any k1 ∈M(x) it
follows from (3.6), (3.7) that

0 < xk1 − xk0 ≤ x∗k1
− x∗k0

= 0.

Again, the last contradiction shows that M(x∗)⊂M(x), which yields the required equality.

Note that in general a similar result as Lemma 3.2 is not satisfied for M0LV type opera-
tors.

Theorem 3.2. Let V be an M1LV type operator. Then the centers of all faces of the simplex
are fixed points of V and

(3.8) |Fix(V )| ≥ 2m−1,

here as before |A| stands for the cardinality of a set A.

Proof. Let V be an M1LV type operator and x0 =
(
x0

1, . . . ,x
0
m
)

be the center of the face Γα ,
i.e.

x0
k =

{
1
|α| , k ∈ α

0, k /∈ α.

where α ⊂ I.
It is clear that M(x0) = α. According to Theorem 3.1 the trajectory {V nx0}∞

n=0 converges
to some point x∗ which is a fixed point of V. Since the face Γα is invariant w.r.t. V then
x∗ ∈ Γα . According to Lemma 3.2 we have

(3.9) M(x∗) = M(x0) = α.

which means x∗ ∈ riΓα . On the other hand, it follows from (3.9) that all non null coordinates
of x∗ are maximal, it means x∗ = x0. So, x0 is a fixed point of V.
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One can see that the number of faces of the simplex is
m

∑
i=1

Ci
m = 2m−1,

so one gets (3.8).
We note that the operator Vε,` given by (3.1) was first considered in [15], in a particular

case, when ε = 1, l = 1. There, it was established that for every x0 ∈ Sm−1 the trajectory
{V n

1,1x0}∞
n=0 starting from any x0 ∈ Sm−1 always converges. Since the operator (3.1) is also

M1LV type then according to Theorem 3.1 for every x0 ∈ Sm−1 the trajectory {V n
ε,`x

0}∞
n=0

always converges for all 0 < ε ≤ 1 and ` ∈ N.
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