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Abstract. Assume that (R,m) is a local Noetherian ring and a is an ideal of R. In this paper
we introduce a new class of R-modules denoted by weakly finite modules that is a general-
ization of finitely generated modules and containing the class of Big Cohen-Macaulay mod-
ules and a-cofinite modules. We improve the non-vanishing theorem due to Grothendieck
for weakly finite modules. Finally we define the notion depthR M and we prove that if M is
a weakly finite R-module and Hi

m(M) 6= 0 for some i, then depthR(M)≤ i≤ dimM.
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1. Introduction

Throughout this note the ring R is commutative Noetherian ring with non-zero identity. Let
a be an ideal of R and let M be a non-zero R-module. Since M is not necessarily finitely
generated, by dimM, we mean sup{dim(R/p)|p ∈ Supp(M)}.

Also by Hi
a(M), we mean lim−→ExtiR(R/an,M), the local cohomology module of M with

respect to the ideal a. Local Cohomology was introduced by Grothendieck and many people
have worked on understanding their structure, (non)-vanishing and finiteness properties.
For example, Grothendieck’s non-vanishing theorem is one of the important theorems in
local cohomology that says HdimM

m (M) is non-zero for any finitely generated module M
over Noetherian local ring (R,m). The finiteness assumption on M has crucial rule in the
proof of this result, see [1, Theorem 6.1.4]. The study of Grothendieck’s non-vanishing
theorem for not necessarily finitely generated modules began by the work of Hochster. Let
R be an excellent local domain of prime characteristic and let R+ be the absolute integral
closure of R. Hochster showed that HdimR

m (R+) is non-zero in the case that R is an excellent
domain of prime characteristic, see [6, Theorem 6.1]. It is worth to recall from [7, Theorem
5.5] that R+ is balanced big Cohen-Macaulay in the case that it is excellent and of prime
characteristic.
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Also, Sharp proved that Grothendieck’s non-vanishing theorem is true for a balanced big
Cohen-Macaulay algebra, see [13, Theorem 3.2]. Let us recall from [13, Lemma 2.1], some
properties of balanced big Cohen-Macaulay modules.

(1) If M is a balanced big Cohen-Macaulay module, then Hom(R/a,M) is finitely gen-
erated for some non-zero ideal of R.

(2) If M is a balanced big Cohen-Macaulay module and x is a regular element, then so
is M/xM.

(3) If M is a balanced big Cohen-Macaulay module, then |Ass(M)|< ∞, and
(4) If M is a balanced big Cohen-Macaulay module, then M/Γm(M) is a balanced big

Cohen-Macaulay module too.

In the next section, firstly we define the notion of weakly finite modules that they have
the properties similar to big Cohen-Macaulay modules and we show that this class con-
tains finitely generated modules and a-cofinite modules. Furthermore, we prove that the
Grothendieck’s non-vanishing theorem is true for this set of modules.

The following is our main result in this paper.

Theorem 1.1. Let (R,m) be a local ring and M a non-zero weakly finite R-module. If
dimM = n, then Hn

m(M) 6= 0.

This improves Grothendieck’s non-vanishing theorem. Also we define depthR(M) simi-
lar to depthR and we improve [1, Corollary 6.2.8] for weakly finite modules:

Theorem 1.2. Let (R,m) be a local ring and let M be a weakly finite R-module such that
aM 6= M. Then depthR(M) is the least integer i such that Hi

m(M) 6= 0.

2. Grothendieck’s non-vanishing Theorem

In this section, we assume that (R,m) is a local ring. Now we introduce the class of weakly
finite modules.

Definition 2.1. Let S be the largest class of R-modules satisfying the following four prop-
erties:

(1) If M ∈S , then Hom(R/m,M) is finitely generated.
(2) If M is a non-zero element of S and x is a regular element, Then M/xM ∈S is

non-zero and dimM/xM = dimM−1.
(3) If M ∈S , then |Ass(M)|< ∞, and
(4) If M ∈S , then M/Γm(M) ∈S .

We say that an R-module is weakly finite, if it belongs to S .

Clearly non-zero finitely generated modules and balanced big Cohen-Macaulay modules
are weakly finite.

Let a be an ideal of (R,m). Hartshorne defined a (not necessarily finitely generated)
module N to be a-cofinite if the support of N is contained in the variety of a, and in addition
ExtiR(R/a,N) is a finitely generated R-module for all i. Obviously the set of a-cofinite
modules contains finitely generated modules. Recall from [10] that Grothendieck’s non-
vanishing theorem holds for the class of a-cofinite modules. In Lemma 2.1, we will show
that a-cofinite modules are weakly finite too.
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Lemma 2.1. Let (R,m) be a local ring and let M be a non-zero R-module of dimension
n > 0. If there is an ideal a of R such that Supp(M) ⊆ Var(a) and ExtiR(R/a,M) is finitely
generated for all i, then M is weakly finite.

Proof. We show that a-cofinite modules satisfy the axiom of weakly finite modules. The
first axiom is true because by applying the short exact sequence

0→ m

a
→ R

a
→ R

m
→ 0

we deduce the long exact sequence 0→ Hom(R/m,M)→ Hom(R/a,M)→ ··· . Since by
assumption Hom(R/a,M) is finitely generated and R is Noetherian, therefore Hom(R/m,M)
will be finitely generated. Now, we show that if r ∈ m is a non-zero divisor element of m,
then M/rM is non-zero of dimension n− 1. By applying Hom(R/a,−) to short exact se-
quence 0→M→M→M/rM→ 0, we have the long exact sequence

(2.1) 0→ Hom(R/a,M)→ Hom(R/a,M)→ Hom(R/a,M/rM).

If M = rM, then Hom(R/a,M)∼= r Hom(R/a,M). By Nakayama’s Lemma, Hom(R/a,M)=
0 and this is a contradiction because

Ass(Hom(R/a,M)) = Ass(M)∩Var(a) 6= /0.

On the other hand, using the following inequalities:

n−1 = dim(HomR(R/a,M)/r HomR(R/a,M))
≤ dim(HomR(R/a,M/rM))
≤ dim(M/rM)≤ n−1,

we have dimM/rM = n−1. Clearly, Supp(M/rM)⊆V (a) and ExtiR(R/a,M/rM) is finitely
generated for all i. Now, to show that Ass(M) is finite, we have

Ass(Hom(R/a,M)) = Ass(M)∩Var(a).

Since Supp(M)⊆V (a) we conclude that Ass(Hom(R/a,M)) = Ass(M). Now by assump-
tion Hom(R/a,M) has finitely many associated primes and therefore |Ass(M)|< ∞.

By using the exact sequence (2.1), in combination with the fact that Exti(R/a,M) is
finitely generated, we get that M/rM is weakly finite. Respectively, using the short exact
sequence 0→ Γm(M)→M→M/Γm(M)→ 0, we conclude that M/Γm(M) is weakly finite
too. Note that Γm(M) is a-cofinite, see[11, Corollary 1.8]

In the next lemma, we prove that similar to finitely generated modules, if M is weakly
finite, then the local cohomology modules Hi

m(M) are not finitely generated when i > 0.

Lemma 2.2. Let n be an integer and M be a weakly finite R-module. If Hn
m(M) is non-zero

and finitely generated, then n = 0.

Proof. By definition of weakly finite R-modules, one has |Ass(M)| < ∞. Now, the proof
follows by straight forward modification of [1, Exercise 6.1.6].

In the main theorem, we need to have Artinianness of Hi
m(M) to use the concept of

attached primes. In the following theorem we prove that if M is weakly finite, therefore
Hi

m(M) is Artinian.

Theorem 2.1. Let (R,m) be a local ring and let M be a weakly finite R-module. Then
Hi

m(M) is Artinian for all i ∈ N0.
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Proof. We use induction on i. Assume that i = 0. Obviously Γm(M) is a-torsion. Also
(0 :Γm(M) a) is Artinian, because by applying the functor HomR(R/a,−) to the sequence
0→ Γm(M)→M, we deduce the monomorphism HomR(R/a,Γm(M)) ↪→ HomR(R/a,M).
By assumption Hom(R/a,M) is finitely generated and therefore by Noetherianness of R,
HomR(R/a,Γm(M)) will be finitely generated.

Since (0 :Γm(M) a)' HomR(R/a,Γm(M)), then (0 :Γm(M) a) is Artinian. Now, by Melk-
ersson’s criterion [1, Theorem 7.1.2], Γm(M) is Artinian. We assume inductively that i > 0
and we have shown that H j

m(N) is Artinian for every weakly finite R-module N and j < i.
It is well known that Hi

m(M)∼= Hi
m(M/Γm(M)) by [1, Corollary 2.1.7 ]. Therefore we can

assume that M is an m-torsion-free R-module. By the fact that |Ass(M)| < ∞, we deduce
that m contains an element r which is a non-zero divisor on M. Using exact sequence

0→M→M→M/rM→ 0

we arrive to the exact sequence

Hi−1
m (M/rM)→ Hi

m(M)→ Hi
m(M)

of local cohomology modules. Since M/rM is weakly finite, it follows from the inductive
hypothesis that Hi−1

m (M/rM) is Artinian. So that (0 :Hi
m(M) r) is Artinian. Since Hi

m(M) is
(r)-torsion, it follows from [1, Theorem 7.1.2] Hi

m(M) is Artinian.
This theorem is a generalization of the following corollaries.

Corollary 2.1 (See [1, Theorem 7.1.3]). Let (R,m) be a local ring. Let M be a finitely
generated R-module. Then the R-module Hi

m(M) is Artinian for each i.

Corollary 2.2 (See [10, Lemma 2.7]). Let M be an a-cofinite R-module. Then for any
maximal ideal m containing a, the R-module Hi

m(M) is Artinian for all i.

As we mentioned above, in the next result, we use the concept of attached prime ideals.
Recall that in a commutative ring R, an R-module M is said to be secondary if M 6= 0 and,
for each a ∈ R, the endomorphism fa : M→M defined by fa(m) = am is either surjective
or nilpotent. In this case, p =

√
Ann(M) is a prime ideal and M is said to be p-secondary.

A secondary representation of an R-module M is an expression of M as a finite sum of
secondary submodules.

A prime ideal p is called an attached prime ideal of M if M has a p-secondary quotient.
The set of the attached prime ideals of M is denoted by Att(M). Artinian modules and
injective modules have secondary representation and so one can consider the set of attached
primes of these modules.

According to [1, Exercise 7.2.9], an Artinian R-module M is non-zero if and only if
Att(M) is non-empty. For an R-module M, the subset W(M) of R is defined by W(M) =
{a ∈ R|M 6= aM}. It is well-known that

W(M) =
⋃

p∈Att(M)

p.

Now we are ready to prove our main result.

Theorem 2.2 (The non-vanishing Theorem). Let (R,m) be a Noetherian local ring and let
M be a non-zero weakly finite R-module. If dimM = n, then Hn

m(M) 6= 0.
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Proof. We give a proof by using induction on n. In the case n = 0 we have nothing to prove,
because H0

m(M) = M 6= 0. Assume that n≥ 1 and the result has been proved for n−1. Note
that Hn

m(M/Γm(M)) ∼= Hn
m(M) and dim(M/Γm(M)) = n. Thus we can assume that M is

m-torsion free. Now assume the contrary that Hn
m(M) = 0. Note that Ass(M) is finite. Then

the equality Γm(M) = 0 implies that there exists r ∈m\Z(M) such that M/rM is a non-zero
weakly finite R-module of dimension n−1. Thus by induction hypothesis Hn−1

m (M/rM) 6=
0. By our assumption Hn

m(M) = 0, so the exact sequence 0→ M r→ M → M/rM → 0,
induces the exact sequence

Hn−1
m (M) r→ Hn−1

m (M)→ Hn−1
m (M/rM)→ 0.

Therefore Hn−1
m (M/rM)∼= Hn−1

m (M)/r Hn−1
m (M) and so Hn−1

m (M) 6= r Hn−1
m (M). This means

that m \Z(M) ⊆W(Hn−1
m (M)). Thus, m ⊆ Z(M)∪W(Hn−1

m (M)). In view of Lemma 2.1,
we see that Hn−1

m (M) is Artinian. Then it has finite number of attached primes. Hence
m∈Att(Hn−1

m (M)). Assume that Att(Hn−1
m (M)) = {m,p1, · · · ,pt}. Choose c∈m\∪t

i=1pi∪
Z(M). Then

Hn−1
m (M/cM)∼= Hn−1

m (M)/cHn−1
m (M).

Since
Att(Hn−1

m (M/cM)) = Supp(R/cR)∩Att(Hn−1
m (M)) = {m},

thus Hn−1
m (M/cM) is of finite length and by Lemma 2.2 we conclude that n = 1. Now

consider the following exact sequence

0→ H0
m(M) c→ H0

m(M)→ H0
m(M/cM)→ H1

m(M).

By our assumption H0
m(M) = 0 = H1

m(M) and hence H0
m(M/cM) = 0 that is a contradiction.

Therefore Hn
m(M) 6= 0.

Corollary 2.3 (See [1, 6.1.4]). Let M be a non-zero finitely generated R-module of dimen-
sion n. Then Hn

m(M) 6= 0.

Recall that an R-module M is said to be minimax if it has a finitely generated submodule,
say N, such that M/N is Artinian. In the next example we show that the non-vanishing
theorem does not hold for minimax modules.

Example 2.1. Let (R,m) be a local domain of dimension 1. Then by [12, p. 658], Q(A),
field of fractions of R, is minimax. Note that Q(A) = ER(R/0) and

AssR(Q(A)) = Ass(ER(R/0)) = {0}.
Therefore SuppR(Q(A)) = {0,m}, and so dimR Q(A) = 1. But since Q(A) is injective, then
we have H1

m (Q(A)) = 0.

Corollary 2.4. Let ϕ : R→ S be a homomorphism of rings, such that (R,m) is local and S is
finite as a module over R. Let a be an ideal of R and M be an R-module such that Supp(M)⊆
Var(a) and ExtiS(S/aS,M) is finitely generated S-module. Then HdimR M

m (M) 6= 0.

Proof. In view of [2, Proposition 2], we see that ExtnR(R/a,M) is finitely generated for all
n. The claim is now clear by Theorem 2.2.

It is celebrated result that if (R,m) is a local ring and M a non-zero finitely generated
R-module and for some integer i, Hi

m(M) 6= 0, therefore depthM ≤ i ≤ dimM. (see [1,
Corollary 6.2.8]).
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If M is an R-module, one can define

depthR(M) := inf{i ∈ N0|ExtiR(R/m,M) 6= 0}.
It is easy to see that

depthR(M) = 0⇔ HomR(R/m,M) 6= 0⇔m ∈ AssR(M)

and if M has finitely many associated primes(and not necessarily finitely generated), then
these are equivalent to Z(M) = m.

In the next theorem we show that this statement is also true for weakly finite modules.

Theorem 2.3. Let (R,m) be a local ring and let M be a weakly finite R-module such that
aM 6= M. Then depthR(M) is the least integer i such that Hi

m(M) 6= 0.

Proof. Set t = depthR(M). The proof is by induction on t. If t = 0, then Hom(R/m,M) 6= 0
and so (0 :M m) is non-zero. Therefore H0

m(M) 6= 0. Now we assume that t > 0 and the
result has been proved for each weakly finite R-module N with aN 6= N and depthR(N) < n.
Since t > 0 and |Ass(M)|< ∞, there exists r ∈m such that r is a non-zero divisor on M. Set
N = M/rM. It is obvious that depthR(N) = t−1, N 6= mN and N is weakly finite. Therefore
Ht−1

m (N) 6= 0 and the exact sequence 0→ M r→ M→ N → 0 induces, for each i, an exact
sequence

Hi−1
m (M)→ Hi−1

m (N)→ Hi
m(M) r→ Hi

m(M).
This shows that if i < t, then Hi

m(M) = 0 and we have the exact sequence 0→ Ht−1
m (N)→

Ht
m(M), and since Ht−1

m (N) 6= 0, it follows that Ht
m(M) 6= 0.

Corollary 2.5. Let (R,m) be a local ring and let M be an a-cofinite (respectively finitely
generated)R-module. Then, if for some integer i, Hi

m(M) 6= 0, we have

depthR(M)≤ i≤ dim(M).

Proof. Just apply the Grothendieck’s Vanishing theorem, the non-vanishing theorem and
the above theorem.

3. Cohomological dimension

Let a be an ideal of the ring R. The cohomological dimension of M with respect to a is
defined as

cd(a,M) = sup{i ∈ Z|Hi
a(M) 6= 0}.

Grothendieck has shown that cd(a,M) has a lower bound and an upper bound depthM and
dimM respectively. The cohomological dimension has been studied by several authors. In
[5] and [8], Faltings and Huneke–Lyubeznik provide bounds for cohomological dimension.

Theorem 3.1. Let M be an R-module. Then the following hold:
(1) cd(a,M)≤ sup{cd(a,N)|N is a finitely generated submodule of M}.
(2) If M is weakly finite (respectively a-cofinite), then for any p∈Supp(M), cd(pRp,Mp)

= sup{cd(pRp,L)|L is a finitely generated submodule of Mp}.

Proof. For part (1), see [3, Theorem 1.1]. For part (2), just consider the following (in)equalities

dimRp(Mp) = cd(pRp,Mp)

≤ sup{cd(pRp,L)|L is a finitely generated submodule of Mp}
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≤ sup{dimRp(L)|L is a finitely generated submodule of Mp}
≤ dimRp(Mp).

Theorem 3.2. If M is an R-module with finite cohomological dimension with respect to a,
then cd(a,M) ≤ cd(a,R/p) for some p ∈ SuppR(M). Moreover, if M is weakly finite (re-
spectively a-cofinite), then for any p ∈ Supp(M) there exists q⊆ p such that cd(pRp,Mp) =
cd(pRp,Rp/qRp).

Proof. First part is from [3, Theorem 1.3]. For the second part, consider the following
(in)equalities.

dimRp(Mp) = cd(pRp,Mp)≤ sup{cd(pRp,Rp/qRp)|p⊇ q ∈ Supp(M)}
≤ sup{dim(Rp/qRp)|p⊇ q ∈ Supp(M)}
≤ dimRp(Mp).

Corollary 3.1 (See [3, Theorem 1.4]). Let N and M be R-modules and M weakly finite
(respectively a-cofinite). If SuppR(N)⊆ SuppR(M), then

cd(m,N)≤ cd(m,M).

Proof. The assertion follows from the following (in)equalities.

cd(m,N)≤ dim(N)≤ dim(M) = cd(m,M).
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[16] H. Zöschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1–32.


