BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

A Non-Vanishing Theorem for Local Cohomology Modules

AMIR BAGHERI

Department of Mathematics, University of Tehran, Tehran, Iran amirbagheri@ut.ac.ir

Abstract. Assume that (R, \mathfrak{m}) is a local Noetherian ring and \mathfrak{a} is an ideal of R. In this paper we introduce a new class of R-modules denoted by weakly finite modules that is a generalization of finitely generated modules and containing the class of Big Cohen-Macaulay modules and \mathfrak{a} -cofinite modules. We improve the non-vanishing theorem due to Grothendieck for weakly finite modules. Finally we define the notion depth_R M and we prove that if M is a weakly finite R-module and $H_{\mathfrak{m}}^i(M) \neq 0$ for some i, then depth_R(M) $\leq i \leq \dim M$.

2010 Mathematics Subject Classification: 13D45

Keywords and phrases: Local cohomology modules, Grothendieck's non-vanishing Theorem, Big Cohen-Macaulay modules.

1. Introduction

Throughout this note the ring *R* is commutative Noetherian ring with non-zero identity. Let a be an ideal of *R* and let *M* be a non-zero *R*-module. Since *M* is not necessarily finitely generated, by dim*M*, we mean sup{dim(R/\mathfrak{p})| $\mathfrak{p} \in \text{Supp}(M)$ }.

Also by $H^i_{\mathfrak{a}}(M)$, we mean $\varinjlim R^i_R(R/\mathfrak{a}^n, M)$, the local cohomology module of M with respect to the ideal \mathfrak{a} . Local Cohomology was introduced by Grothendieck and many people have worked on understanding their structure, (non)-vanishing and finiteness properties. For example, Grothendieck's non-vanishing theorem is one of the important theorems in local cohomology that says $H^{\dim M}_{\mathfrak{m}}(M)$ is non-zero for any finitely generated module Mover Noetherian local ring (R, \mathfrak{m}) . The finiteness assumption on M has crucial rule in the proof of this result, see [1, Theorem 6.1.4]. The study of Grothendieck's non-vanishing theorem for not necessarily finitely generated modules began by the work of Hochster. Let R be an excellent local domain of prime characteristic and let R^+ be the absolute integral closure of R. Hochster showed that $H^{\dim R}_{\mathfrak{m}}(R^+)$ is non-zero in the case that R is an excellent domain of prime characteristic, see [6, Theorem 6.1]. It is worth to recall from [7, Theorem 5.5] that R^+ is balanced big Cohen-Macaulay in the case that it is excellent and of prime characteristic.

Communicated by Siamak Yassemi.

Received: August 15, 2011; Revised: January 14, 2012.

Also, Sharp proved that Grothendieck's non-vanishing theorem is true for a balanced big Cohen-Macaulay algebra, see [13, Theorem 3.2]. Let us recall from [13, Lemma 2.1], some properties of balanced big Cohen-Macaulay modules.

- (1) If *M* is a balanced big Cohen-Macaulay module, then $\text{Hom}(R/\mathfrak{a}, M)$ is finitely generated for some non-zero ideal of *R*.
- (2) If *M* is a balanced big Cohen-Macaulay module and *x* is a regular element, then so is M/xM.
- (3) If *M* is a balanced big Cohen-Macaulay module, then $|Ass(M)| < \infty$, and
- (4) If *M* is a balanced big Cohen-Macaulay module, then *M*/Γ_m(*M*) is a balanced big Cohen-Macaulay module too.

In the next section, firstly we define the notion of weakly finite modules that they have the properties similar to big Cohen-Macaulay modules and we show that this class contains finitely generated modules and a-cofinite modules. Furthermore, we prove that the Grothendieck's non-vanishing theorem is true for this set of modules.

The following is our main result in this paper.

Theorem 1.1. Let (R, \mathfrak{m}) be a local ring and M a non-zero weakly finite R-module. If $\dim M = n$, then $\operatorname{H}^n_{\mathfrak{m}}(M) \neq 0$.

This improves Grothendieck's non-vanishing theorem. Also we define depth_{*R*}(*M*) similar to depth *R* and we improve [1, Corollary 6.2.8] for weakly finite modules:

Theorem 1.2. Let (R, \mathfrak{m}) be a local ring and let M be a weakly finite R-module such that $\mathfrak{a}M \neq M$. Then depth_R(M) is the least integer i such that $\operatorname{H}^{i}_{\mathfrak{m}}(M) \neq 0$.

2. Grothendieck's non-vanishing Theorem

In this section, we assume that (R, \mathfrak{m}) is a local ring. Now we introduce the class of weakly finite modules.

Definition 2.1. Let \mathscr{S} be the largest class of *R*-modules satisfying the following four properties:

- (1) If $M \in \mathscr{S}$, then $\operatorname{Hom}(R/\mathfrak{m}, M)$ is finitely generated.
- (2) If *M* is a non-zero element of \mathscr{S} and *x* is a regular element, Then $M/xM \in \mathscr{S}$ is non-zero and dim $M/xM = \dim M 1$.
- (3) If $M \in \mathcal{S}$, then $|\operatorname{Ass}(M)| < \infty$, and
- (4) If $M \in \mathscr{S}$, then $M/\Gamma_{\mathfrak{m}}(M) \in \mathscr{S}$.

We say that an R-module is weakly finite, if it belongs to \mathcal{S} .

Clearly non-zero finitely generated modules and balanced big Cohen-Macaulay modules are weakly finite.

Let \mathfrak{a} be an ideal of (R,\mathfrak{m}) . Hartshorne defined a (not necessarily finitely generated) module N to be \mathfrak{a} -cofinite if the support of N is contained in the variety of \mathfrak{a} , and in addition $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a},N)$ is a finitely generated R-module for all i. Obviously the set of \mathfrak{a} -cofinite modules contains finitely generated modules. Recall from [10] that Grothendieck's non-vanishing theorem holds for the class of \mathfrak{a} -cofinite modules. In Lemma 2.1, we will show that \mathfrak{a} -cofinite modules are weakly finite too.

66

Lemma 2.1. Let (R, \mathfrak{m}) be a local ring and let M be a non-zero R-module of dimension n > 0. If there is an ideal \mathfrak{a} of R such that $\operatorname{Supp}(M) \subseteq \operatorname{Var}(\mathfrak{a})$ and $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a}, M)$ is finitely generated for all i, then M is weakly finite.

Proof. We show that a-cofinite modules satisfy the axiom of weakly finite modules. The first axiom is true because by applying the short exact sequence

$$0 \to \frac{\mathfrak{m}}{\mathfrak{a}} \to \frac{R}{\mathfrak{a}} \to \frac{R}{\mathfrak{m}} \to 0$$

we deduce the long exact sequence $0 \to \text{Hom}(R/\mathfrak{m}, M) \to \text{Hom}(R/\mathfrak{a}, M) \to \cdots$. Since by assumption $\text{Hom}(R/\mathfrak{a}, M)$ is finitely generated and *R* is Noetherian, therefore $\text{Hom}(R/\mathfrak{m}, M)$ will be finitely generated. Now, we show that if $r \in \mathfrak{m}$ is a non-zero divisor element of \mathfrak{m} , then M/rM is non-zero of dimension n-1. By applying $\text{Hom}(R/\mathfrak{a}, -)$ to short exact sequence $0 \to M \to M \to M/rM \to 0$, we have the long exact sequence

(2.1)
$$0 \to \operatorname{Hom}(R/\mathfrak{a}, M) \to \operatorname{Hom}(R/\mathfrak{a}, M) \to \operatorname{Hom}(R/\mathfrak{a}, M/rM).$$

If M = rM, then Hom $(R/\mathfrak{a}, M) \cong r$ Hom $(R/\mathfrak{a}, M)$. By Nakayama's Lemma, Hom $(R/\mathfrak{a}, M) = 0$ and this is a contradiction because

$$\operatorname{Ass}(\operatorname{Hom}(R/\mathfrak{a},M)) = \operatorname{Ass}(M) \cap \operatorname{Var}(\mathfrak{a}) \neq \emptyset.$$

On the other hand, using the following inequalities:

$$n-1 = \dim (\operatorname{Hom}_{R}(R/\mathfrak{a}, M)/r \operatorname{Hom}_{R}(R/\mathfrak{a}, M))$$

$$\leq \dim (\operatorname{Hom}_{R}(R/\mathfrak{a}, M/rM))$$

$$\leq \dim (M/rM) \leq n-1,$$

we have dim M/rM = n-1. Clearly, Supp $(M/rM) \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, M/rM)$ is finitely generated for all *i*. Now, to show that Ass(M) is finite, we have

$$\operatorname{Ass}\left(\operatorname{Hom}(R/\mathfrak{a},M)\right) = \operatorname{Ass}(M) \cap \operatorname{Var}(\mathfrak{a})$$

Since $\operatorname{Supp}(M) \subseteq V(\mathfrak{a})$ we conclude that $\operatorname{Ass}(\operatorname{Hom}(R/\mathfrak{a}, M)) = \operatorname{Ass}(M)$. Now by assumption $\operatorname{Hom}(R/\mathfrak{a}, M)$ has finitely many associated primes and therefore $|\operatorname{Ass}(M)| < \infty$.

By using the exact sequence (2.1), in combination with the fact that $\operatorname{Ext}^{i}(R/\mathfrak{a}, M)$ is finitely generated, we get that M/rM is weakly finite. Respectively, using the short exact sequence $0 \to \Gamma_{\mathfrak{m}}(M) \to M \to M/\Gamma_{\mathfrak{m}}(M) \to 0$, we conclude that $M/\Gamma_{\mathfrak{m}}(M)$ is weakly finite too. Note that $\Gamma_{\mathfrak{m}}(M)$ is a-cofinite, see[11, Corollary 1.8]

In the next lemma, we prove that similar to finitely generated modules, if M is weakly finite, then the local cohomology modules $H^i_m(M)$ are not finitely generated when i > 0.

Lemma 2.2. Let *n* be an integer and *M* be a weakly finite *R*-module. If $H^n_{\mathfrak{m}}(M)$ is non-zero and finitely generated, then n = 0.

Proof. By definition of weakly finite *R*-modules, one has $|Ass(M)| < \infty$. Now, the proof follows by straight forward modification of [1, Exercise 6.1.6].

In the main theorem, we need to have Artinianness of $H^i_m(M)$ to use the concept of attached primes. In the following theorem we prove that if M is weakly finite, therefore $H^i_m(M)$ is Artinian.

Theorem 2.1. Let (R, \mathfrak{m}) be a local ring and let M be a weakly finite R-module. Then $\operatorname{H}^{i}_{\mathfrak{m}}(M)$ is Artinian for all $i \in \mathbb{N}_{0}$.

Proof. We use induction on *i*. Assume that i = 0. Obviously $\Gamma_{\mathfrak{m}}(M)$ is a-torsion. Also $(0:_{\Gamma_{\mathfrak{m}}(M)}\mathfrak{a})$ is Artinian, because by applying the functor $\operatorname{Hom}_R(R/\mathfrak{a}, -)$ to the sequence $0 \to \Gamma_{\mathfrak{m}}(M) \to M$, we deduce the monomorphism $\operatorname{Hom}_R(R/\mathfrak{a}, \Gamma_{\mathfrak{m}}(M)) \hookrightarrow \operatorname{Hom}_R(R/\mathfrak{a}, M)$. By assumption $\operatorname{Hom}(R/\mathfrak{a}, M)$ is finitely generated and therefore by Noetherianness of *R*, $\operatorname{Hom}_R(R/\mathfrak{a}, \Gamma_{\mathfrak{m}}(M))$ will be finitely generated.

Since $(0:_{\Gamma_{\mathfrak{m}}(M)}\mathfrak{a}) \simeq \operatorname{Hom}_{R}(R/\mathfrak{a},\Gamma_{\mathfrak{m}}(M))$, then $(0:_{\Gamma_{\mathfrak{m}}(M)}\mathfrak{a})$ is Artinian. Now, by Melkersson's criterion [1, Theorem 7.1.2], $\Gamma_{\mathfrak{m}}(M)$ is Artinian. We assume inductively that i > 0 and we have shown that $\operatorname{H}^{j}_{\mathfrak{m}}(N)$ is Artinian for every weakly finite *R*-module *N* and j < i. It is well known that $\operatorname{H}^{i}_{\mathfrak{m}}(M) \cong \operatorname{H}^{i}_{\mathfrak{m}}(M/\Gamma_{\mathfrak{m}}(M))$ by [1, Corollary 2.1.7]. Therefore we can assume that *M* is an m-torsion-free *R*-module. By the fact that $|\operatorname{Ass}(M)| < \infty$, we deduce that \mathfrak{m} contains an element *r* which is a non-zero divisor on *M*. Using exact sequence

$$0 \to M \to M \to M/rM \to 0$$

we arrive to the exact sequence

$$\mathrm{H}^{i-1}_{\mathfrak{m}}(M/rM) \to \mathrm{H}^{i}_{\mathfrak{m}}(M) \to \mathrm{H}^{i}_{\mathfrak{m}}(M)$$

of local cohomology modules. Since M/rM is weakly finite, it follows from the inductive hypothesis that $H^{i-1}_{\mathfrak{m}}(M/rM)$ is Artinian. So that $(0:_{H^{i}_{\mathfrak{m}}(M)}r)$ is Artinian. Since $H^{i}_{\mathfrak{m}}(M)$ is (r)-torsion, it follows from [1, Theorem 7.1.2] $H^{i}_{\mathfrak{m}}(M)$ is Artinian.

This theorem is a generalization of the following corollaries.

Corollary 2.1 (See [1, Theorem 7.1.3]). Let (R, \mathfrak{m}) be a local ring. Let M be a finitely generated R-module. Then the R-module $H^i_{\mathfrak{m}}(M)$ is Artinian for each i.

Corollary 2.2 (See [10, Lemma 2.7]). Let *M* be an \mathfrak{a} -cofinite *R*-module. Then for any maximal ideal \mathfrak{m} containing \mathfrak{a} , the *R*-module $\operatorname{H}^{i}_{\mathfrak{m}}(M)$ is Artinian for all *i*.

As we mentioned above, in the next result, we use the concept of attached prime ideals. Recall that in a commutative ring R, an R-module M is said to be secondary if $M \neq 0$ and, for each $a \in R$, the endomorphism $f_a : M \to M$ defined by $f_a(m) = am$ is either surjective or nilpotent. In this case, $\mathfrak{p} = \sqrt{\operatorname{Ann}(M)}$ is a prime ideal and M is said to be \mathfrak{p} -secondary. A secondary representation of an R-module M is an expression of M as a finite sum of secondary submodules.

A prime ideal \mathfrak{p} is called an attached prime ideal of M if M has a \mathfrak{p} -secondary quotient. The set of the attached prime ideals of M is denoted by $\operatorname{Att}(M)$. Artinian modules and injective modules have secondary representation and so one can consider the set of attached primes of these modules.

According to [1, Exercise 7.2.9], an Artinian *R*-module *M* is non-zero if and only if Att(*M*) is non-empty. For an *R*-module *M*, the subset W(M) of *R* is defined by $W(M) = \{a \in R | M \neq aM\}$. It is well-known that

$$W(M) = \bigcup_{\mathfrak{p} \in \operatorname{Att}(M)} \mathfrak{p}.$$

Now we are ready to prove our main result.

Theorem 2.2 (The non-vanishing Theorem). Let (R, \mathfrak{m}) be a Noetherian local ring and let M be a non-zero weakly finite R-module. If dim M = n, then $\operatorname{H}^n_{\mathfrak{m}}(M) \neq 0$.

Proof. We give a proof by using induction on *n*. In the case n = 0 we have nothing to prove, because $H^0_{\mathfrak{m}}(M) = M \neq 0$. Assume that $n \ge 1$ and the result has been proved for n - 1. Note that $H^n_{\mathfrak{m}}(M/\Gamma_{\mathfrak{m}}(M)) \cong H^n_{\mathfrak{m}}(M)$ and $\dim(M/\Gamma_{\mathfrak{m}}(M)) = n$. Thus we can assume that *M* is m-torsion free. Now assume the contrary that $H^n_{\mathfrak{m}}(M) = 0$. Note that $\operatorname{Ass}(M)$ is finite. Then the equality $\Gamma_{\mathfrak{m}}(M) = 0$ implies that there exists $r \in \mathfrak{m} \setminus \mathbb{Z}(M)$ such that M/rM is a non-zero weakly finite *R*-module of dimension n - 1. Thus by induction hypothesis $H^{n-1}_{\mathfrak{m}}(M/rM) \neq 0$. By our assumption $H^n_{\mathfrak{m}}(M) = 0$, so the exact sequence $0 \to M \xrightarrow{r} M \to M/rM \to 0$, induces the exact sequence

$$\mathrm{H}^{n-1}_{\mathfrak{m}}(M) \xrightarrow{r} \mathrm{H}^{n-1}_{\mathfrak{m}}(M) \to \mathrm{H}^{n-1}_{\mathfrak{m}}(M/rM) \to 0.$$

Therefore $\operatorname{H}_{\mathfrak{m}}^{n-1}(M/rM) \cong \operatorname{H}_{\mathfrak{m}}^{n-1}(M)/r\operatorname{H}_{\mathfrak{m}}^{n-1}(M)$ and so $\operatorname{H}_{\mathfrak{m}}^{n-1}(M) \neq r\operatorname{H}_{\mathfrak{m}}^{n-1}(M)$. This means that $\mathfrak{m} \setminus Z(M) \subseteq \operatorname{W}(\operatorname{H}_{\mathfrak{m}}^{n-1}(M))$. Thus, $\mathfrak{m} \subseteq Z(M) \cup \operatorname{W}(\operatorname{H}_{\mathfrak{m}}^{n-1}(M))$. In view of Lemma 2.1, we see that $\operatorname{H}_{\mathfrak{m}}^{n-1}(M)$ is Artinian. Then it has finite number of attached primes. Hence $\mathfrak{m} \in \operatorname{Att}(\operatorname{H}_{\mathfrak{m}}^{n-1}(M))$. Assume that $\operatorname{Att}(\operatorname{H}_{\mathfrak{m}}^{n-1}(M)) = \{\mathfrak{m},\mathfrak{p}_{1},\cdots,\mathfrak{p}_{t}\}$. Choose $c \in \mathfrak{m} \setminus \cup_{i=1}^{t} \mathfrak{p}_{i} \cup Z(M)$. Then

$$\mathrm{H}^{n-1}_{\mathfrak{m}}(M/cM) \cong \mathrm{H}^{n-1}_{\mathfrak{m}}(M)/c\,\mathrm{H}^{n-1}_{\mathfrak{m}}(M).$$

Since

$$\operatorname{Att}(H^{n-1}_{\mathfrak{m}}(M/cM)) = \operatorname{Supp}(R/cR) \cap \operatorname{Att}(H^{n-1}_{\mathfrak{m}}(M)) = \{\mathfrak{m}\}$$

thus $H_{\mathfrak{m}}^{n-1}(M/cM)$ is of finite length and by Lemma 2.2 we conclude that n = 1. Now consider the following exact sequence

$$0 \to \mathrm{H}^{0}_{\mathfrak{m}}(M) \xrightarrow{c} \mathrm{H}^{0}_{\mathfrak{m}}(M) \to \mathrm{H}^{0}_{\mathfrak{m}}(M/cM) \to \mathrm{H}^{1}_{\mathfrak{m}}(M).$$

By our assumption $H^0_{\mathfrak{m}}(M) = 0 = H^1_{\mathfrak{m}}(M)$ and hence $H^0_{\mathfrak{m}}(M/cM) = 0$ that is a contradiction. Therefore $H^n_{\mathfrak{m}}(M) \neq 0$.

Corollary 2.3 (See [1, 6.1.4]). *Let* M *be a non-zero finitely generated* R*-module of dimension* n. *Then* $\operatorname{H}^{n}_{\mathfrak{m}}(M) \neq 0$.

Recall that an *R*-module *M* is said to be minimax if it has a finitely generated submodule, say *N*, such that M/N is Artinian. In the next example we show that the non-vanishing theorem does not hold for minimax modules.

Example 2.1. Let (R, \mathfrak{m}) be a local domain of dimension 1. Then by [12, p. 658], Q(A), field of fractions of R, is minimax. Note that $Q(A) = E_R(R/0)$ and

$$\operatorname{Ass}_{R}(Q(A)) = \operatorname{Ass}(E_{R}(R/0)) = \{0\}.$$

Therefore $\operatorname{Supp}_R(Q(A)) = \{0, \mathfrak{m}\}$, and so $\dim_R Q(A) = 1$. But since Q(A) is injective, then we have $\operatorname{H}^1_{\mathfrak{m}}(Q(A)) = 0$.

Corollary 2.4. Let $\varphi : R \to S$ be a homomorphism of rings, such that (R, \mathfrak{m}) is local and S is finite as a module over R. Let \mathfrak{a} be an ideal of R and M be an R-module such that $\operatorname{Supp}(M) \subseteq \operatorname{Var}(\mathfrak{a})$ and $\operatorname{Ext}^{i}_{S}(S/\mathfrak{a}S, M)$ is finitely generated S-module. Then $\operatorname{H}^{\dim_{R}M}_{\mathfrak{m}}(M) \neq 0$.

Proof. In view of [2, Proposition 2], we see that $\text{Ext}_R^n(R/\mathfrak{a}, M)$ is finitely generated for all *n*. The claim is now clear by Theorem 2.2.

It is celebrated result that if (R, \mathfrak{m}) is a local ring and M a non-zero finitely generated R-module and for some integer i, $\operatorname{H}^{i}_{\mathfrak{m}}(M) \neq 0$, therefore depth $M \leq i \leq \dim M$. (see [1, Corollary 6.2.8]).

If M is an R-module, one can define

 $\operatorname{depth}_{R}(M) := \inf\{i \in \mathbb{N}_{0} | \operatorname{Ext}_{R}^{i}(R/\mathfrak{m}, M) \neq 0\}.$

It is easy to see that

 $\operatorname{depth}_{R}(M) = 0 \Leftrightarrow \operatorname{Hom}_{R}(R/\mathfrak{m}, M) \neq 0 \Leftrightarrow \mathfrak{m} \in \operatorname{Ass}_{R}(M)$

and if *M* has finitely many associated primes(and not necessarily finitely generated), then these are equivalent to $Z(M) = \mathfrak{m}$.

In the next theorem we show that this statement is also true for weakly finite modules.

Theorem 2.3. Let (R, \mathfrak{m}) be a local ring and let M be a weakly finite R-module such that $\mathfrak{a}M \neq M$. Then depth_R(M) is the least integer i such that $\operatorname{H}^{i}_{\mathfrak{m}}(M) \neq 0$.

Proof. Set $t = \operatorname{depth}_R(M)$. The proof is by induction on t. If t = 0, then $\operatorname{Hom}(R/\mathfrak{m}, M) \neq 0$ and so $(0:_M \mathfrak{m})$ is non-zero. Therefore $\operatorname{H}^0_{\mathfrak{m}}(M) \neq 0$. Now we assume that t > 0 and the result has been proved for each weakly finite R-module N with $\mathfrak{a}N \neq N$ and $\operatorname{depth}_R(N) < n$. Since t > 0 and $|\operatorname{Ass}(M)| < \infty$, there exists $r \in \mathfrak{m}$ such that r is a non-zero divisor on M. Set N = M/rM. It is obvious that $\operatorname{depth}_R(N) = t - 1$, $N \neq \mathfrak{m}N$ and N is weakly finite. Therefore $\operatorname{H}^{t-1}_{\mathfrak{m}}(N) \neq 0$ and the exact sequence $0 \to M \xrightarrow{r} M \to N \to 0$ induces, for each i, an exact sequence

$$\mathrm{H}^{i-1}_{\mathfrak{m}}(M) \to \mathrm{H}^{i-1}_{\mathfrak{m}}(N) \to \mathrm{H}^{i}_{\mathfrak{m}}(M) \stackrel{r}{\to} \mathrm{H}^{i}_{\mathfrak{m}}(M).$$

This shows that if i < t, then $\mathrm{H}^{i}_{\mathfrak{m}}(M) = 0$ and we have the exact sequence $0 \to \mathrm{H}^{t-1}_{\mathfrak{m}}(N) \to \mathrm{H}^{t}_{\mathfrak{m}}(M)$, and since $\mathrm{H}^{t-1}_{\mathfrak{m}}(N) \neq 0$, it follows that $\mathrm{H}^{t}_{\mathfrak{m}}(M) \neq 0$.

Corollary 2.5. Let (R, \mathfrak{m}) be a local ring and let M be an \mathfrak{a} -cofinite (respectively finitely generated)R-module. Then, if for some integer i, $H^i_{\mathfrak{m}}(M) \neq 0$, we have

$$\operatorname{depth}_{R}(M) \leq i \leq \dim(M).$$

Proof. Just apply the Grothendieck's Vanishing theorem, the non-vanishing theorem and the above theorem.

3. Cohomological dimension

Let \mathfrak{a} be an ideal of the ring R. The cohomological dimension of M with respect to \mathfrak{a} is defined as

$$\operatorname{cd}(\mathfrak{a}, M) = \sup\{i \in \mathbb{Z} | \operatorname{H}^{\iota}_{\mathfrak{a}}(M) \neq 0\}.$$

Grothendieck has shown that $cd(\mathfrak{a}, M)$ has a lower bound and an upper bound depth M and dim M respectively. The cohomological dimension has been studied by several authors. In [5] and [8], Faltings and Huneke–Lyubeznik provide bounds for cohomological dimension.

Theorem 3.1. Let *M* be an *R*-module. Then the following hold:

- (1) $\operatorname{cd}(\mathfrak{a}, M) \leq \sup \{\operatorname{cd}(\mathfrak{a}, N) | N \text{ is a finitely generated submodule of } M\}.$
- (2) If *M* is weakly finite (respectively \mathfrak{a} -cofinite), then for any $\mathfrak{p} \in \operatorname{Supp}(M)$, $\operatorname{cd}(\mathfrak{p}R_{\mathfrak{p}}, M_{\mathfrak{p}})$ = $\sup\{\operatorname{cd}(\mathfrak{p}R_{\mathfrak{p}}, L)|L$ is a finitely generated submodule of $M_{\mathfrak{p}}\}$.

Proof. For part (1), see [3, Theorem 1.1]. For part (2), just consider the following (in)equalities

$$\dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \operatorname{cd}(\mathfrak{p}R_{\mathfrak{p}}, M_{\mathfrak{p}})$$

$$\leq \sup\{\operatorname{cd}(\mathfrak{p}R_{\mathfrak{p}}, L) | L \text{ is a finitely generated submodule of } M_{\mathfrak{p}}\}$$

70

A Non-Vanishing Theorem for Local Cohomology Modules

$$\leq \sup\{\dim_{R_{\mathfrak{p}}}(L)|L \text{ is a finitely generated submodule of } M_{\mathfrak{p}}\} \\\leq \dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}).$$

Theorem 3.2. If *M* is an *R*-module with finite cohomological dimension with respect to \mathfrak{a} , then $\operatorname{cd}(\mathfrak{a}, M) \leq \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Supp}_R(M)$. Moreover, if *M* is weakly finite (respectively \mathfrak{a} -cofinite), then for any $\mathfrak{p} \in \operatorname{Supp}(M)$ there exists $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\operatorname{cd}(\mathfrak{p}R_\mathfrak{p}, M_\mathfrak{p}) = \operatorname{cd}(\mathfrak{p}R_\mathfrak{p}, R_\mathfrak{p}/\mathfrak{q}R_\mathfrak{p})$.

Proof. First part is from [3, Theorem 1.3]. For the second part, consider the following (in)equalities.

$$\begin{split} \dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) &= \mathrm{cd}(\mathfrak{p}R_{\mathfrak{p}},M_{\mathfrak{p}}) \leq \sup\{\mathrm{cd}(\mathfrak{p}R_{\mathfrak{p}},R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}})|\mathfrak{p} \supseteq \mathfrak{q} \in \mathrm{Supp}(M)\} \\ &\leq \sup\{\dim(R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}})|\mathfrak{p} \supseteq \mathfrak{q} \in \mathrm{Supp}(M)\} \\ &\leq \dim_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}). \end{split}$$

Corollary 3.1 (See [3, Theorem 1.4]). Let N and M be R-modules and M weakly finite (respectively \mathfrak{a} -cofinite). If $\operatorname{Supp}_R(N) \subseteq \operatorname{Supp}_R(M)$, then

$$\operatorname{cd}(\mathfrak{m},N) \leq \operatorname{cd}(\mathfrak{m},M).$$

Proof. The assertion follows from the following (in)equalities.

$$\operatorname{cd}(\mathfrak{m},N) \leq \dim(N) \leq \dim(M) = \operatorname{cd}(\mathfrak{m},M).$$

Acknowledgement. The author would like to thank his advisor, Prof. Siamak Yassemi, for his many helpful conversations and comments and Mohsen Asgharzadeh for introducing Big Cohen-Macaulay modules. Also, the author would like to thank the referee for his/her comments.

References

- M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge Univ. Press, Cambridge, 1998.
- [2] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45–52.
- [3] M. T. Dibaei and S. Yassemi, Cohomological dimension of complexes, *Comm. Algebra* 32 (2004), no. 11, 4375–4386.
- [4] M. T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, *Manuscripta Math.* 117 (2005), no. 2, 199–205.
- [5] G. Faltings, Über lokale Kohomologiegruppen hoher Ordnung, J. Reine Angew. Math. 313 (1980), 43–51.
- [6] M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553.
- [7] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89.
- [8] C. Huneke and G. Lyubeznik, On the vanishing of local cohomology modules, *Invent. Math.* 102 (1990), no. 1, 73–93.
- [9] I. G. MacDonald and R. Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules, *Quart. J. Math. Oxford Ser.* (2) 23 (1972), 197–204.
- [10] A. Mafi, Some results on local cohomology modules, Arch. Math. (Basel) 87 (2006), no. 3, 211–216.
- [11] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, 417–423.
- [12] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668.
- [13] R. Y. Sharp, Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, *Math. Proc. Cambridge Philos. Soc.* 90 (1981), no. 2, 229–238.

71

- [14] S. Yassemi, On the non-vanishing of local cohomology modules, *Czechoslovak Math. J.* 47(122) (1997), no. 4, 585–592.
- [15] S. Yassemi, Cofinite modules, Comm. Algebra 29 (2001), no. 6, 2333–2340.
- [16] H. Zöschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1–32.