
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 37(1) (2014), 73–82

Strongly Top Modules

1H. ANSARI-TOROGHY AND 2S. KEYVANI
1,2Department of Pure Mathematics, Faculty of Mathematical Sciences,

University of Guilan, P. O. Box 41335-19141 Rasht, Iran
1ansari@guilan.ac.ir, 2Siamak Keyvani@guilan.ac.ir

Abstract. Let R be a commutative ring and let M be a top R-module. In this article, we
investigate some properties of a new class of modules, called strongly top modules. Studying
of this family provides an important tool for studying of the prime spectrum of M from the
point of view of spectral spaces with different Zariski and quasi Zariski topologies.
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1. Introduction

Throughout this article, R denotes a commutative ring with identity and all modules are
nonzero and unitary. If N is a subset of an R-module M, then N ≤ M denotes N is an R-
submodule of M. For any ideal I of R containing AnnR(M), R̄ and Ī denote R/Ann(M) and
I/Ann(M) respectively. Further Z (resp. Q) denotes the ring of integers (resp. the field of
rational numbers).

Definition 1.1. For M as an R-module and P, N its submodules, we define

• The colon ideal of M into N, (N : M) = {r ∈ R|rM ⊆ N}= Ann(M/N).
• A prime submodule of M is a submodule P 6= M such that, whenever re ∈ P for

some r ∈ R and e ∈M, we have r ∈ (P : M) or e ∈ P. If p is an ideal of R, a p-prime
submodule of M is a prime submodule P of M with p = (P : M) [6].
• The prime spectrum (or simply, the spectrum) of M is the set of all prime submod-

ules of M and denoted by SpecR(M) or X.
• If p ∈ Spec(R), then Specp(M) is the set of all p-prime submodules of M [12].
• The prime radical rad(N) is defined to be the intersection of all prime submodules

of M containing N, and in case N is not contained in any prime submodule, rad(N)
is defined to be M [7].
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• If SpecR(M) 6= /0, the mapping ψ : SpecR(M)→Spec(R/Ann(M)) such that ψ(P)=
(P : M)/Ann(M) = (P : M) for every P ∈ SpecR(M), is called the natural map of
SpecR(M) [9].
• M is said to be primeful if either M = (0) or M 6= (0) and the natural map of

X = SpecR(M) is surjective [11]. M is said to be X-injective if either X = /0 or
X 6= /0 and the natural map of X is injective [1].
• The Zariski topology on X = SpecR(M) is the topology τM described by taking the

set Z(M) = {V (N)|N is a submodule of M} as the set of closed sets of X, where
V (N) = {P ∈ X |(P : M)⊇ (N : M)} [9].
• The quasi-Zariski topology on X = SpecR(M) is described as follows: put V ∗(N) =
{P ∈ X |P ⊇ N} and Z∗(M) = {V ∗(N)|N is a submodule of M}. Then there exists
a topology τ∗M on X having Z∗(M) as the set of closed subsets of X if and only
if Z∗(M) is closed under finite unions. When this is the case, τ∗M is called the
quasi-Zariski topology on X and M is called a top R-module [12].
• M is a multiplication module if for every submodule N of M, there exists an ideal I

of R such that N = IM [12].
• M is a weak multiplication module, if either X = SpecR(M) = /0 or X 6= /0 and for

every prime submodule P of M we have P = IM for some ideal I of R [4].
• A topological space T is a spectral space if T is homeomorphic to Spec(S) with

the Zariski topology for some ring S [5]. It is very important to know under what
conditions SpecR(M) is spectral with both topologies τM and τ∗M . Some of these
conditions have been considered in [1, 2, 9].

Now we equip X = SpecR(M) of a top R-module M with τM , τ∗M respectively. Then
we have always τM ⊆ τ∗M by [9, Theorem 2.1]. M is said to be a strongly top module
(s-top for short) if τ∗M = τM . In fact this family is a proper subclass of top modules (see
Definition 3.1 and Example 3.1). In this article, we will provide some useful information
about this new class of modules. In Proposition 3.1 we describe the basic properties of s-top
modules. For example, we prove every homomorphic image of an s-top module is s-top
and we also investigate a necessary and sufficient condition in order that a direct sum of
s-top R-modules is s-top. In Theorem 3.2 we consider some classes of s-top modules over
a PID ring. Moreover, we will study the behavior of s-top modules under localizations (see
Proposition 3.2 and Corollary 3.2).

There is a natural question as follows: Is (X ,τM) (resp. (X ,τ∗M)) a spectral space? The-
orem 3.4 shows that (X ,τM), (X ,τ∗M) are both spectral spaces for some special classes of
s-top modules. When X is a spectral space with both topologies τM and τ∗M , our best de-
sire is to have τM 6= τ∗M . In Theorem 3.1 we provide some useful characterizations for this
case. So whenever X is both spectral with τM and τ∗M , this theorem shows that τM 6= τ∗M
if and only if there exists a submodule N of M such that V ∗(N) 6= V (rad(N)) if and only
if ψ:(X ,τ∗)→ Im(ψ), where ψ is the natural map of X , is not a closed map. Finally, it
may happen τ∗M = τM when we have some restrictive conditions on a top module M (for
example, see Example 3.1 (a) and Corollary 3.1). This has been a motivation for us to study
the family of strongly top modules.

2. Preliminaries

In this section we review some properties of prime submodules, top modules, and X-
injective modules. They are fundamental tools to investigate s-top modules.
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Remark 2.1. Let M be an R-module.
(a) Let K be a submodule of M such that (K : M) is a maximal ideal of R. Then K is a

prime submodule of M.
(b) If N is a maximal submodule of M, then N is a prime submodule of M and (N : M)

is a maximal ideal of R.
(c) Let p ∈ Spec(R). Then the prime submodules of Rp-module Mp are in a one-to-

one correspondence with those prime submodules N of M that satisfy (N : M)⊆ p.
We use fp to denote the natural map fp : SpecRp

(Mp) −→ SpecR(M) defined by
Qp 7−→ Q. Clearly, fp is an injective map by the above arguments.

(d) Let N be a prime submodule of M and S be a multiplicatively closed subset of R.
Then S−1(N :R M) = (S−1N :S−1R S−1M) [8].

Remark 2.2. Let p ∈ Spec(R) and M an R-module.
(a) The saturation of a submodule N with respect to p is the contraction of Np in M

and is denoted by Sp(N). It is known that Sp(N) = Nec = {x ∈M|tx ∈ N for some
t ∈ R\ p}.

(b) Sp(N) = N for every p-prime submodule N of M.
(c) Sp(pM) is a prime submodule of M ⇔ Sp(pM) 6= M ⇔ (pM : M) = (Sp(pM) :

M) = p [10, Proposition 2.4].

Remark 2.3. Let M be an R-module.
(a) If M is a top module, then M is an X-injective module [12, Theorem 3.5].
(b) If M is an X-injective R-module. Then

SpecR(M) = {Sp(pM)|p ∈V (Ann(M)),Sp(pM) 6= M}

[1, Theorem 3.21].

Let R be a domain. Then M is said to be a torsion (resp. torsion free ) module if T (M) =
M (resp T (M) = 0), where

T (M) = {m ∈M|∃0 6= r ∈ R 3 rm = 0}.

Remark 2.4. Let R be a PID and M an R-module. Then the following statements are
equivalent:

(a) M is a weak multiplication module;
(b) M is a top module which is a torsion-free or torsion module;
(d) M is an X-injective module which is a torsion-free or torsion module;

[1, Corollary 3.19].

3. Main results

Throughout the rest of this article, for an R-module M, X always represents SpecR(M).

Definition 3.1. Let M be a top R-module. We say that M is an strongly top module (or
simply s-top module) if τ∗M = τM .

Example 3.1.
(a) Every multiplication or finitely generated top R-module is an s-top module by [9,

Example 1 (c)].
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(b) Not every top module is an s-top module. For example, let M = Q⊕Z/pZ for
some prime integer p. Then M is a top Z-module by [12, Example 3.8]. But it is
easy to see that

SpecZ(M) = {0⊕ (Z/pZ),Q⊕0}.
Set P = 0⊕(Z/pZ). Then V ∗(P) = {P}. If V ∗(P)∈ Z(M), then V ∗(P) = V (N) for
some submodule N of M. This implies that

(N : M)⊆ (P : M) = (0⊕ (Z/pZ) : Q⊕ (Z/pZ)) = 0.

Hence (N : M) = 0 ⊆ (Q⊕ 0 : M) and therefore Q⊕ 0 ∈ V (N). It follows that
V ∗(P) = V (N) = SpecZ(M) which is a contradiction. Thus V ∗(P) /∈ Z(M), so
τ∗M 6= τM . Therefore M is not an s-top module.

(c) Let M = Q. Then SpecZ(M) = {0}. Hence M is an strongly top module but it is
neither finitely generated nor multiplication Z-module.

Remark 3.1. Let M be an R-module. We denote the set {p ∈ Spec(R)|Sp(pM) 6= M} by
Ω(M). Clearly, Ω(M) = {p ∈ V (Ann(M)|Sp(pM) 6= M} by Remark 2.2 (c). Note that if
M is a primeful R-module, then Ω(M) = V (Ann(M)) by [11, Theorem 2.1] so that Ω(M) is
homomorphic with Spec R̄.

The following theorem provides some important characterizations about s-top modules.

Theorem 3.1. Let M be an R-module, then the following statements are equivalent:
(a) M is an s-top R-module;
(b) V ∗(N) = V (rad(N)) for every submodule N of M;
(c) M is a top module and for any p ∈ Ω(M) and for every family {pi}i∈I , where

pi ∈Ω(M), we have ∩i∈I pi ⊆ p =⇒∩i∈ISpi(piM)⊆ Sp(pM);
(d) M is a top module and ψ:(X ,τ∗M)→ Im(ψ) is a closed map, where ψ is a natural

map of X.

Proof. (a) ⇔ (b) Let M be an s-top R-module and N a submodule of M. Since τM = τ∗M ,
Y = V ∗(N) is a closed subset of (X ,τM). This implies that Y = cl(Y ), where cl(Y ) is the
topological closure of Y in (X ,τM). But cl(Y ) = V (∩P∈Y P) by [9, Proposition 5.1]. On the
other hand, ∩P∈Y P = rad(N). By the above arguments, we have V ∗(N) = V (rad(N)). The
reverse implication follows from the fact that τM ⊆ τ∗M .

(b)⇔ (c) Assume that V ∗(N) = V (rad(N)) for every submodule N of M. Clearly, M is
a top module. Now let p ∈ Ω(M), {pi}i∈I a family of elements of Ω(M) and ∩i∈I pi ⊆ p.
We show that ∩i∈ISpi(piM) ⊆ Sp(pM). We have Sp(pM) 6= M. Hence Sp(pM) is a p-
prime submodule of M. By assumption, it follows that Sp(pM) ∈ V (∩i∈ISpi(piM)). Since
V (rad(∩i∈ISpi(piM))) =V (∩i∈ISpi(piM)), we have Sp(pM)∈V (rad(∩i∈ISpi(piM))). This
implies that Sp(pM) ∈ V ∗(∩i∈ISpi(piM)) by (b). Thus ∩i∈ISpi(piM) ⊆ Sp(pM). Con-
versely, let N be a submodule of M and set Γ = {p∈Ω(M)|N ⊆ Sp(pM)}. Then by Remark
2.3 (b), rad(N) =

⋂
p∈Γ Sp(pM). It turns out that V ∗(N) = V (rad(N)) as required.

(c) ⇔ (d) Let the situation be as in part (c). We show that ψ:(X ,τ∗)→ Im(ψ) is a
closed map. To see this, let Y be an arbitrary subset of Im(ψ). It is enough to show that
ψ−1(cl(Y ))⊆ cl(ψ−1(Y )), where cl(Y ) refers to the closure of Y in Im(ψ). (Note that if W
and W ′ are two topological spaces and f : W →W ′ is a bijective map, then f is closed if and
only if f−1(cl(Z))⊆ cl( f−1(Z)) for every subset Z of W ′.) By Remark 2.3 (b), there exists
a family { p̄i}i∈I of prime ideals of Spec(R̄) such that Y = { p̄i : i ∈ I, pi ∈ Ω(M)}. Now let
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P ∈ ψ−1(cl(Y )) so that ψ(P) ∈ cl(Y ). Then by Remark 2.3 (b), P = Sp(pM), p ∈ Ω(M).
Also by Remark 2.2 (c), (Sp(pM) : M) = p. Hence by [9, Proposition 5.1], we have

ψ(P) = ψ(Sp(pM)) = p̄ ∈ cl(Y ) = V (∩i∈I p̄i)∩ Im(ψ),

where V (∩i∈I p̄i) is the closure of Y in Spec(R̄). (We note that the closure of Y in Im(ψ) is
equal to the intersection of closure Y in Spec(R̄) and Im(ψ).) Thus p ⊇ ∩i∈I pi.
So by assumption, we have Sp(pM)⊇ ∩i∈ISpi(piM). Therefore P ∈V ∗(∩i∈ISpi(piM)). On
the other hand, cl(ψ−1(Y )) = V ∗(∩i∈ISpi(piM)). It follows that ψ−1(cl(Y ))⊆ cl(ψ−1(Y ))
as desired. We have similar arguments for the reverse implication and the proof is
completed.

Corollary 3.1. Let M be an R-module. Then M is an s-top module in the following cases:
(a) M is weak multiplication and |Spec(R)|< ∞. However, not every weak multiplica-

tion module is an s-top module;
(b) M is top, flat, and |Spec(R)|< ∞;
(c) M is top and |Max(R)|= |Spec(R)|< ∞;
(d) M is top, primeful, and Ω(M) is a discrete subspace with its Zariski topology.

Proof. (a) The first assertion is straightforward by using Theorem 3.1 (b). To see the second
assertion, set M = ⊕i∈IZ/piZ, where Λ = {pi}i∈I is the set of all prime integers. Then
SpecZ(M) = {piM|i ∈ I} so that M is a weak multiplication module. Now let N = Z/p0Z
with p0 ∈ Λ. Then V ∗(N) = {pM|p ∈ Λ, p 6= p0} and V (rad(N)) = X so that M is not an
s-top module by Theorem 3.1 (b).

(b) By part (a) and [1, Theorem 3.15 (d)].
(c) The proof is straightforward by using Theorem 3.1 (c).
(d) By Remark 3.1, Ω(M) is homomorphic with Im(ψ). Now the result follows from

Theorem 3.1 (d).

Remark 3.2. A family (Mi)i∈I of R-modules is said to be prime-compatible if, for all i 6= j
in I, there does not exist a prime ideal p in R with Specp(Mi) and Specp(M j) both non-
empty. Further the following hold (see [12]).

(a) Every homomorphic image of a top R-module is top.
(b) Let (Mi)i∈I be a family of R-modules and M = ⊕i∈IMi. M is a top module if and

only if (Mi)i∈I is a family of prime-compatible top R-modules.
(c) Every submodule of a top R-module is not necessarily a top R-module.
(d) Let R be a domain with the field of fractions Q and let M′ be an R-module. Then

the R-module Q⊕M′ is a top module if and only if M′ is a torsion top module.
(e) Let {Iλ |λ ∈ Λ} be a family of ideals of R. Then M =

⊕
λ∈Λ R/Iλ is a top module

if and only if the ideals Iλ (λ ∈ Λ) are comaximal.

In Proposition 3.1 we investigate the above properties for s-top modules.
An R- module M is called a primeless if it has no prime submodules [12].

Proposition 3.1.
(a) Every homomorphic image of an s-top module is s-top.
(b) If M = ⊕i∈IMi is an s-top module, then (Mi)i∈I is a family of prime-compatible

s-top modules. But the converse is not true in general.
(c) Every submodule of an s-top R-module is not necessarily s-top.
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(d) Let R be a domain and (Mi)i∈I be a family of R-modules such that Mt is a torsion
free R module for some t ∈ I. Then M = ⊕i∈IMi is an s-top module if and only if
SpecR(M) = {T (M)}. In particular if R is a domain with the field of fractions Q
and M′ is an R-module, then the R-module M = Q⊕M′ is an s-top module if and
only if M′ is a primeless R-module.

(e) Let Λ be a finite index set and let Iλ (λ ∈ Λ) be comaximal ideals of the ring R.
Then M =

⊕
λ∈Λ R/Iλ is an s-top R-module.

Proof. (a) Let M be an s-top R-module and N a submodule of M. Let K/N be a submodule
of M/N. By Theorem 3.1 (b), it is enough to prove that V (rad(K/N)) = V ∗(K/N). To see
this, let L ∈V (rad(K/N)). Then L = Q/N, where N ⊆ Q ∈ X . This implies that

(Q/N : M/N)⊇ (
⋂

N⊆P∈V ∗(K)

P/N : M/N) =
⋂

N⊆P∈V ∗(K)

(P/N : M/N).

Therefore, we have (Q : M) ⊇ (
⋂

N⊆P∈V (K) P : M) by [10, Result 1]. It follows that Q ∈
V (rad(K)). Since M is an s-top R-module, V ∗(K) = V (rad(K)) by Theorem 3.1 (b) so that
Q ∈V ∗(K). Hence V (rad(K/N))⊆V ∗(K/N). The reverse inclusion is clear.

(b) The first assumption follows from part (a) and Remark 3.2 (b). To see the second
assertion, set M =⊕i∈IZ/piZ, where Λ = {pi}i∈I is the set of all prime integers. It is easy
to see that Mi’s, where Mi = Z/piZ, are prime-compatible s-top Z-modules. But M is not
an s-top module as we saw in the proof of Corollary 3.1 (a).

(c) Let p be a prime integer. Let Z(p) = S−1Z, where S = Z \ (p). Consider the Z(p)-
module M = (Q/pZ(p))⊕Q. Then Spec(M) = {(Q/pZ(p))⊕ (0)} is a singleton set so that
M is an s-top Z(p)-module. Now consider the submodule N = (Z(p)/pZ(p))⊕Q of M. By
[1, Example 4.12], N is not an s-top Z(p)-module.

(d) Let M be an s-top module and let j ∈ I with j 6= t. We show that SpecR(M j) = /0.
To see this, let Pj ∈ SpecR(M j). Then by [1, Proposition 3.7 (b)], K = (

⊕
i∈Ii 6= j

Mi)
⊕

Pj ∈
SpecR(M). Also we have L = (0)

⊕
(
⊕

i∈Ii 6=t
Mi) ∈ SpecR(M). This implies that K ∈ V (L)

so that K ⊇ L. Thus Pj ⊇ M j, a contradiction. It follows that SpecR(M) = {L} by [1,
Proposition 3.7]. But L = S(0)(0) = T (M) by [10, Corollary 3.7], so SpecR(M) = {T (M)}
as desired. The reverse implication is clear.

(e) By Remark 3.2, part (e), M is a top R-module so that M is X-injective and SpecR(M) =
{pλ M|pλ ∈ V (Iλ ),λ ∈ Λ} by Remark 2.3. Now since Λ is a finite set, it follows that
V ∗(N) = V (rad(N)) for every submodule N of M. Hence M is an s-top module by Theorem
3.1 (b).

Remark 3.3. Proposition 3.1 (b) shows a property which holds for top modules but it is not
valid for s-top modules.

Let M be an R-module. Then M is called a content module if for every x ∈M, x ∈ c(x)M,
where c(x) = ∩{I|I is an ideal of R such that x ∈ IM}. Every projective module is a content
module and for a content module M, ∩i∈J(AiM) = (∩i∈JAi)M for every family {Ai|i ∈ J} of
ideals Ai of R [11, p. 140].

Theorem 3.2. Let R be a PID and M be an R-module. Then M is an s-top R-module in each
of the following cases:

(a) M is a non faithful top module;
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(b) M is a content top module which is a torsion (or torsion-free) module. In particular
M is a projective torsion (or torsion-free) top module;

(c) M is content X-injective module which is a torsion (or torsion-free) module;
(d) M is content weak multiplication module.

Proof. (a) Let {pi}i∈I be a family of elements of Ω(M) such that ∩i∈I pi ⊆ p, where p ∈
Ω(M). Since Ann(M) 6= (0), |Spec(R̄)|< ∞. Thus I is a finite set, so pk = p for some k ∈ I.
This implies that Spk(pkM) = Sp(pM). Hence ∩i∈ISpi(piM)⊆ Sp(pM). Therefore M is an
s-top R-module by Theorem 3.1 (c).

(b) By part (a), it is enough to consider the case that Ann(M) = (0). Now let N be a
submodule of M. By Theorem 3.1 (b), it is sufficient to prove that V ∗(N) = V (rad(N)).
Since M is a top R-module and Ann(M) = (0), there exists a family {pi}i∈I of elements of
Spec(R) such that rad(N) = ∩i∈ISpi(piM) by Remark 2.3. Since M is a torsion (or torsion-
free) R-module, we have rad(N) = (0) or {pi : i ∈ I} ⊆ Max(R). If rad(N) = (0), then
N = (0) and we are done. Thus we can assume that rad(N) 6= (0) and {pi : i∈ I} ⊆Max(R).
Since M is X-injective, Spi(piM) = piM for every i ∈ I. As M is a content module, we have
rad(N)⊆ ∩i∈I(piM)⊆ (∩i∈I pi)M. If I is an infinite set, then rad(N)⊆ (∩i∈I pi)M = (0), a
contradiction. Hence we assume that I is finite and Q ∈V (rad(N)). It follows that ∩i∈I pi ⊆
(Q : M). This implies that p j = (Q : M) for some j ∈ I, so rad(N)⊆ ∩i∈I piM ⊆ p jM ⊆ Q.
Therefore Q ∈V ∗(N) so that V ∗(N) = V (rad(N)).

(c) and (d) follow by part (b) and Remark 2.4. This completes the proof.

Remark 3.4. The converse of part (a) of Theorem 3.2 is not true in general, for example
Z(p∞) as a Z-module is an s-top Z-module while Ann(Z(p∞)) = 0

The following proposition shows the behavior of s-top modules over localizations.

Proposition 3.2. Let M be an s-top R-module. Then Mp is an s-top Rp-module for every
prime ideal p of R.

Proof. Let p be a prime ideal of R and Np a submodule of Mp for some submodule N
of M. By Theorem 3.1 (b), it is enough to prove that V ∗(Np) = V (rad(Np)). It is clear
that V ∗(Np) ⊆ V (rad(Np)). Conversely, assume that W ∈ V (rad(Np)). Then there exists
Q ∈ SpecR(M) such that W = Qp and p⊇ (Q :R M) by Remark 2.1 (c). It follows that

(Qp :Rp Mp)⊇ (rad(Np) :Rp Mp)⊇ ((rad(N))p :Rp Mp)⊇ (rad(N) :R M)p.

But (Qp :Rp Mp) = (Q :R M)p by Remark 2.1 (d). Therefore Q ∈ V (rad(N)) so that Q ∈
V ∗(N) by Theorem 3.1 (b). This implies that W ∈V ∗(Np). Hence the proof is completed.

We need the following lemma.

Lemma 3.1. Let (R,m) be a quasi local ring and let {pα}α∈Λ be a collection of prime
ideals of R. Then (

⋂
α∈Λ pα)m =

⋂
α∈Λ(pα)m.

Proof. Straightforward.
Let X , Y be two sets and let g : X −→Y be a map from X into Y . Suppose τ is an arbitrary

topology on X . Set
U = {v⊆ Y : g−1(v) ∈ τ}.

Then U is a topology in X , called the induced topology by g in Y . We denote this topology
by g(τ). In fact U is the coarser topology in Y that g : (X ,τ) −→ (Y,U) is continuous.
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Moreover if g is bijective, then

g(τ) = {g(w) : w ∈ τ}.

Theorem 3.3. Let M be an R-module and p ∈ Spec(R). Let f : R̄−→ R̄p be the canonical
homomorphism and let f ∗ : Spec ¯(Rp) −→ Spec ¯(R) be the associated mapping. Consider
the following diagram

fp
(SpecRp

(Mp),τ∗Mp
) −→ (SpecR(M),τ∗M)

ψp ↓ ↓ ψ

f ∗

Spec ¯(Rp) −→ Spec ¯(R)

with natural maps, where fp is the natural map as in the Remark 2.1 (c). Then we have the
following.

(a) The above diagram is commutative.
(b) If (R, p) is quasi local ring, then

(i) fp is bijective;
(ii) If Mp is a primeful (X-injective) Rp-module, then ψ is surjective (injective) so

that M is a primeful (X-injective) R-module;
(iii) If Mp is a top Rp-module, then we have

fp(τMp)⊆ τM ⊆ fp(τ∗Mp) = τ
∗
M.

Consequently, M is top R-module and all maps in the above diagram are con-
tinuous.

Proof. (a) Use Remark 2.1 parts (c) and (d).
(b)(i) By Remark 2.1 (c).
(b)(ii) Consider the map f ∗ : Spec ¯(Rp) −→ Spec ¯(R) given by f ∗(q) = f−1(q), where

f : R̄−→ R̄p is the canonical homomorphism and q ∈ Spec ¯(Rp). Then by [3, p.46, Exercise
21], f ∗ is a homeomorphism of Spec ¯(Rp) onto its image in Spec ¯(R). Since (R, p) is quasi
local ring, f ∗ is a surjective map so that it is a homeomorphism. Now the claim follows
from part (a).

(b)(iii) First we show that fp(τMp)⊆ τM . It is enough to prove

fp({V (W )|W ≤Mp})⊆ {V (N)|N ≤M}.
To see this, let A ∈ fp({V (W )|W ≤Mp}) so that A = fp(V (Np)) for some submodule N of
M. We show that A is closed in (X ,τM) or equivalently, V (

⋂
Q∈A Q) = A by [9, Proposition

5.1]. Clearly, A ⊆ V (
⋂

Q∈A Q). Now let Q∗ ∈ V (
⋂

Q∈A Q). It follows that (Q∗ : M) ⊇⋂
Q∈A(Q : M) so that (Q∗ : M)p ⊇

⋂
Q∈A(Q : M)p by Lemma 3.1. On the other hand, (Q∗ :

M)p = (Q∗p : Mp) by Remark 2.1 (d). Hence (Q∗p : Mp)⊇
⋂

Q∈A(Qp : Mp). But Q∈A implies
that (Qp : Mp)⊇ (Np : Mp). Thus (Q∗p : Mp)⊇ (Np : Mp). It follows that Q∗ ∈ fp(V (Np)) =
A. To complete the first assertion, since τM ⊆ τ∗M , it is enough to show that fp(τ∗Mp

) = τ∗M .
As fp is bijective, it suffices to show that H := fp({V ∗(W )|W ≤Mp}) = {V ∗(N)|N ≤M}.
If K ∈ H, there exists a submodule W of Mp such that fp(V ∗(W )) = K. Also there exists
a submodule N of M such that W = Np. It is easy to check that K = fp(V ∗(W )) = V ∗(N).
This implies that K ∈ {V ∗(N)|N ≤M}. We have similar arguments for the reverse inclusion.
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Therefore fp(τ∗Mp
) = τ∗M , so M is a top R-module. To see the last assertion, we note that

fp : (SpecRp
(Mp),τ∗Mp

) −→ (SpecR(M), fp(τ∗Mp
)) is continuous and fp(τ∗Mp

) = τ∗M by the
above arguments. Hence fp : (SpecRp

(Mp),τ∗Mp
)−→ (SpecR(M),τ∗M) is a continuous map.

Also f ∗ is continuous map as we saw in the proof of part (b)(ii). Moreover, if L is a top
R-module, then the natural map ψ : (SpecR(L),τ∗L)−→ Spec(R̄) is always a continuous map
(for, if Ī is an ideal of R̄, ψ−1(V (Ī)) =V (IL) =V ∗(IL) by [9, Proposition 3.1] and [9, Result
3]). As, Mp and M are top module, it follows that ψ and ψp are continuous as desired. This
completes the proof.

Corollary 3.2. Let (R, p) be a quasi local ring and M an R-module. Then M is an s-top
module if and only if Mp is an s-top Rp-module.

Proof. (⇒) This follows by Proposition 3.2. To see the reverse implication, since Mp is
an s-top Rp-module, τMp = τ∗Mp

. Thus fp(τMp) = fp(τ∗Mp
). By Theorem 3.3, part (b)(iii),

τM = τ∗M . This completes the proof.
The following example shows that if M is a top module over a local ring, then it is not

necessarily an s-top module.

Example 3.2. Let p be a prime integer and let Z(p) = S−1Z, where S = Z\(p). Consider the
Z(p)-module M = (Z(p)/pZ(p))⊕Q. Then M is a top module, and τM 6= τ∗M by [1, Example
4.12].

Theorem 3.4. Let M be an R-module. Then (X ,τM) and (X ,τ∗M) are spectral spaces in each
of the following cases:

(a) M is an s-top R-module and Im(ψ) is a closed subspace of Spec(R̄), where ψ is a
natural map of X (for example, when M is primeful);

(b) (R, p) be a quasi local ring and Mp be a primeful s-top Rp-module;
(c) M is an s-top R-module and R is a PID;
(d) R is a PID and M has the property listed in (a), (b), (c), and (d) of Theorem 3.2.

Proof. (a) This follows from [9, Theorem 6.7].
(b) By Theorem 3.3 (b)(ii) and Corollary 3.2, M is a primeful s-top module. Hence by

part (a), (X ,τM) and (X ,τ∗M) are both spectral spaces.
(c) Since R is a PID and M is s-top, (X ,τM) and (X ,τ∗M) are Noetherian by [2, Proposition

3.3 (a)]. Therefore, (X ,τ∗M) is spectral by [2, Theorem 3.8 (b)] and [2, Remark 1.2] as
desired.

(d) This is an immediate consequence of part (c) and Theorem 3.2. This completes the
proof.

Remark 3.5. The module M in Example 3.2 shows that the converse of Theorem 3.4 (a) is
not true in general. Note that M is primeful and (X ,τM) and (X ,τ∗M) are spectral spaces by
[1, Example 4.12].

We have not found any example of an s-top R-module M for which X = SpecR(M) is not
spectral with both topologies τM and τ∗M . The lack of such counterexamples together with
Theorem 3.4 which explains (X ,τM) and (X ,τ∗M) are both spectral spaces for certain classes
of s-top modules, motivates the following conjecture.

Conjecture 3.1. Let M be an s-top R-module. Then (X ,τM) and (X ,τ∗M) are spectral spaces.
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