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Abstract. We consider a system with n independent and identically distributed compo-
nents. The system fails if k out of the n components fails. We study various distributional
properties of the mean life times of the n−k remaining components after the failure of the k
components. Based on these distributional properties some characterizations of distributions
are given.
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1. Introduction

Suppose that X1,X2, ...,Xn are the life times of n independent and identically distributed
components of a system. Let Y k

1 ,Y k
2 , ...,Y k

n−k are the residual life times of the remaining
n− k components after the failure at time t of the kth component. Let X1,n,X2,n, ...,Xn,n

and Y k
1,n−k,Y

k
2,n−k, ...,Y

k
n−k,n−k denote the ordered values of X1,X2, ...,Xn and Y k

1 ,Y k
2 , ...,Y k

n−k
respectively. We will assume that the cumulative distributive function (cdf) F of the X’s
is absolutely continuous with respect to Lebesgue measure and F(0) = 0. We denote the
corresponding probability density function (pdf) by f . Let Fk,n(x) and fk.n(x) be the cdf and
pdf of Xk,.n.

Bairamov et al. [5] studied the mean residual life of Xk,.n− t given that X1,.n > t. Asadi
and Bayramoglu [2] investigated the mean residual life of a Xk,.n− t under the condition that
Xk,.n > t. Asadi and Bairamov [3] investigated the mean residual life of Xk,.n− t given that
X1,.n > t. Li and Zhao [9] studied some aging properties of the residual life of k-out-of-n
systems given that at least (n− i + 1) components of the system are working. Bairamov
and Arnold [4] showed that the equality of the distribution of Y k

i and X1 characterizes the
exponential distribution. They considered in their paper some basic distributional properties
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of Y k
1 ,Y k

2 , ...,Y k
n−k. The joint pdf of Y k

1 ,Y k
2 , ...,Y k

n−k can be written as

(1.1) f k
1,2,..,n−k(y1,y2, ...,yn−k) =

∫
∞

0

k

∏
i=1

f (yi + t)
F(t)

dFk.n(t),

where

(1.2) dFk.n(t) = k(n
k)(F(t))k−1(F(t))n−k f (t).

Thus Y k
1 ,Y k

2 , ...,Y k
n−k are conditionally independent with marginal pdf given by

(1.3) f k
i (y) =

∫
∞

0

f (y+ t)
F(t)

dFk.n(t),y > 0.

The corresponding survival function is

(1.4) Fk
i (y) =

∫
∞

0

F(y+ t)
F(t)

dFk.n(t),y≥ 0.

The function F(x|t) = F(x+t)
F(t) is known as the lifetime residual function (LRF) of F . The

corresponding mean residual life (MRL) is given by

(1.5) m(t) = E [Y − t | Y > t] =
∫

∞

0
F(x | t)dx =

∫
∞

0

F(x+ t)
F(t)

dx.

These two functions (RFL and MRL) are together with the hazard (failure) rate function
of F which is given by

(1.6) h(x) =
f (x)

1−F(x)
, x > 0

play an important role in reliability and survival analysis. Each of the three functions de-
termines the distribution up to scale parameter. For example, Kotz and Shanbhag [7] gave
a representation of the distribution in term of MRL. The three functions have been exten-
sively used to introduce aging concepts. A random variable X and its distribution function
F are called monotone increasing (decreasing) failure rate if h(x) is monotone increasing
(decreasing). Note that h(x) is monotone increasing (decreasing) if and only if F(x|t) is
monotone decreasing (increasing) in t for every x. Another related aging concept is the
new better than used. A cumulative distribution function F is said to be NBU (NWU) if
F(x + y) 6 (>)F(x)F(y), for x > 0,y > 0. See Barlow and Prochan [6, p.95] for this and
some other references for aging concepts. For more recent references on these see Lai and
Xie [8] and references therein. We say the random variable X ∈C if F is NBU or NWU.

In this paper several distributional properties of the Y k
i are given. Based on these dis-

tributional properties some characterizations of probability distributions are presented with
special emphasis on exponential distribution. Section 2 discusses characterizations of ex-
ponential distribution among the classes C based on identities of expectations and distribu-
tions. Characterizations based on independence are also presented. In Section 3 we present
a representation of the distribution of the parent distribution in terms of the mean residual
function. In Section 4, it is shown that the aging properties of the parent distribution of X
are reflected on partial ordering between Y k

i and X . Some concluding remarks are given in
Section 5.
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2. Characterizations of the exponential distribution

In this section, we give some characterizations of the exponential distribution based on the
properties of Y k

i .

Theorem 2.1. Suppose X is an absolutely continuous (with respect to Lebesgue measure)
random variable with F(0) =0 and F(x) <1 for all x > 0. Assume that E(X) exists, then the
following two conditions are equivalent

(i) F(x) = 1− e−λx, x≥ 0,λ > 0
(ii) E(Y 1

k ) = E(X1) and X1 ∈C

Proof. From (1.3), we have the pdf f of Y

f 1
k (x) =

∫
∞

0

f (x+ t)
F(t)

dFk.n(t)

and

E(Y k
1 ) =

∫
∞

0

∫
∞

0
x

f (x+ t)
F(t)

dFk.n(t)dx.

If F(x) = 1− e−λx, then f (x+t)
F(t) = λe−λx and E(Y k

1 ) = 1
λ

= E(X1).

If E(Y k
1 ) = E(X1), then

(2.1)
∫

∞

0

∫
∞

0
x

f (x+ t)
F(t)

dFk,n(t)dx =
∫

∞

0
x f (x)dx.

We can rewrite (2.1) as

(2.2)
∫

∞

0

∫
∞

0

F(x+ t)
F(t)

dFk,n(t)dx =
∫

∞

0
F(x)dx.

On simplification we obtain from (2.2).∫
∞

0

∫
∞

0

[
F(x+ t)

F(t)
−F(x)

]
dFk,n(t)dx = 0

Since X1 ∈C, we must have

(2.3)
F(x+ t)

F(t)
−F(x) = 0 for almost all x and t ≥ 0.

The solution of (2.3) with the boundary condition F(0) = 0 and F(∞) = 1 is

F(x) = 1− e−λx

for all x > 0 and any λ > 0.

Theorem 2.2. Suppose X is an absolutely continuous (with respect to Lebesgue measure)
random variable with F(0) = 0 and F(x) < 1 for all x > 0. Then the following two condi-
tions are equivalent

(i) F(x) = 1− e−λx,
(ii) The pdf of Y k

i |Xk,n = t is independent of t.
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Proof. If F(x) = 1− e−λx, then f (x+t)
F(t) = λe−λx then it follows from (3.1) that the pdf of

Y k
i |Xk,n is independent of t. Suppose the pdf of Y k

i |Xk,n = t independent of t. Then we have

(2.4)
f (x+ t)

F(t)
= g(x),

where g(x) is independent of t for all x.
Integrating both sides of (2.4) with respect to x from x0 to ∞, we obtain

(2.5)
F(x0 + t)

F(t)
= G(x0),

where G(x0) =
∫

∞

x0
g(x)dx. Taking t→ 0, we obtain from (2.5), G(x0) = F(x0). Hence

(2.6) F(x0 + t) = F(t)F(x0), for all t > 0 and almost all x0 > 0.

The solution of (2.6) with the boudary conditions F(0) = 0 and F(∞)=1 is

F(x) = 1− e−λx, for x > 0 and λ > 0.

The following theorem gives a characterization of the exponential distribution using the
distribution of Y k

1,n−k .

Theorem 2.3. Suppose the cumulative distribution function F(x) of the X’s are absolutely
continuous (with respect to Lebesgue measure) monotone increasing and f(x) is the corre-
sponding pdf. Then the following two conditions are equivalent

(i) F(x) = 1− e−λx, x > 0, λ > 0

(ii) (n− k)Y k
1,n−k

d=X1 , where
d= denotes equality in distribution and X1 ∈C.

Proof. From (2.1), we obtain f k
1,n−k, the pdf of Y k

1,n−k as follows:
If F(x) = 1− e−λx then

dFk.n(t) = λ (n
k)(1− e−λ t)k−1e−λ (n−k+1)t

f k
1,n−k(x) =

∫
∞

0
(n− k)λe−(n−k)λxdFk,n(t)

= (n− k)λe−(n−k)λx

Thus (n− k)Y k
1,n−k

d=X1.

Suppose (n− k)Y k
1,n−k

d=X1 then we have

(2.7)
∫

∞

0

(
F(

x
n− k

+ t)/F(t)
)n−k

dFk,n(t) = F(x), x > 0.

Rewriting (2.7), we obtain

(2.8)
∫

∞

0
G(x0, t)dFk,n(t) = 0
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where

(2.9) G(x0, t) =

[
F( x0

n−k + t)

F(t)

]n−k

−F(x0).

Equation (2.8) is identical with equation (5.17) of Azlarov and Volodin [1]. Hence it follows
from their proof that, under the assumption X1 ∈C, (2.8) implies F is exponential.

Remark 2.1. Equation (2.7) can be written as

(2.10)
∫

∞

0

(
F(t + x

α
)

F(t)

)α

dµ(t) = F(x), x≥ 0 for some α > 0.

For α = 1, this equation reduces to the integrated Cauchy equation. It is well known
that the exponential function is the only solution for integrated Cauchy equation when µ is
not a lactic measure. As the exponential function satisfies (F(t + x

α
)/F(t))α = F(x), we

conjecture that the exponential function is the only solution of (2.9). If such conjecture is
true then the condition X1 ∈C can be dropped from Theorem 2.3.

Let Y k
1,n−k be the minimum of (Y k

1 ,Y k
2 , . . . ,Y k

n−k.). The pdf of Y k
1,n−k can be written as

f k
1,n−k(x) =

∫
∞

0
(n− k)

[
F(x+ t)

F(t)

]n−k−1 f (x+ t)
F(t)

dFk.n(t).

If n− k = 1, then we get the Theorem 1 of [4].

Theorem 2.4. Suppose X is an absolutely continuous (with respect to Lebesgue measure)
random variable with F(0) =0 and F(x) <1 for all x >0. Then the following two conditions
are equivalent

(i) F(x) = 1− e−λx,
(ii) Y k

i and Y k
j are uncorrelated for fixed i and j.

Proof. By definition, given Xk,n, Y k
i and Y k

j are conditionally independent and identically
distributed. Therefore

E
(

Y k
i Y k

j

)
= E

[
E
(

Y k
i |Xk,n

)
E
(

Y k
j |Xk,n

)]
= E

(
E2(Y k

i |Xk,n)
)

and
E
(

Y k
i

)
E
(

Y k
j

)
= E2

(
E
(

Y k
i |Xk,n

))
.

In view of the above two identities, for Y k
i and Y k

j to be uncorrelated and it is equivalent to

Var
(

E(Y k
i |Xk,n)

)
= 0.

By the fact Xk,n has strictly increasing distribution on (0,∞), hence E(Y k
i |Xk,n = t)= constant

for all t > 0.

3. Characterization based on mean residual life

The following theorem characterizes continuous distribution based on the expected value of
Y k

1,n−k. This expected value can be viewed as the mrl of the series system of n− k indepen-
dent and identical units.
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Theorem 3.1. Let X1,X2, ...,Xn are the life times of n independent and identically dis-
tributed components of a system with finite first moment. Let Y k

1 ,Y k
2 , ...,Y k

n−k are the residual
life times of the n-k components after the failure at time at t of the k-th component We assume
X’s are absolutely continuous with cdf F such that F(0) = 0 and F(x) < 1 for all x > 0. If
E(Y k

1,n−k|Xk,n = t) = g(t), for all t > 0, where g’(t) exists for all t > 0, then

F(x) = 1− e−
∫ x

0
1+g′(t)

(n−k)g(t) dt
.

Proof. We can write

(3.1) E(Y k
1,n−k|Xk,n = t) =

∫
∞

0

[
F(x+ t)

F(t)

]n−k

dx, for x > 0 and λ > 0.

Since E(Y k
1,n−k|Xk,n−k = t) = g(t), we obtain from (3.1)∫

∞

0
(F(x+ t))n−kdx = g(t)(F(t))n−k.

Substituting x+ t = u, we obtain

(3.2)
∫

∞

0
(F(u))n−kdx = g(t)(F(t))n−k.

Differentiating both sides of (3.2) with respect to t, we have

(3.3) −(F(t))n−k = g′(t)F(t))n−k− (n− k)g(t)(F(t))n−kh(t).

Thus

(3.4) h(t) =
1+g′(t)

(n− k)g(t)
, for all, t > 0.

Hence,

(3.5) F(x) = 1− e−
∫ x

0
1+g′(t)

(n−k)g(t) dt
.

In the following subsections, we provide characterizations of some distributions as
applications of Theorem 3.1.

3.1. Exponential distribution

As a first application we consider the exponential distribution. The pdf of the exponential
distribution is given by

(3.6) f (x) = λe−λx,, x > 0, and λ > 0.

Proposition 3.1. Let X be a continuous random variable with F(0) = 0 and F(x) < 1 for all
x > 0. Then X has the pdf (3.6) if and only if E(Y k

1,n−k|Xk,n= t) = δ , where δ is a constant.

Proof. We have E(Y k
1,n−k|Xk,n = t) =

∫
∞

0

[
F(x+t)

F(t)

]n−k
dx.

Substituting F(x) = 1− e−λx, we obtain

E(Y k
1,n−k|Xk,n−k = t) =

1
(n− k)λ

.

Hence E(Y k
1,n−k|Xk,n= t) = δ with δ = 1

(n−k)λ . This proves the first part.

Conversely, suppose that E(Y k
1,n−k|Xk,n= t) = δ , where δ is a constant. Then
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F(x) = 1− e−
∫ x

0
1

(n−k)δ = 1− e−
x

(n−k)δ .

3.2. Power function distribution

Let X be a continuous random variable with pdf

(3.7) f (x) = α(1− x)α−1,0 6 x 6 1,α > 0.

The density (3.7) is known as power pdf.

Proposition 3.2. Let X be a continuous random variable with F(0) = 0 and F(x) < 1 for
all x < 1. Then X has the pdf (3.7) if and only if

E(Y k
1,n−k|Xk,n= t) =

1− t
(n− k)α +1

for some α > 0.

Proof. We have F(x) = 1− (1+ x)α , thus

E(Y k
1,n−k|Xk,n = t) =

∫ 1
t (1− x)(n−k)α dx

(1− t)α(n−k)

=
1− t

(n− k)α +1
.

Suppose E(Y k
1,n−k|Xk,n= t) = 1−t

(n−k)α+1 , α > 0,1 6 k < n, then from (3.5) we get

F(x) = 1− e−
∫ x

0
α

1−t dt = 1− (1− x)α , 0≤ x≤ 1, α > 0.

3.3. Pareto distribution

The pdf and the cdf of Pareto distribution are given by

f (x) =
α

(1+ x)α+1 ,x > 0, and F(x) = 1− 1
(1+ x)α

respectively. We assume here α > 1.

Proposition 3.3. Let X be a continuous random variable with F(0) = 0 and F(x) < 1 for
all x > 0. Then X has Pareto distribution if and only if

E(Y k
1,n−k|Xk,n = t) =

1+ t
(n− k)α−1

for some α > 1.

Proof. Suppose X has Pareto distribution then

E
(

Y k
1,n−k|Xk,n = t

)
=

∫
∞

t
1

(1+x)(n−k)α dx
1

(1+t)(n−k)α

=
1+ t

(n− k)α−1
.

Now suppose that E(Y k
1,n−k|Xk,n = t) = 1+t

(n−k)α−1 , then from (3.5) we get

F(x) = 1− e−
∫ x

0
α

1+t dt
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= 1− 1
(1+ x)α

.

4. A monotonicity result

We need the following definition to clarify our result.

Definition 4.1. [10] If the ratios below are well defined, Xis said to be smaller than Y in
the

(i) likelihood ratio order (denoted by X 6lr Y ) if g(x)/ f (x) is increasing in x;

(ii) hazard rate order (denoted by X 6hr Y ) if G(x)/F(x) is increasing in x;
(iii) reversed hazard rate order (denoted by X 6rh Y ) if G(x)/F(x) is increasing in x;

(iv) stochastic order (denoted by X 6st Y ) if G(x) > F(x)
It is well known that X 6lr Y ⇒ X 6hr(rh) Y ⇒ X 6st Y . Bairamov and Arnold [4]

proved that if X1 is NBU (NWU) then Y k
i 6st X1(Y k

i >st X1). This result can be extends to
other ordering as the following theorem states.

Theorem 4.1. (a) If X1 has log-concave (log-convex) probability density function then
Y k

i 6lr X1
(
Y k

i >lr X1
)
.

(b) If X1 has log-concave (log-convex) cumulative distribution function then Y k
i 6hr

X1
(
Y k

i >hr X1
)
.

(c) If X1has log-concave (log-convex) survival function then Y k
i 6rh X1(Y k

i >rh X1).

Proof. Assume that f is log-concave (log-convex) then f (x + y)/ f (y) is decreasing (in-
creasing) in y for every x. Now for y1 < y2 and arbitrary x, we have

f k
1 (x+ y2)

f (y2)
−

f k
1 (x+ y1)

f (y1)
=
∫

∞

0

[
f (x+ y2 + t)

f (y2)
− f (x+ y1 + t)

f (y1)

]
1

F (t)
dFk,n (t) 6 (>)0.

Hence Y k
i 6lr X1(Y k

i >lr X1).
The assertions (b) and (c) can be proven using similar arguments with replacing the prob-

ability density function by the survival function and the cumulative distribution function
respectively.

Note that f is logconcave is equivalent to say f or X is strongly unimodal while F(x) is
logconcave is equivalent to say X is IFR.

5. Some concluding remarks

This paper studied various distributional properties of the mean life times of the n− k re-
maining components after the failure of the k components. Some characterizations of dis-
tributions are given based on these distributional properties. A possible application of this
paper would be a situation when a system is equipped with an alarm that gets activated when
a certain number of its components fail. It is of interest for the engineer to know the prop-
erties of the residual lives of the remaining working components for maintenance purposes.
Since we are mainly interested about the theoretical development on the residual life of the
k out of n system, real life applications along with further developments on this paper are
under the current investigation.
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