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Abstract. Methods of evaluating and comparing the performance of diagnostic tests are of
increasing importance in medical science. When a test is based on an observed variable that
lies on a continuous scale, an assessment of the overall value of the test can be made through
the use of a Receiver Operating Characteristic (ROC) curve. The ROC curve descibes the
discrimination ability of a diagnosis test for the diseased subjects from the non-diseased
subjects. The area under the ROC curve (AUC) represents the probability that a randomly
chosen diseased subject will have higher probability of having disease than a randomly
chosen non-diseased subject. For comparing two diagnostic systems, the difference between
AUCs is often used. In this paper we have investigated various methods of the comparison
of equality of two AUCs and proposed a McNemar test for the comparison of two diagnostic
test procedures. The proposed test is based on an optimal cut-off point that discriminates
the individuals in actually positive or actually negative cases for which we have a 2× 2
contingency table where we can apply the McNemar test. The operating characteristics of
the proposed test are evaluated using extensive simulation over a wide range of parameters.
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1. Introduction

The Receiver Operating Characteristic (ROC) curve is an effective method of evaluating
the quality or performance of diagnostic tests. The ROC curve is a plot of the sensitivity
(or, true positive rate) of a test (Y -axis) vs. false positive rate (or, 1-specificity) of this test
(X-axis) for all possible cut-off points. The ROC plot provides a comprehensive picture of
the ability of a test to make the distinction between diseased and non-diseased individuals
being examined over all decision thresholds. The accuracy of the diagnostic test is measured
by the area under the ROC curve (AUC). The area under an empirical ROC curve can be
computed by trapezoidal rule [1]. The area computed by trapezoidal rule under an empirical
ROC curve is equal to the Mann-Whitney statistic for comparing distributions of values from
the two samples [6].
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There are several ways to calculate the area under a ROC curve. First, the trapezoidal
rule can be used but gives an underestimation of the area for continuous data [20]. Second, it
is possible to get a better approximation of the curve by fitting the data to a binormal model
with maximum likelihood estimates [4, 5]. After that it is possible to get a better estimate
of the area. A third way to calculate the area is to use the Mann-Whitney U statistic which
is also known as the non-parametric Wilcoxon statistic. That is, no assumptions on the
distributions of the data are done since Wilcoxon is a distribution free statistic [1, 6].

There are several ways to express the reader’s confidence in the presence of a disease
such as a binary result which is either positive or negative for the disease, a discrete rating
scale such as five or six-point scale, and a continuous scale such as a percent-confidence
scale from 0 to 100 percent. In most of the ROC analyses of radiological tests, a discrete
rating scale with five or six categories has been used. A variety of tests has been suggested
by many authors to test the equality of the two ROC curves and also the equality of AUCs.
We discuss some of them in details in this paper.

Since AUC is the global measure of accuracy, many permutation tests are developed for
comparing AUCs. We here give a review of Bandos et al.’s permutation test for comparing
ROCs on the basis of AUCs for continuous scale data [2]. DeLong et al. gave a conven-
tional nonparametric test for comparing AUCs for continuous scale data [3]. Because using
a continuous scale is desirable theoretically, Wagner et al. [18], here we propose an al-
ternative based on McNemar test [12] for the comparison of two diagnostic tests based on
continuous scale data as well as for discrete binary data. We considered a matched-pairs
design where a single response variable for each subject is observed in a matched pair. The
data structure is such that we have recoded each subject’s rating as ‘positive’ or ‘negative’
on each of two diagnostic procedures and our interest is in testing whether the proportions
of ‘positive’ responses are the same on the first and second procedure with account taken
of the correlation of the bivariate ratings. And then we compare the proposed method with
the conventional nonparametric test suggested by DeLong et al. [3] and permutation test by
Bandos et al. [2].

2. Estimation of AUC

Suppose X and Y denote the patients without disease and with disease, respectively. Let
z be a threshold. Then P(X > z) = G(z) and P(Y > z) = F(z) where F(z) is nothing but
sensitivity and 1−G(z) represents specificity. So by these functions we can represent ROC
curve, that is, ROC curve is a plot of F(z) versus G(z) for all possible thresholds, z. The area
under the ROC curve (AUC) is defined as the probability that a randomly chosen diseased
subject will have higher probability of having disease than a randomly chosen non-diseased
subject. Probabilistically, AUC = P(Y > X), where AUC = area under the ROC curve, X
be the test result of patients without disease and Y be the test result of patients with disease.
For discrete case, AUC = P(Y > X)+ 1

2 P(X = Y ). In continuous case, P(X = Y ) = 0. The
area under an empirical ROC curve can be computed by trapezoidal rule [1]. Hanley and
McNeil [6] showed that the area computed by trapezoidal rule under an empirical ROC
curve is equal to the Mann-Whitney U statistic for comparing distributions of values from
the two samples. The formula that Hanley and McNeil [6] suggested for computing the area
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under the ROC curve is given as,

A =
1

NM

N

∑
i=1

M

∑
j=1

g(Xi,Yj)

where

A = Area under the ROC curve
M = Number of ‘abnormal’ or ‘diseased’ subjects
N = Number of ‘normal’ or ‘non-diseased’ subjects
Yj = The test score of jth patient with disease
Xi = The test score of the ith patient without disease

g is a function comparing Xi with Yj such that

g(Xi,Yj) =





1, if Yj > Xi

0.5, if Yj = Xi

0, otherwise.

So for the mth modality or diagnostic test the area under ROC curve can be computed as,

Am =
1

NM

N

∑
i=1

M

∑
j=1

g(Xm
i ,Y m

j )

3. Different methods of comparing diagnostic tests

Comparative assessment of diagnostic tests is now an interesting field in Medical Science.
A lot of researches have been developed to compare diagnostic tests or accuracy of di-
agnostic test procedures utilizing concepts of ROC curves and AUCs. In this study, we
have discussed the very commonly used methods of comparing diagnostic test procedures
and proposed an alternative procedure to compare two diagnostic test procedures based on
McNemar test [12]. The suggested procedure is very easy to understand, to apply and to
interpret, where applicable.

3.1. Conventional test by DeLong et al.

For comparing two diagnostic systems, the difference between AUCs is often used. The
best known nonparametric procedure for correlated AUCs is given by DeLong et al. [3].
They have pointed out that when ROC curves are derived from tests performed on the same
individuals, statistical analysis must take into account the correlated nature of the data.
They developed a totally nonparametric approach to solve this problem by using the theory
of generalized U statistics. They utilized the method of structural components provided by
Sen [15] to generate consistent estimates of the elements of the variance-covariance matrix
of a vector of U statistics, and the resulting test statistic has asymptotically a χ2 distribution.
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3.2. Permutation test by Bandos et al.

Bandos et al. [2] described exact and asymptotic permutation tests procedures to test the
equality of two correlated ROC curves which is designed to have increased power to detect
differences in the AUCs. For a paired design, the difference in two AUCs is estimated using
the appropriately transformed ratings or the ranks of the ratings for actually negative and
actually positive subjects and a permutation test is suggested to test statistical significance
of observed difference.

The permutation tests are based on exchangeability. Exchangeability means that the joint
distribution of the rank-ratings is symmetric with respect to its arguments. They considered
null hypothesis of equality of ROC curve under the assumption of exchangeability. The
distribution of the differences in the estimated AUCs over all permutations is obtained and
the rejection region is identified based on percentile values for selected nominal level.

As a member of U statistics the non-parametric estimator of the AUC difference is known
to be asymptotically normally distributed under quite general conditions [7]. Under the as-
sumption of asymptotic normality of the U statistic and the additional assumption of ex-
changeability, they also constructed a simple asymptotic test procedure. In a simulation
study, they showed that with small samples there is a good agreement between the exact
and asymptotic test.

3.3. Proposed test based on McNemar test

Comparative diagnostic medicine studies commonly produce matched data since, frequently,
all the examinations under comparison are performed on each subject. The McNemar test
pertains to matched pairs of dichotomous test results. The results of each diagnostic test fall
into two categories, positive and negative. The data are succinctly presented in a two-by-
two array with the rows corresponding to the results of one diagnostic test and the columns
to the results of the other; each element of the array is the number of observed cases with
the particular combination of test results.

Diagnostic test procedure commonly demands ‘Yes’ or ‘No’ decisions and some diag-
nostic test procedure provide such dichotomous outcomes. To compare such two test pro-
cedures, we can have a 2× 2 contingency table with ease and can use McNemar test. But
all diagnostic procedures are not truly dichotomous and one, who wants to perform a com-
parison of two such test procedures, needs to convert continuous diagnostic ratings into
dichotomous test results such as positive or negative. We convert each continuous diag-
nostic test into a dichotomous test based on an optimal cut-off point and can have a 2× 2
contingency table and the proposed McNemar test can be applied. The ultimate choice of
cut-off depends on the nature of the diagnostic test or study. For a practical dataset, we
must know the cut-off to discriminate any two conditions of a diagnostic test procedure.
For example, for a patient to be diabetic it is necessary to have sugar level above 11.5. So
here cut-off value is 11.5 and a 2×2 contingency table can be obtained to apply McNemar
test for the comparison of two diagnostic test procedures to see whether these diagnostic
procedures differ or not.

For two diagnostic tests producing continuous ratings {Xm
i }N

i=1, {Y m
j }M

j=1 in the mth
modality for N actually negative and M actually positive subjects, we have to order the
subjects so that {Xm

i }N
i=1, {Y m

j }M
j=1 be the transformed ratings or results in the mth modal-

ity for N actually negative and M actually positive subjects. Suppose we have an optimal
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cut-off point at zm for mth modality. Then all the results greater than zm are considered as
positive and less than or equal to zm are considered as negative. Classifying the subjects
using optimal cut-off points, a 2×2 contingency table can be obtained for each diagnostic
procedure.

Table 1. A 2×2 contingency table for mth (m = 1,2) diagnostic test procedure.

Test result for
diagnostic procedure m Observed (true) status Row sums

Positive Negative

Positive am bm am +bm

Negative cm dm cm +dm

Column sums am + cm bm +dm nm

The number in the first cell of Table 1, am, is number of actually positive subjects with
positive test results (ym

j > zm). Similarly, bm is number of actually negative subjects with
positive test results (xm

i > zm), cm is number of actually positive subjects with negative
test results (ym

j ≤ zm), dm is number of actually negative subjects with negative test results
(xm

i ≤ zm). Now for each diagnostic test as we obtain a 2×2 contingency table at the optimal
cut-off point, we can see whether the diagnostic test procedure has any effect on the true
disease (observed) status. If both diagnostic test procedures have significant effects, we can
combine the two diagnostic test procedures. We will obtain a matched pair data from this
combination of two diagnostic tests and subsequently a contingency Table 2.

Table 2. A 2×2 contingency table for two diagnostic test procedures.

Diagnostic test
procedure 1

Diagnostic test procedure 2 Row sums
Positive Negative

Positive a b a+b
(Pa) (Pb) (Pa+b)

Negative c d c+d
(Pc) (Pd) (Pc+d)

Column sums a+ c b+d n
(Pa+c) (Pb+d) (1)

In Table 2 the frequency a represents positive test results on both test procedures; b rep-
resents positive test results on test procedure 1 but negative test results on the test procedure
2; c represents negative test results on test procedure 1 but positive test results on the test
procedure 2; and finally d represents negative test results on both test procedures. Corre-
sponding cell probabilities are shown in parentheses. The hypothesis of interest is whether
the two diagnostic test procedures are different or not in their performances. An equivalent
statement of the null hypothesis is that the marginal probabilities of positive result on the
first and second procedures are equal and the alternative hypothesis is that the equality does
not hold, that is,

H0 : Pa+b = Pa+c versus H1 : Pa+b 6= Pa+c
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or equivalently,

H0 : Pa +Pb = Pa +Pc versus H1 : Pa +Pb 6= Pa +Pc

these competing hypotheses reduce to,

H0 : Pb = Pc versus H1 : Pb 6= Pc

Thus, the test of homogeneity of performances of two diagnostic procedures is also a
test of symmetry investigating differences in types of discordance, {positive, negative} and
{negative, positive} in Table 2.

The McNemar test statistic follows a chi-square distribution with one degree of freedom
and has the form,

χ2 =
(b− c)2

b+ c
(without continuity correction)

χ2 =
(|b− c|−1)2

b+ c
(with continuity correction)

Since the McNemar test employs a continuous distribution to approximate a discrete
probability distribution, some sources recommended that a correction for continuity be em-
ployed in computing the test statistic. When the sample size is small, in the interest of
accuracy, the exact binomial probability for the data should be used.

Despite several advantages of being simple to calculate, easy to understand and readily
applicable, the proposed test lacks the quality of providing evidence of inferiority or superi-
ority of one diagnostic procedure over the other. The assessment of inferiority or superiority
of a diagnostic procedure in reference to another can be a desirable issue in many medical
researches. However, they are not immediately obtainable because the accuracy of diag-
nostic procedures is measured in both sensitivity and specificity simultaneously [16] which
consequently requires the knowledge of true disease status of subjects [10]. The alternative
hypothesis to be tested will be then one sided [19]. The problem arises when the true dis-
ease status or any other gold standard is not known. In many practical instances, the true
status (gold standard) may be either unknown or difficult to use. For example, it takes a
large cohort and a long follow-up period to determine the hip fracture status in osteoporosis
studies.

The proposed test concludes about the equivalence of two diagnostic procedures from
testing a two sided alternative hypothesis. The idea is very simple to compare only the dis-
cordance of two diagnostic procedures and does not require any knowledge of true disease
status. Thus, it tests for equivalence, not for inferiority or superiority. This issue also ex-
plores a very advantageous robust feature of the proposed test that it is invariably applicable
in all the instances irrespective of having knowledge of true status (gold standard) or not
whereas other traditional test methods [2, 3] based on AUC estimates cannot be used with-
out knowing true status (gold standard). The extension of the proposed approach for one
sided comparison of inferiority or superiority needs further investigation.

4. Finding optimal cut-off point

For the use of McNemar test one crucial consideration is to define optimal cut-off point. It
is a very important point to consider the optimal cut-off point. For a clinical application
it is important to decide, which cut-off point should be used to discriminate diseased and
non-diseased subjects. Though in most practical applications yielding continuous ratings
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well known cut-off point exist, we are discussing a method to select optimal cut-off point
(if unknown) based on Youden Index under normality assumption [14].

Assume that the continuous ratings of a specific diagnostic procedure are normally dis-
tributed, such that the non-diseased subjects (X), or true negatives, have mean µx and vari-
ance σ2

x , and the diseased subjects (Y ), or true positives, have mean µy and variance σ2
y , and

µy > µx. Under these assumptions, sensitivity (q(z)) and specificity (p(z)) can be written
as,

q(z) = P(X ≥ z) = Φ(
µx− z

σx
)

p(z) = P(Y ≤ z) = Φ(
z−µy

σy
)

for a given cut-point z, where Φ denotes the standard normal distribution function. Ac-
cordingly, test measurements falling at or below z are negative results and those above z are
positive. The Youden Index (J) is defined as max{q(z)+ p(z)−1} for all z.

The optimal cut-point occurs at an intersection of the probability density functions of
non-diseased and diseased subjects. The number of intersections is a function of the vari-
ances of the non-diseased and diseased subjects. One simple case is that of equal variance
in non-diseased and diseased subjects, σ2

x = σ 2
y , where only one intersection exists and z is

simply the midpoint between means, (µy−µx)
2 . In the case of unequal variance, the intersec-

tions can be found by the following quadratic equation

z1,2 =
µy(v2−1)−u± v

√
u2 +(v2−1)σ2

y ln(v2)

v2−1

where u = µy−µx and v = σy
σx

. Let us first order the intersections, z1 < z2. If v > 1, then J
occurs at z2; alternatively, if v < 1, then J occurs at z1. When data on both non-diseased and
diseased subjects are available, appropriate estimates for µx, σ2

x , µy, σ2
y and consequently

the optimal cut-off point can be calculated. Methods to find optimal cut-off point in in-
stances where the continuous diagnostic ratings comes from non-normal distributions are
also available in literature [14].

5. Simulation study

We have performed extensive computer simulations to investigate and compare type I error
and statistical power of the proposed McNemar test, conventional nonparametric test of
DeLong et al. [3] and asymptotic test of Bandos et al. [2]. In our simulations we assumed
equal correlation across the test procedures for the ratings of diseased and non-diseased
subject rated on both continuous and binary scales.

For continuous scale, the rating values of the non-diseased subject were generated from a
standard bivariate normal distribution and those of diseased subjects from bivariate normal
distribution with mean and variance, µ1,σ2

1 and µ2,σ2
2 for the two test procedures 1 and 2,

respectively. Data are generated for a set of correlation (ρ) between the ratings from two

diagnostic tests. The areas under the ROC curve A1 and A2 are given by Φ
(

µ1

(1+σ2
1 )

1
2

)
and

Φ
(

µ2

(1+σ2
2 )

1
2

)
, where Φ is the standard normal cumulative distribution function.
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If the binary variable X denotes the outcomes of a diagnostic test (1 for positive and 0 for
negative), the distribution of X is fully determined by the single value pX = p(X = 1), which
is also the expectation of X . The variance of X is var(X) = pX qX where qX = 1− pX =
p(X = 0). For two competing diagnostic tests employed on same set of subjects, we can
assume two such binary variables (X ,Y ) which are not necessarily independent. Then the
joint distribution of X and Y is determined by pX , pY and either pXY , pX |Y or pY |X where
pXY = p(X = 1,Y = 1), pX |Y = p(X = 1|Y = 1), pY |X = p(Y = 1|X = 1) and the correlation
coefficient of X and Y can be expressed as,

ρ =
pXY − pX pY√

pX qX pY qY
such that pXY = ρ

√
pX qX pY qY + pX pY

where −1 ≤ ρ ≤ +1 and ρ = 0 implies that X and Y are independent. For more details
see [11]. For binary scale, correlated binary ratings were generated with required marginal
probabilities (Pa+b,Pa+c) to obtain specific difference (Pb−Pc) between the probabilities of
discordant matches in Table 2. For non-diseased subjects, the binary ratings are generated
with fixed marginal probabilities (0.30,0.35). The algorithm discussed in Leisch et al. [9]
is used for simulating correlated binary data. The same algorithm is also used by Islam et
al. [8] in their recent work of bivariate binary model for testing dependence in outcomes.
The statistical computing software R version 2.11.1 [13] is used to perform the simulation
study.

For continuous ratings simulated values of ρ ranged from 0 to 0.6 and the values of other
parameters were selected to produce the difference between two AUCs in the range from 0 to
0.3. For binary ratings, ρ was considered in the range 0 to 0.5 and the marginal probabilities
were selected to produce difference between probabilities of discordant matches in the range
0 to 0.2. Because of difficulties in generating correlated binary data for specific marginal
probabilities, we had to choose some selected parameter combinations. For each considered
scenario, 2000 replications were used in the computer simulations. Table 3 compares the
type I error and the statistical power of the proposed McNemar test to that of conventional
nonparametric AUC test developed by DeLong et al. [3] and to asymptotic permutation
AUC test developed by Bandos et al. [2] for continuous type ratings. Table 4 compares
the same for binary type ratings. The estimates of type I error (the gray shaded entries
in Table 3 and Table 4) and the estimates of statistical power are obtained when the true
AUCs for two tests are equal and different respectively. Rejection regions for the tests are
determined using a nominal significance level of 0.05.

In case of continuous ratings, for lower AUCs the proposed McNemar test demonstrates
a more conservative type I error and consequently an elevated power compared to the other
two tests. But for moderate correlation among the modalities and increasing sample sizes
the scenario tends to be more stable and all three tests comes to be very close in both type
I error and statistical power. The proposed test exhibits more false positive rate for lower
correlation which is because of the reason that McNemar test is appropriate to be used with
correlated data. With increasing value of correlation the estimates of false positive rate tend
to diminish. For higher values of AUCs, the type I error estimates are comparable for all
sample sizes and correlation values. In cases with higher AUCs and lower correlation values
the proposed test outperforms the tests by DeLong et al. [3] and Bandos et al. [2]. Though
for moderate correlation values with higher AUCs other two tests provide better statistical
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Table 3. Empirical type I error and statistical power of different tests for continuous ratings.

AUC Mean Variance Sample size ρ = 0 ρ = 0.4 ρ = 0.6

A1, A2 µ1, µ2 σ2
1 = σ2

2 N M Da Bb Mcc Da Bb Mcc Da Bb Mcc

Type I error and statistical power
0.6, 0.6 0.36, 0.36 1.0 20 20 0.050 0.041 0.066 0.049 0.045 0.060 0.052 0.053 0.051

40 40 0.046 0.044 0.073 0.048 0.049 0.065 0.051 0.051 0.049
Type I error 60 60 0.059 0.058 0.096 0.041 0.041 0.062 0.046 0.046 0.057

100 100 0.048 0.048 0.088 0.044 0.043 0.084 0.044 0.043 0.077
150 150 0.044 0.043 0.098 0.043 0.043 0.073 0.047 0.047 0.072

0.6, 0.7 0.36, 0.74 1.0 20 20 0.122 0.100 0.184 0.172 0.163 0.205 0.226 0.215 0.200
40 40 0.189 0.178 0.335 0.298 0.288 0.388 0.398 0.387 0.454

Power 60 60 0.230 0.286 0.459 0.450 0.440 0.554 0.588 0.576 0.633
100 100 0.442 0.431 0.679 0.638 0.629 0.782 0.801 0.792 0.877
150 150 0.609 0.605 0.842 0.809 0.802 0.915 0.937 0.933 0.963

0.6, 0.8 0.36, 1.19 1.0 20 20 0.405 0.365 0.469 0.571 0.524 0.559 0.724 0.627 0.604
40 40 0.706 0.679 0.804 0.871 0.838 0.884 0.956 0.943 0.927

Power 60 60 0.683 0.850 0.940 0.976 0.968 0.979 0.998 0.992 0.991
100 100 0.978 0.977 0.996 0.999 0.999 0.999 1.000 1.000 1.000
150 150 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.6, 0.9 0.36, 1.81 1.0 20 20 0.817 0.767 0.763 0.939 0.904 0.836 0.986 0.969 0.884
40 40 0.991 0.984 0.983 0.999 0.999 0.992 1.000 1.000 0.999

Power 60 60 0.999 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000
100 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
150 150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.7, 0.7 0.74, 0.74 1.0 20 20 0.048 0.042 0.049 0.047 0.045 0.030 0.050 0.052 0.030
40 40 0.041 0.039 0.045 0.050 0.049 0.048 0.051 0.050 0.042

Type I error 60 60 0.062 0.058 0.048 0.037 0.036 0.047 0.047 0.049 0.040
100 100 0.034 0.034 0.066 0.052 0.051 0.052 0.050 0.050 0.051
150 150 0.049 0.049 0.065 0.042 0.042 0.052 0.055 0.055 0.050

0.7, 0.8 0.74, 1.19 1.0 20 20 0.137 0.126 0.118 0.197 0.187 0.129 0.254 0.246 0.151
40 40 0.232 0.221 0.229 0.351 0.340 0.272 0.471 0.461 0.325

Power 60 60 0.362 0.349 0.354 0.527 0.513 0.418 0.679 0.669 0.494
100 100 0.562 0.552 0.577 0.745 0.734 0.680 0.871 0.859 0.770
150 150 0.730 0.724 0.756 0.904 0.899 0.870 0.970 0.967 0.912

0.7, 0.9 0.74, 1.81 1.0 20 20 0.532 0.498 0.357 0.697 0.657 0.415 0.825 0.781 0.468
40 40 0.858 0.833 0.694 0.960 0.947 0.779 0.991 0.981 0.842

Power 60 60 0.954 0.944 0.893 0.996 0.994 0.930 1.000 0.999 0.970
100 100 0.999 0.998 0.985 1.000 1.000 0.997 1.000 1.000 1.000
150 150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

a D− Conventional AUC test (DeLong et al.)
b B− Approximation to permutation AUC test (Bandos et al.)
c Mc− McNemar test

power than the McNemar test, however, for increasing sample sizes McNemar test gives
statistical power close to others.

When binary ratings data are considered, in all scenarios of parameter settings and for all
sample sizes (small or large), the proposed McNemar test demonstrates superior statistical
power and less conservative type I error compared to tests by DeLong et al. [3] and Bandos
et al. [2]. In summary, for continuous type ratings, our simulations demonstrate that the
proposed McNemar test provides close agreement of type I error to the nominal level. For
smaller AUC values this agreement comes with moderate and higher correlation among the
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Table 4. Empirical type I error and statistical power of different tests for discrete binary ratings.

Marginal probability Sample size ρ = 0.00 ρ = 0.25 ρ = 0.50

Pa+b Pa+c Pb−Pc N M Da Bb Mcc Da Bb Mcc Da Bb Mcc

Type I error and statistical power
0.60 0.60 0.00 20 20 0.066 0.060 0.028 0.078 0.063 0.023 0.072 0.055 0.025

40 40 0.060 0.055 0.039 0.070 0.069 0.040 0.070 0.066 0.049
Type I error 60 60 0.069 0.067 0.049 0.081 0.075 0.057 0.094 0.093 0.061

100 100 0.085 0.082 0.069 0.098 0.096 0.081 0.108 0.105 0.092
150 150 0.116 0.113 0.080 0.125 0.123 0.094 0.136 0.133 0.120

0.60 0.70 0.10 20 20 0.062 0.055 0.063 0.068 0.050 0.070 0.077 0.053 0.082
40 40 0.072 0.065 0.132 0.074 0.070 0.147 0.076 0.069 0.221

Power 60 60 0.080 0.070 0.205 0.077 0.070 0.249 0.098 0.095 0.337
100 100 0.090 0.088 0.299 0.093 0.088 0.381 0.118 0.110 0.560
150 150 0.103 0.099 0.440 0.113 0.111 0.558 0.148 0.141 0.765

0.60 0.80 0.20 20 20 0.113 0.103 0.148 0.147 0.107 0.184 0.185 0.141 0.237
40 40 0.183 0.166 0.344 0.232 0.214 0.409 0.304 0.269 0.585

Power 60 60 0.244 0.223 0.511 0.321 0.294 0.610 0.446 0.423 0.795
100 100 0.377 0.364 0.720 0.490 0.460 0.847 0.644 0.610 0.960
150 150 0.522 0.498 0.908 0.626 0.604 0.961 0.807 0.788 0.994

0.70 0.70 0.00 20 20 0.066 0.057 0.032 0.072 0.058 0.024 0.079 0.061 0.025
40 40 0.058 0.055 0.043 0.060 0.059 0.042 0.067 0.061 0.049

Type I error 60 60 0.077 0.072 0.056 0.085 0.080 0.059 0.096 0.095 0.062
100 100 0.086 0.085 0.061 0.095 0.091 0.076 0.137 0.131 0.087
150 150 0.099 0.097 0.087 0.119 0.117 0.099 0.164 0.160 0.130

0.70 0.80 0.10 20 20 0.063 0.052 0.065 0.061 0.047 0.076 0.077 0.055 0.086
40 40 0.070 0.066 0.138 0.071 0.069 0.161 0.079 0.069 0.245

Power 60 60 0.077 0.073 0.215 0.087 0.083 0.268 0.099 0.096 0.381
100 100 0.091 0.085 0.353 0.098 0.093 0.433 0.131 0.123 0.583
150 150 0.111 0.104 0.481 0.111 0.107 0.607 0.167 0.158 0.784

0.70 0.90 0.20 20 20 0.128 0.109 0.158 0.153 0.113 0.197 0.199 0.154 0.257
40 40 0.199 0.185 0.373 0.252 0.239 0.446 0.337 0.302 0.628

Power 60 60 0.279 0.260 0.565 0.358 0.326 0.666 0.474 0.445 0.840
100 100 0.423 0.407 0.786 0.502 0.474 0.884 0.705 0.672 0.974
150 150 0.585 0.566 0.932 0.697 0.675 0.979 0.853 0.821 0.999

a D− Conventional AUC test (DeLong et al.)
b B− Approximation to permutation AUC test (Bandos et al.)
c Mc− McNemar test

modalities. And for larger sample sizes the proposed test produces very comparable statis-
tical power. Furthermore for discrete binary ratings, the proposed McNemar test possesses
better operating characteristics than the other tests in all parameter settings considered. The
performance of the proposed McNemar test in case of continuous type ratings might be sup-
pressed in our simulation study due to difficulty in choosing optimal cut-off point to classify
the subjects. To make it more evident in Section 6, we have considered a practical data set
where a real cut-off point exists and conducted a bootstrapping power analysis to compare
the statistical power of all the three tests.

6. Example

In this section we have presented an application and comparison of proposed and other
considered tests using a practical data set adopted from Venkatraman et al. [17]. In patients
with clinically localized primary testicular cancer it is important to determine the necessity
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for an operation to remove any disease that may have spread to retroperitoneal lymph nodes.
These nodes can be evaluated by computed tomography to determine the necessity for this
operation. In the considered data set, the size of the largest node detected by computed
tomography was used as diagnostic criterion and the goal of the study was to determine
if the accuracy of this criterion is different for anterior versus posterior nodes. The ‘gold
standard’ diagnosis is the presence of any nodal disease at surgery.

The test result recorded is the average size in millimeters of the largest node detected by
three independent readers. Anything smaller than 4 millimeters is considered undetectable
by the naked eye. The null hypothesis to test is that the sizes of anterior and posterior nodes
possess equivalent diagnostic information.

The estimates of AUCs for diagnostic procedures 1 and 2 are 0.787 and 0.568 respec-
tively and the estimated Pearson correlation coefficient between the ratings under two pro-
cedures is 0.165. To test equality of performances of these two diagnostic procedures, the
conventional test by DeLong et al. [3], asymptotic permutation test by Bandos et al. [2] and
the proposed McNemar test come to agreement of significant different performances yield-
ing two sided p-values 0.0068, 0.019 and 0.0027 respectively. To search for more specific
information regarding statistical power of tests, we have conducted a bootstrapping study
where for each of considered sample sizes, 2000 random samples were taken from the data
and rejection rates are computed.

Table 5. Bootstrapping statistical power for different tests.

Sample size Rejection rate

N M Da Bb Mcc

20 20 0.557 0.448 0.660
30 30 0.728 0.651 0.859
40 40 0.844 0.790 0.944
60 60 0.959 0.943 0.994
100 100 0.994 0.991 1.000

a D− Conventional AUC test (DeLong et al.)
b B− Approximation to permutation AUC test (Ban-

dos et al.)
c Mc− McNemar test

Table 5 and Figure 1 demonstrates that for all sample sizes proposed McNemar test
provides superior rejection rate and in large sample sizes tests by DeLong et al. [3] and
Bandos et al. [2] shows rejection rates very closed to the McNemar test.

7. Conclusion

The area under the ROC curve (AUC) can be used for the comparison of two or more diag-
nostic tests. By the comparison of two AUCs, it is investigated which one of the two diag-
nostic tests is more suitable for discriminating non-diseased from diseased subjects. Since
most of the diagnostic researches yield matched data, it is important to take into account the
correlated nature of the diagnostic tests. The McNemar test is used for the correlated data.
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Figure 1. Bootstrapping power curves to compare different tests

Two AUCs are compared to test whether two diagnostic tests have the same ability to dis-
criminate diseased and non-diseased subjects. If two diagnostic test procedures have same
discriminating power then it can be said that they have come from same population. The
McNemar test is used to test whether two populations differ significantly. If the two popu-
lations do not differ then they should have same discriminating ability to correctly identify
diseased and non-diseased subjects. The McNemar test is based on an optimal cut-off point.
The optimal cut-off point varies according to the clinical application of diagnostic tests. The
simulation study, we have conducted, shows that the proposed McNemar test can be a very
suitable alternative to the test by DeLong et al. [3] and test by Bandos et al. [2] that are very
cumbersome to compute. An application to practical data set and bootstrapping study also
supports our claim. Since the McNemar test is easy to compute as well as easy to commu-
nicate to the potential uses of the procedure, we can use this test conveniently. The strength
of our proposed method is that it has easy implementation to discriminate diagnostic test
procedures even by non-statisticians. Knowledge of true status of subjects or any other gold
standard is not required to employ the proposed test. The idea of the McNemar test can also
be used to construct confidence regions.
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