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1. Introduction

A Moufang loop is a loop that satisfies the Moufang identity (xy)(zx) = [x(yz)]x. Moufang
loops are closely related to groups as they share many common properties, e.g., Moufang
loops have the inverse property, and satisfy Lagrange’s theorem [8], Sylow’s theorems (with
exception to conjugacy) [6, 9], and Hall’s theorem [5]. Another evidence of Moufang loops
being “almost” groups, can be found in Moufang’s theorem [2]: (1) Any associative triplets
in a Moufang loop generate a group; and (2) Moufang loops are diassociative.

Since groups are associative, they satisfy the Moufang identity. Hence, all groups are
Moufang loops. However, the converse is not true. The smallest nonassociative Moufang
loop is of order 12, constructed by Chein and Pflugfelder [3]. The existence of nonassocia-
tive Moufang loops of order 34 and p5 for any prime p > 3, has also been proved by Bol [1]
and Wright [18] respectively. The most recent class of finite nonassociative Moufang loops
was constructed by the second author [14] where he showed that for odd primes p and q,
there exists a nonassociative Moufang loop of order pq3 if and only if q≡ 1 (mod p).

Following the path of these researchers, our interest is to construct new classes of nonas-
sociative Moufang loops. In particular, we study the question: “For what positive integer
n does there exist a nonassociative Moufang loop of order n?”. To achieve this objective,
however, we need to eliminate those cases where all Moufang loops of a particular order
are associative. Hence, our research can be divided into two directions: (1) Prove that all
Moufang loops of order n are associative, for some positive integer n; or (2) Prove that a
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nonassociative Moufang loop of order n exists, by giving precisely the product rule for any
pair of elements in that loop.

The latest result that is of significance to our research can be found in [15]: If L is a
Moufang loop of order p1 · · · pmq3r1 · · ·rn where p1 < · · ·< pm < q < r1 < · · ·< rn are odd
primes with q 6≡ 1 (mod pi) for all i ∈ {1, . . . ,m}, then L is a group. In this paper, we study
the next open case, that is, Moufang loops of order pq4 where p < q are odd primes. We
obtain the necessary and sufficient conditions for the existence of nonassociative Moufang
loops of odd order pq4.

2. Definitions and notations

Below are some basic definitions and notations that are used throughout this article. We
refer the reader to [2] and [13] for a comprehensive description of loop theory.

Definition 2.1. A binary system L is called a loop if
(a) L has an identity element, and
(b) for any x,y ∈ L, there exist unique elements a,b ∈ L such that xa = y and bx = y.

Definition 2.2. A loop L is a Moufang loop if it satisfies any one of the following (equiva-
lent) Moufang identities:

(xy)(zx) = x[(yz)x], (xy)(zx) = [x(yz)]x, x[y(xz)] = [(xy)x]z, [(zx)y]x = z[x(yx)].

The following definitions hold for any loop L.

Definition 2.3. Define

zT (x) = x−1(zx), zL (x,y) = (yx)−1[y(xz)], zR(x,y) = [(zx)y](xy)−1.

I (L) = 〈T (x),L (x,y),R(x,y) | x,y ∈ L〉 is called the inner mapping group of L.

Definition 2.4. The associator of three elements x,y,z in L is the unique element (x,y,z)∈ L
such that (xy)z = [x(yz)](x,y,z). The associator subloop of L, denoted by La, is the subloop
generated by all the associators in L.

Definition 2.5. The commutator of two elements x,y in L is the unique element [x,y]∈ L such
that xy = (yx)[x,y]. The commutator subloop of L, denoted by Lc, is the subloop generated
by all the commutators in L.

Definition 2.6. The nucleus of L, denoted by N(L), is the subloop consisting of all n ∈ L
such that (n,x,y) = (x,n,y) = (x,y,n) = 1 for all x,y ∈ L.

Definition 2.7. Let K be a subset of L. The centraliser of K in L, denoted by CL(K), is the
set consisting of all ` ∈ L such that `k = k` for all k ∈ K.

Definition 2.8. L is minimally nonassociative if L is not associative but all proper subloops
and proper quotient loops of L are associative.

3. Known results

Throughout this section, L is defined as a Moufang loop.

Lemma 3.1. Let x,y,z ∈ L.
(a) xL (z,y) = x(x,y,z)−1 [2, p.124, Lemma 5.4 (5.16)];
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(b) (x,y,z) = (x,y,zy) [2, p.124, Lemma 5.4 (5.17)];
(c) (x,y,z) = (xy,z,y)−1 [2, p.124, Lemma 5.4 (5.18)];
(d) (x,y,z) = (x,y,zx) [2, p.124, Lemma 5.4 (5.19)];
(e) (xn,y,z) = (x,yn,z) = (x,y,zn) = (x,y,z) for any n ∈ N(L) [10, p. 267, Lemma 1];
(f) (x,y,z) = (z,y,x)−1 = (y,z,x) if La ⊆ N(L) [14, p. 71, Lemma 2].

Lemma 3.2. Let x,y,u,v ∈ L and θ ∈I (L).
(a) (xy)θ · c = (xθ) · (yθ · c) where c = [u−1,v−1] if θ = L (u,v), and c = u−3 if θ =

T (u) [2, p. 112, Lemma 2.1; p. 113, Lemma 2.2; and p. 117, Lemma 3.2];
(b) (xn)θ = (xθ)n for any integer n [2, p. 117, Lemma 3.2; and p. 120, (4.1)].

Lemma 3.3. Suppose K E L. Then L/K is associative⇒ La ⊆ K [11, p. 563, Lemma 1].

Lemma 3.4. Let L be finite. Suppose K ≤CL(La) and (|K|, |La|) = 1. Then K ⊆ N(L) [12,
Lemma 5, p. 480].

Lemma 3.5. Let |L| be odd. Then L contains a Hall π-subloop where π is any set of odd
primes [7, p. 409, Theorem 12].

Lemma 3.6. Suppose L has an odd order and contains a normal Hall subloop H = 〈x〉La
for some x ∈ H−La. Then La ⊆ N(L)⇒ H ⊆ N(L) [15, p. 373, Lemma 3.17].

Lemma 3.7. Let |L|= pα1
1 pα2

2 · · · pαn
n where p1 < p2 < · · ·< pn are odd primes and α1,α2,

. . . ,αn ∈ Z+.
(a) Suppose αi ≤ 2 for all i. Then for every i ∈ {1,2, . . . ,n}, there exists Hi E L where
|Hi|= pαi

i pαi+1
i+1 · · · pαn

n [16, p. 970, Lemma 4.1(a)].
(b) Suppose there exists some αk ≥ 3 such that αi ≤ 2 for all i < k. Then for every i ∈
{1,2, . . . ,k}, there exists Hi E L where |Hi| = pαi

i pαi+1
i+1 · · · pαn

n [16, p. 970, Lemma
4.1(b)].

(c) Suppose αn = 1 and pn 6≡ 1 (mod pi) for all i < n. Then there exists a normal
subloop of order pα1

1 pα2
2 · · · p

αn−1
n−1 in L [17, p. 1362, Lemma 4.1].

Lemma 3.8. Suppose L is not associative.
(a) Let K ≤ L. If L = 〈x,y〉K for some x,y ∈ L, then K * N(L) [4, p. 144, Theorem

4.1].
(b) If L is finite, then |L|/|N(L)| 6= 1, p or pq where p and q are (not necessarily dis-

tinct) primes [4, p. 145, Corollary 4.2].

Lemma 3.9. Suppose L is minimally nonassociative, is of odd order, and contains a maxi-
mal normal subloop M.

(a) La is the unique minimal normal subloop of L, and an elementary abelian group.
Moreover, (La,La,L) = {1} [4, p. 140, Theorem 3.3(b)].

(b) (k1k2, `1, `2) = (k1, `1, `2)(k2, `1, `2) for any ki ∈ La and `i ∈ L [4, p. 141, Proposi-
tion 3.4].

(c) La and Lc lie in M, and L = M〈x〉 for any x ∈ L−M [12, p. 478, Lemma 1(b)].
(d) If H is a Hall subloop of L, then H E LaH ⇒ (|La|, |H|) 6= 1 [4, p. 143, Theorem

3.10].
(e) (k,w, `) = (`,k,w−1)−1 for any k ∈ La, w ∈M and ` ∈ L [11, p. 565, Lemma 6(a)].
(f) ((La,M,L)[La,M],M,L) = {1} [11, p. 565, Lemma 6(c)].
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(g) For any w ∈ M and ` ∈ L, there exists some k0 ∈ La−{1} such that (k0,w, `) =
(u−1k0u,w, `) = 1 for all u ∈M [4, p. 141, Theorem 3.7; and 15, p. 373, Lemma
3.18].

(h) If (k,w, `) 6= 1 for some (fixed) elements k ∈ La, w ∈M and ` ∈ L, then La contains
a proper nontrivial subloop which is normal in M [4, p. 142, Theorem 3.8].

(i) If La ⊆ N(L), then [M,(L−M,M,M)] = {1} [17, p. 1363, Lemma 4.4].
(j) If La ⊆ N(L), then for every x ∈ L−M, there exist some g,h ∈ M−La such that

(x,g,h) 6= 1 [17, p. 1362, Lemma 4.2].
(k) La E N(L) if and only if (La,M,L) = {1} [4, p. 146, Theorem 4.7].

Lemma 3.10. Suppose L is minimally nonassociative, and has order pα1
1 pα2

2 · · · pαn
n where

p1, p2, . . . , pn are distinct odd primes and α1,α2, . . . ,αn ∈ Z+. Then

(a) |La|= pβi
i for some i satisfying αi ≥ 2; and some βi satisfying 0 < βi < αi;

(b) pαi
i - |N(L)| for all i.

[4, p. 145, Theorem 4.5]

Lemma 3.11. Suppose |L| = p1 · · · pmqα r1 · · ·rn where p1 < · · · < pm < q < r1 < · · · < rn
are odd primes. Then L is a group if any of the following two conditions hold:

(a) α = 3 and q 6≡ 1 (mod pi) for all i ∈ {1,2, . . . ,m} [15, p. 374, Theorem]; or
(b) m = 0, p > 3 and α ≤ 4 [11, p. 567, Theorem].

Lemma 3.12. Let p and q be distinct odd primes. There exists a nonassociative Moufang
loop of order pq3 if and only if q≡ 1 (mod p) [14, p. 78, Theorem 1; and p. 86, Theorem
2].

4. New results

Lemma 4.1. Let L be a Moufang loop and x,y,z ∈ L. Suppose La ⊆ N(L), [y,(y,z,x)] = 1
and x−1yx = yα k for some k ∈ N(L) and α ∈ Z+. Then (x−1,y,z) = (x,y,z)−α .

Proof. First, we show the equation (yα ,z,x) = (y,z,x)α , which is needed in the proof of this
lemma.

By Lemma 3.2(b), yαL (x,z) = [yL (x,z)]α . So

yα(yα ,z,x)−1 = [y(y,z,x)−1]α by Lemma 3.1(a)

= yα(y,z,x)−α as [y,(y,z,x)] = 1.

Hence,

(4.1) (yα ,z,x) = (y,z,x)α

by cancellation. Now

(x−1,y,z) = (x−1y,z,y)−1 by Lemma 3.1(c)

= (x−1y,z,xx−1y)−1 by diassociativity

= (x−1y,z,x)−1 by Lemma 3.1(d)

= (yα kx−1,z,x)−1 by the hypothesis x−1yx = yα k

= (yα k,z,x)−1 by Lemmas 3.1(d) and 3.1(f)

= (yα ,z,x)−1 by Lemma 3.1(e)
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= (y,z,x)−α by (4.1)

= (x,y,z)−α by Lemma 3.1(f).

Lemma 4.2. Let L be a nonassociative Moufang loop of odd order and x ∈ L. Suppose
|La|= p2 for some prime p and (|x|, p−1) = 1. If there exists some k0 ∈ La−{1} such that
[k0,x] = 1, then [La,x]⊆ 〈k0〉.

Proof. Since |La| = p2 and La is elementary abelian, there exists k1 ∈ La−〈k0〉 such that
La = 〈k0〉×〈k1〉. As La E L, it follows that x−1k1x∈ La. Hence, we can write x−1k1x = kα

0 kβ

1

for some α,β ∈ Z+. By induction, x−|x|k1x|x| = kα(1+β+···+β |x|−1)
0 kβ |x|

1 . Then

k−α(1+β+···+β |x|−1)
0 = kβ |x|−1

1 = 1. Since |k1|= p, the second equation gives β |x|≡ 1 (mod p).
So, β has (|x|, p− 1) = 1 solution. Hence, β = 1. Thus, x−1k1x = kα

0 k1. Therefore,
k−1

1 x−1k1x = [k1,x] = kα
0 ∈ 〈k0〉. Since [k0,x] = 1∈ 〈k0〉, we can easily show that [k,x]∈ 〈k0〉

for all k ∈ La by writing k = kγ

0kδ
1 for some γ,δ ∈ Z+.

Corollary 4.1. Let L be a nonassociative Moufang loop of odd order and x ∈ L. Suppose
|La|= p2 for some prime p and (|x|, p) = (|x|, p−1) = 1. If there exists some k0 ∈ La−{1}
such that [k0,x] = 1, then [La,x] = {1}.

Proof. Let k1 ∈ La−〈k0〉 such that La = 〈k0〉×〈k1〉. Write x−1k1x = kα
0 kβ

1 for some α,β ∈
Z+. From the proof of Lemma 4.2, kα(1+β+···+β |x|−1)

0 = 1 where β = 1. Hence, kα|x|
0 = 1 and

p divides α|x|. Since (|x|, p) = 1, it follows that p | α . Hence, x−1k1x = k1, i.e., [k1,x] = 1.
As x commutes with both generators of La, we have [k,x] = 1 for all k ∈ La.

Lemma 4.3. Let L be a minimally nonassociative Moufang loop of odd order and M a
maximal normal subloop of L.

(a) Suppose there exist some k ∈ La, w ∈ M and ` ∈ L such that (k,w, `) = 1. Then
(k,La〈w〉, `) = {1}.

(b) Suppose there exist some k ∈ La and w ∈M such that [k,w] = 1. Then [k,La〈w〉] =
{1}.

Proof. Suppose
(k,w, `) = 1 for some k ∈ La, w ∈M and ` ∈ L.

Let c = [k−1, `−1]. Take any u∈ La〈w〉. Write u = k1wα for some k1 ∈ La and α ∈Z+. Now

uL (k, `) · c = k1L (k, `) · [wαL (k, `) · c] by Lemma 3.2(a)

⇒ u(u, `,k)−1 · c

= k1(k1, `,k)−1 · [wα(wα , `,k)−1 · c] by Lemma 3.1(a)

= k1 ·wα c by Lemma 3.9(a) and hypothesis

= k1wα · c by Lemma 3.9(c)
= uc.

After cancellation, we get (u, `,k)−1 = 1. By Moufang’s theorem, (k,u, `) = 1. This
proves (a).

Suppose
[k,w] = 1 for some k ∈ La and w ∈M.
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For any u ∈ La〈w〉, write u = k2wβ for some k2 ∈ La and β ∈ Z+. Then

[k,u] = k−1u−1ku by definition of commutator

= k−1(w−β k−1
2 )k(k2wβ ) by antiautomorphic inverse property

= k−1w−β k−1
2 kk2wβ by Lemma 3.9(c)

= k−1w−β kwβ as La is abelian by Lemma 3.9(a)
= 1 by hypothesis and diassociativity.

This completes the proof of this lemma.

Lemma 4.4. Let L be a minimally nonassociative Moufang loop of odd order and M a
maximal normal subloop of L. Suppose there exist some k ∈ La−{1} and x ∈ L−M such
that (k,M,x) = [k,M] = {1}. Then La E N(L).

Proof. Since M is a maximal normal subloop of L, we can write L = M〈x〉 by Lemma 3.9(c).
Take any ` ∈ L. Then ` = u1xα where u1 ∈M and α ∈ Z+.

Let u be any element in M. Write c = [k−1,u−1]. By Lemma 3.2(a), `L (k,u) · c =
u1L (k,u) · [xαL (k,u) · c]. Since [k,u] = 1, we have

(4.2) `(`,u,k)−1 = u1(u1,u,k)−1 · [xα(xα ,u,k)−1]

by Lemma 3.1(a).
Since La⊆M by Lemma 3.9(c), k,u,u1 ∈M. As L is minimally nonassociative, it follows

that M is a group and (u1,u,k) = 1. By our hypothesis and Moufang’s theorem, (xα ,u,k) =
1. By cancellation from (4.2) and Moufang’s theorem, we get

(4.3) (k,u, `) = 1 for all u ∈M and ` ∈ L.

Take any h ∈ L. We wish to show that (k,h, `) = 1. If h ∈M, then we are through. Now
if h /∈M, then by Lemma 3.9(c), L = M〈h〉. Hence for any ` ∈ L, we can write ` = u2hβ for
some u2 ∈M and β ∈ Z+. Next,

(k,h, `) = (k,h,u2hβ )

= (k,h,u2) by Lemma 3.1(b)
= 1 by (4.3) and Moufang’s theorem.

Hence, k∈N(L). Now N(L) is a nontrivial normal subloop of L. Thus L/N(L) is a proper
quotient loop of L. By the minimally nonassociative property of L, L/N(L) is associative
and by Lemmas 3.3 and 3.9(a), La E N(L).

Lemma 4.5. Let L be a minimally nonassociative Moufang loop of odd order and M a
maximal normal subloop of L. Suppose (k0,w0, `0) 6= 1 for some (fixed) k0 ∈ La, w0 ∈ M
and `0 ∈ L. Then for any x∈ L−M, there exist some k∈ La and w∈M such that (k,w,x) 6= 1.

Proof. Suppose not. Then there exists some x0 ∈ L−M such that

(4.4) (k,w,x0) = 1 for all k ∈ La and all w ∈M.

By Lemma 3.9(c), L = M〈x0〉. Hence `0 = w1xα
0 where w1 ∈M and α ∈ Z+. Write c =

[k−1
0 ,w−1

0 ]. Now La E L by Lemma 3.9(a). Thus, c = k0 ·w0k−1
0 w−1

0 ∈ La by diassociativity.
Then by Lemmas 3.2(a) and 3.1(a),

`0L (k0,w0) · c = w1L (k0,w0) · [xα
0 L (k0,w0) · c]
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⇒ `0(`0,w0,k0)−1 · c = w1(w1,w0,k0)−1 · [xα
0 (xα

0 ,w0,k0)−1 · c].

Now k0 ∈ La ⊆ M by Lemma 3.9(c). Since L is minimally nonassociative and M is a
proper subloop of L, it follows that M is a group. Hence (w1,w0,k0) = 1. Our assumption
in (4.4) and Moufang’s theorem give (xα

0 ,w0,k0) = 1. Thus,

`0(`0,w0,k0)−1 · c = w1 · xα
0 c

= w1xα
0 · c as c ∈ La and (c,w1,x0) = 1 by (4.4)

= `0c.

By cancellation and Moufang’s theorem, we have (k0,w0, `0) = 1 which contradicts our
hypothesis. The result now follows.

Lemma 4.6. Let L be a nonassociative Moufang loop of order pq4 where p < q are odd
primes with q 6≡ 1 (mod p); and Q a maximal normal subloop of order q4 in L. Suppose
|La|= q2.

(a) (La,Q,L) = {1}.
(b) If La ⊆ N(L), then x−1Qx⊆ 〈w〉La for all x ∈ L−Q.

Proof. (a) Assume not. Then (k′,w′, `′) 6= 1 for some k′ ∈ La, w′ ∈Q and `′ ∈ L. By Lemma
3.5, there exists a subloop P of order p in L. As P is cyclic, we can write P = 〈x〉. Clearly
x ∈ L−Q. Then by Lemma 4.5,

(4.5) (k,w,x) 6= 1 for some k ∈ La and w ∈ Q.

Now by Lemma 3.9(g), there exists k0 ∈ La−{1} such that

(4.6) (k0,w,x) = 1.

Then by Lemma 3.9(h), there exists S = 〈u−1k0u | u ∈Q〉, a proper nontrivial subloop of La
which is normal in Q. Since |La|= q2, it follows that |S|= q. As 1 6= k0 ∈ S, we can write
S = 〈k0〉. Hence, u−1k0u ∈ 〈k0〉 for all u ∈ Q as S E Q. Thus, [k0,u] = 1 for all u ∈ Q from
group theory.

Since (k,w,x) 6= 1, we have k /∈ 〈k0〉. Hence, La = 〈k0〉 × 〈k〉. Then by Lemma 4.2,
[k,w] ∈ 〈k0〉 as (|w|,q−1) = 1. Now

((k,w,x)[k,w],w,x) = 1 by Lemma 3.9(f)

⇒ ((k,w,x),w,x)([k,w],w,x) = 1 by Lemma 3.9(b)

⇒ ((k,w,x),w,x)(kα
0 ,w,x) = 1 for some α ∈ Z+

⇒ ((k,w,x),w,x) = 1 since (k0,w,x) = 1 by (4.6).

Write k1 = (k,w,x). Then

(4.7) (k1,w,x) = 1.

Suppose k1 /∈ 〈k0〉. Then La = 〈k0〉×〈k1〉. Hence

(k,w,x) = (kβ

0 kγ

1,w,x) for some β ,γ ∈ Z+

= (kβ

0 ,w,x)(kγ

1,w,x) by Lemma 3.9(b)
= 1 by (4.6) and (4.7).
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This contradicts (4.5). So k1 ∈ 〈k0〉, i.e., 〈k0〉= 〈k1〉= Cq. By using Lemma 3.2(b), we get

x−1L (w−1,k) = [xL (w−1,k)]−1

⇒ x−1(x−1,k,w−1)−1 = [x(x,k,w−1)−1]−1 by Lemma 3.1(a)

= (x,k,w−1)x−1

⇒ x(x,k,w−1)x−1 = (x−1,k,w−1)−1

⇒ x(x,k,w−1)−1x−1 = (x−1,k,w−1)

⇒ x(k,w,x)x−1 = (x−1,k,w−1) by Lemma 3.9(e)

⇒ xk1x−1 = (x−1,k,w−1).

Suppose (x−1,k,w−1) ∈ 〈k1〉. Then, xk1x−1 ∈ 〈k1〉. Hence, [k1,x] = 1 by diassociativ-
ity and the fact that (|x|, |k1| − 1) = (p,q− 1) = 1. Also (|x|,q) = (p,q) = 1 as p and
q are distinct primes. Thus, by Corollary 4.1, [k,x] = 1 for all k ∈ La. So, x ∈ CL(La)
and 〈x〉 ≤ CL(La). Therefore, by Lemma 3.4, we have 〈x〉 ⊆ N(L), contrary to (4.5). So,
(x−1,k,w−1) /∈ 〈k1〉. By Lemma 3.9(e), (x−1,k,w−1) = (k,w,x−1)−1.

Now write k2 = (k,w,x−1)−1. Then La = 〈k1〉×〈k2〉. Next

((k,w,x−1)[k,w],w,x−1) = 1 by Lemma 3.9(f)

⇒ ((k,w,x−1),w,x−1)([k,w],w,x−1) = 1 by Lemma 3.9(b)

⇒ ((k,w,x−1),w,x−1)(kα
0 ,w,x−1) = 1 for some α ∈ Z+

⇒ ((k,w,x−1),w,x−1) = 1 as (k0,w,x) = 1 by (4.6)

⇒ ((k,w,x−1)−1,w,x) = 1 by Moufang’s theorem.

Hence,

(4.8) (k2,w,x) = 1.

Then

(k,w,x) = (kδ
1 kε

2,w,x) for some δ ,ε ∈ Z+

= (kδ
1 ,w,x)(kε

2,w,x) by Lemma 3.9(b)
= 1 by (4.7) and (4.8).

This contradicts (4.5). The result now follows.
(b) By Lemma 3.9(c), La ⊆ Q. Take any x ∈ L−Q and w ∈ Q.

Suppose w ∈ La. Then x−1wx ∈ La = 〈w〉La as La E L.
Now suppose w ∈ Q−La. Since Q is a q-loop, it follows that q divides |w|. It is also

clear that p divides |x|. Now we form a subloop H = 〈x,w〉 in L.

Case 1. |H|= pq.

By Lemma 3.7(a), 〈w〉E H. Then x−1wx ∈ 〈w〉 ⊆ 〈w〉La.

Case 2. |H|= pq2.

We know that |LaH|= (|La||H|)/(|La∩H|) = (q2 · pq2)/(|La∩H|)≤ pq4. Since |La|=
q2, we have |La∩H|= 1,q or q2.
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Suppose |La∩H|= 1. Then |LaH|= pq4 = |L|. Hence, L = 〈x,w〉La. By Lemma 3.8(a),
La * N(L), contradicting our hypothesis.

Suppose |La∩H|= q2. Then La⊆H. By Lemma 3.7(a), there exists a normal subloop Q0
of order q2 in H. Now |LaQ0|= (|La||Q0|)/(|La∩Q0|) = (q2 ·q2)/(|La∩Q0|)≤ |H|= pq2.
Hence, |La∩Q0|= q2 and La = Q0. This is a contradiction as w ∈ Q0−La.

So, |La∩H| = q. Then there exists some k1 ∈ La−H. By forming a subloop 〈H,k1〉 in
L, we have |〈H,k1〉| = pq3 or pq4. If |〈H,k1〉| = pq4, then L = 〈H,k1〉 = 〈x,w,k1〉. Since
k1 ∈ La ⊆N(L), it follows that (x,w,k1) = 1. Thus L is a group by Moufang’s theorem. This
is a contradiction.

Therefore, |〈H,k1〉|= pq3. By Lemma 3.7(b), there exists a normal subloop Q1 of order
q3 in 〈H,k1〉. Now since La ⊆ 〈H,k1〉, it follows easily that La ⊆ Q1. As w /∈ La, we can
write Q1 = 〈w〉La. Hence, x−1wx ∈ Q1 = 〈w〉La.

Case 3. |H|= pq3.

Suppose La * H. Then there exists some k2 ∈ La−H. Hence, |〈H,k2〉| = pq4 = |L|.
Thus, L = 〈H,k2〉= 〈x,w,k2〉. Similar to the previous case, (x,w,k2) = 1 as k2 ∈ La ⊆N(L).
Then by Moufang’s theorem, L is a group which is a contradiction.

So, La⊆H. By Lemma 3.7(b), there exists a normal subloop Q2 of order q3 in H. Clearly
La ⊆ Q2. Since w /∈ La, we can write Q2 = 〈w〉La. Hence, x−1wx ∈ Q2 = 〈w〉La.

Case 4. |H|= pq4.

Then L = H = 〈x,w〉. Hence, L is a group by diassociativity. This is a contradiction.
The result now follows.

Theorem 4.1. Let L be a Moufang loop of order pq4 where p < q are odd primes and q 6≡ 1
(mod p). Then L is a group.

Proof. Suppose L is not associative. By Lagrange’s theorem, the order of any subloop of L
divides the order of L. Hence, by Lemma 3.11, every proper subloop of L is a group. The
same applies to every proper quotient loop of L. Thus L is minimally nonassociative.

Now by Lemma 3.9(a), La is a minimal normal subloop of L and is an elementary abelian
group. So |La|= q,q2 or q3 by Lemma 3.10(a).

From Lemma 3.5, there exists a subloop P of order p in L. Since P is cyclic, we can
write P = 〈x〉. By Lemma 3.7(b), there exists a normal subloop Q of order q4 in L. Clearly
Q is a maximal normal subloop of L. Hence, L = Q〈x〉 by Lemma 3.9(c).

Case 1. |La|= q.

Since La E L, LaP is a subloop of order pq in L. By Lemma 3.7(c), P E LaP. Now
(|La|, |P|) = (q, p) = 1, contrary to Lemma 3.9(d).

Case 2. |La|= q2.

From Lemma 4.6(a), we have (k,w, `) = 1 for all k ∈ La, w ∈ Q, ` ∈ L. By Lemma
3.9(k), La E N(L). Hence, q2 divides |N(L)|. Now p and q4 cannot divide |N(L)| by Lemma
3.10(b). Thus, |N(L)|= q2 or q3.

Suppose |N(L)| = q3. Then |L|/|N(L)| = pq. This contradicts Lemma 3.8(b). So,
|N(L)|= q2 and La = N(L).
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By Lemma 3.9(j), there exist some g,h ∈ Q such that (x,g,h) 6= 1. Now by Lem-
mas 3.2(b) and 3.1(a), we get first x−1L (h,g) = [xL (h,g)]−1, then x−1(x−1,g,h)−1 =
(x,g,h)x−1, and finally

(4.9) x(x,g,h)x−1 = (x−1,g,h)−1.

By Lemma 4.6(b), we have x−1gx = gα k for some k ∈ La and α ∈Z+. By Lemma 3.9(i),
[g,(x,g,h)] = 1. Then we use Lemma 4.1 to obtain (x−1,g,h)−1 = (x,g,h)α ∈ 〈(x,g,h)〉.

Now from equation (4.9), x(x,g,h)x−1 = (x,g,h)α . Then, by diassociativity, 〈x,(x,g,h)〉
is a group and hence, [x,(x,g,h)] = 1 by group theory. We observe that since |x| = p, it
follows that (|x|,q) = (|x|,q−1) = 1. So by using Corollary 4.1, we have [x,k] = 1 for all
k ∈ La. Hence, x ∈CL(La) and 〈x〉 ≤CL(La). It is also clear that (|〈x〉|, |La|) = (p,q2) = 1.
Thus by Lemma 3.4, we have 〈x〉 ⊆ N(L), a contradiction as |N(L)|= q2.

Case 3. |La|= q3.

Recall that Q is a maximal normal subloop of L. Since |Q| = q4 and |La| = q3, we can
write Q = La〈u〉 for any u ∈ Q−La.

Subcase 3.1. (k,w, `) = 1 for all k ∈ La, w ∈ Q, ` ∈ L.

By Lemma 3.9(k), La E N(L). Then by Lemma 3.6, Q⊆ N(L). This contradicts Lemma
3.10(b).

Subcase 3.2. (k,w, `) 6= 1 for some k ∈ La, w ∈ Q, ` ∈ L.

Suppose w∈ La. Then (k,w, `) = 1 as (La,La,L) = {1} by Lemma 3.9(a). Hence, w /∈ La.
Thus, we can write Q = La〈w〉. By Lemma 3.9(g), there exists some k0 ∈ La−{1} such that
(k0,w, `) = 1. So, (k0,u, `) = 1 for all u ∈ Q, by Lemma 4.3(a).

Suppose [k0,w] = 1. By Lemma 4.3(b), [k0,u] = 1 for all u ∈ Q as Q = La〈w〉. So by
Lemma 4.4, La E N(L). Hence, q3 divides |N(L)|. Thus, |L|/|N(L)| = 1, p or pq. This
contradicts Lemma 3.8(b). Therefore, [k0,w] 6= 1.

By Lemma 3.9(h), there exists S = 〈u−1k0u | u ∈ Q〉, a proper nontrivial subloop of La
which is normal in Q. Since |La|= q3, it follows that |S|= q or q2.

Suppose |S| = q. Since 1 6= k0 ∈ S, we can write S = 〈k0〉. Hence, w−1k0w ∈ 〈k0〉 as
S E Q. Thus, by result from group theory, we get [k0,w] = 1, a contradiction.

So, |S| = q2. Since Q is a finite q-group and S E Q, we have S∩Z(Q) 6= {1} by result
from group theory. As [k0,w] 6= 1, it follows that k0 /∈ Z(Q). Hence, |S∩Z(Q)| = q. Then
there exists some s ∈ S such that [s,u] = 1 for all u ∈Q. Since (k0,w, `) = 1, it follows from
Lemma 3.9(g) that (s,w, `) = 1. Thus, (s,u, `) = 1 for all u ∈ Q by Lemma 4.3(a). Now by
Lemma 4.4, La E N(L). This is a contradiction as (k,w, `) 6= 1.

Therefore, nevertheless, L is a group.

Corollary 4.2. Let p and q be distinct odd primes. All Moufang loops of order pq4 are
associative if and only if q 6= 3 and q 6≡ 1 (mod p).

Proof. Suppose q = 3. Then there exists a nonassociative Moufang loop of order q4 = 34.
Hence, by using the direct product of this nonassociative Moufang loop and any group of
order p, we can construct a nonassociative Moufang loop of order p ·34.

Suppose, on the other hand, that q≡ 1 (mod p). By Lemma 3.12, there exists a nonasso-
ciative Moufang loop of order pq3. Again by using the direct product of this nonassociative
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Moufang loop and any group of order q, we can construct a nonassociative Moufang loop
of order pq4.

Now suppose L is a Moufang loop of order pq4 with q 6≡ 1 (mod p) and q 6= 3. If q < p,
then by Lemma 3.11(b), L is associative. However if p < q, then L is associative by Theorem
4.1.

5. Open questions

Let p1, p2 and q be odd primes with pi < q and q 6≡ 1 (mod pi) for all i. Are all Moufang
loops of order p1 p2q4 associative if

(a) p1 = p2?
(b) p1 6= p2?
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useful comments.
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