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Abstract. Let I be an ideal of a commutative Noetherian local ring (R,m), M a finitely
generated R-module and lim←−

n
H i

m(M/InM) the i-th formal local cohomology module of M

with respect to I. We prove some results concerning artinianness of lim←−
n

H i
m(M/InM). We

discuss the maximum and minimum integers such that lim←−
n

H i
m(M/InM) is artinian.
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1. Introduction

Throughout this paper, we assume that (R,m) is a commutative Noetherian local ring with
non-zero identity, I is an ideal of R and M a finitely generated R-module. Schenzel [9]
has called Fi

I(M) := lim←−
n

H i
m(M/InM) the i-th formal local cohomology module of M with

respect to I and investigated their structure extensively. Let t be an integer. It is shown that
the local cohomology module H i

I(M) is finitely generated for all i < t if and only if there is
some integer r > 0 such that IrH i

I(M) = 0 for all i < t. Recently, in [7, Theorem 2.8], it is
proved that a similar result, that is, Fi

I(M) is artinian for all i < t if and only if there is some
integer r > 0 such that IrFi

I(M) = 0 for all i < t. In this paper, we get the following result.

Theorem 1.1. Let t ≥ 0 be an integer. Then the following statements are equivalent:
(a) Fi

I(M) is artinian for all i > t;
(b) I ⊆ Rad(0 : Fi

I(M)) for all i > t.

Set q(I,M) := sup{i | Fi
I(M) is not artinian} = sup{i | I * Rad(0 : Fi

I(M))}. We prove
that if SuppL ⊆ SuppM, then q(I,L) ≤ q(I,M). In particular, if SuppL = SuppM, then
q(I,L) = q(I,M). In [3] and [8], the artinianness of local cohomology modules is con-
sidered. In [7, Theorem 2.9], it is shown that if Fi

I(M) is artinian for all i < t, then
Ft

I(M)/IFt
I(M) is artinian. As the dual case of the above result, we get another main re-

sult of this paper.
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Theorem 1.2. Let t be an integer such that Fi
I(M) is artinian for all i < t. Then HomR(R/I,

Ft
I(M)) is artinian.

2. Main results

First, we give the following definition.

Definition 2.1. For an ideal I of R, we define the formal filter depth, ff-depth(I,M), by
ff-depth(I,M) := inf{i | Fi

I(M) is not artinian}.

Proposition 2.1. Let I and J be ideals of R and Rad(I) = Rad(J). Then we have that
ff-depth(I,M) = ff-depth(J,M).

Proof. By [9, Proposition 3.3], we have Fi
I(M)∼= Fi

IR̂
(M̂) for all i≥ 0. Therefore, we may

assume that R is complete. Then, by Cohen’s Structure Theorem, R is a homomorphic
image of a regular complete local ring (T,n) such that R = T/J for some ideal J of T . Set
b1 := I∩T and b2 := J∩T . In view of [1, Lemma 2.1], we have that

Fi
I(M)∼= Fi

b1
(M)∼= HomT (HdimT−i

b1
(M,T ),ET (T/n))

and
Fi

J(M)∼= Fi
b2

(M)∼= HomT (HdimT−i
b2

(M,T ),ET (T/n))

for all i ≥ 0. Since Rad(I) = Rad(J), then Rad(b1) = Rad(b2). Let E• be a minimal
injective resolution of T . We know that HdimT−i

b1
(M,T ) = HdimT−i(HomT (M,Γb1(E

•)))
and HdimT−i

b2
(M,T ) = HdimT−i(HomT (M,Γb2(E

•))). Now the result follows by Rad(b1) =
Rad(b2).

Proposition 2.2. ff-depth(I,M) = ff-depth(IR̂,M̂).

Proof. Since Fi
I(M)∼= Fi

IR̂
(M̂) for all i≥ 0. The result is clear.

Proposition 2.3. Let I⊆ J be ideals of R. Then we have that ff-depth(I,M)≤ ff-depth(J,M)+
ara(J/I).

Proof. By Proposition 2.1, we may assume that there are x1,x2, . . . ,xn ∈ R such that J = I +
(x1,x2, . . . ,xn). By induction on n, it suffices to treat only the case n = 1. So, let J = I +(x)
for some x ∈ R. By [9, Theorem 3.15], there is the following long exact sequence

· · · → Hom(Rx,F
i
I(M))→ Fi

I(M)→ Fi
J(M)→ Hom(Rx,F

i+1
I (M))→ ··· .

For all i < ff-depth(I,M)− 1, Fi
I(M) and Fi+1

I (M) are artinian, then Fi
J(M) is artinian by

the above exact sequence, and so ff-depth(I,M)≤ ff-depth(J,M)+1.
In [1, Proposition 4.4], it is proved that if L is a pure submodule of M. Then inf{i |

Fi
I(L) 6= 0} ≥ inf{i | Fi

I(M) 6= 0}. Next, we give a similar result.

Proposition 2.4. Let L be a pure submodule of M. Then ff-depth(I,M)≤ ff-depth(I,L).

Proof. Since L is a pure submodule of M, we have that the natural map L/InL→M/InM is
pure for all n > 0. [6, Corollary 3.2(a)] implies the exact sequence

0→ H i
m(L/InL)→ H i

m(M/InM)

for all i ≥ 0 and n ≥ 0. This induces the exact sequence 0 → Fi
I(L) → Fi

I(M) and so
ff-depth(I,M)≤ ff-depth(I,L).
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Lemma 2.1. Let (R,m) is a local ring possessing a dualizing complex D·R and let p denote
a prime ideal and i be an integer such that Fi

IRp
(Mp) is not artinian. Then F

i+dimR/p
I (M) is

not artinian.

Proof. The proof is similar to the one of [9, Corollary 3.7], here we omit it.

Proposition 2.5.
(1) Let x ∈m be an M-filter regular element. Then we have that ff-depth(I, M/xM)≥

ff-depth(I,M)−1.
(2) Suppose that f-depthM < ∞. Then ff-depth(I,M)≤min{f-depthM,dimM/IM}.
(3) Suppose that R possesses a dualizing complex. Then

ff-depth(I,M)≤ ff-depth(IRp,Mp)+dimR/p

for all p ∈ SuppM∩V (I).

Proof. (1) It is easy to prove by [9, Theorem 3.14].
(2) Since f-depthM = f-depthM̂ and dimM/IM = dimM̂/IM̂, we can assume that R is

complete by Proposition 2.2. Note that

ff-depth(I,M)≤ sup{i | Fi
I(M) is not artinian } ≤ sup{i | Fi

I(M) 6= 0}= dimM/IM.

Now we prove ff-depth(I,M)≤ f-depthM by induction on t = ff-depth(I,M). When t = 0,
the claim holds. Let t ≥ 1. Then F0

I (M) is artinian. It follows that dimR/(I + p) > 0 for all
p∈AssM\{m} by [5, Proposition 2.2]. Then we can choose x∈m which forms a parameter
of R/(I, p) for all p ∈ AssM\{m}, so x ∈m be an M-filter regular element. Thus

t−1≤ ff-depth(I,M/xM)≤ f-depth(M/xM) = f-depthM−1

by (1) and the inductive hypothesis. So t ≤ f-depthM.
(3) We get the result by Lemma 2.1.

Theorem 2.1. Let M be a non-zero finitely generated R-module and let t ≥ 1 be an integer.
Then the following four conditions are equivalent:

(1) Fi
I(M) = 0 for all i≥ t;

(2) Fi
I(M) is finitely generated for all i≥ t;

(3) Fi
I(R/p) = 0 for all i≥ t, p ∈ SuppM;

(4) Fi
I(R/p) is finitely generated for all i≥ t, p ∈ SuppM.

Proof. (1)⇒ (2). It is clear.
(2)⇒ (1). We use induction on d = dimM. For d = 0, then Fi

I(M) = 0 for all i≥ 1.
Now let d > 0 and Fi

I(M) = 0 for all i > t. Now we will prove that Ft
I(M) = 0. First, we

assume that depthM > 0, then there is an element x ∈m which is M-regular. From the short
exact sequence 0→M x→M→M/xM→ 0, we can get the long exact sequence

· · · → Fi
I(M) x→ Fi

I(M)→ Fi
I(M/xM)→ Fi+1

I (M)→ ·· · ,
then Fi

I(M/xM) = 0 for all i ≥ t. By the inductive hypothesis, we get that Ft
I(M/xM) = 0,

then xFt
I(M) = Ft

I(M). Since Ft
I(M) is finitely generated, then Ft

I(M) = 0.
Now let depthM = 0 and N = H0

m(M), then F0
I (N) = lim←−

n
H0

m(N/InN) = N and Fi
I(N) = 0

for all i≥ 1. From the short exact sequence 0→ N→M→M/N→ 0, we get that Fi
I(M) =

Fi
I(M/N) for all i≥ 1. Since depthM/N > 0, the desired result follows the above argument.
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(1)⇒ (3). Note that dimM/IM = sup{i | Fi
I(M) 6= 0}. For all p ∈ SuppM, dimR/(I +

p)≤ dimM/IM, hence Fi
I(R/p) = 0 for all i≥ t.

(3)⇒ (1). It is enough for us to prove that Ft
I(M) = 0. There is a prime filtration

0 = M0 ⊆ M1 ⊆ ·· · ⊆ Ms = M of submodules of M such that M j/M j−1 ∼= R/p j, where
p j ∈ SuppM, 1 ≤ j ≤ s. From the exact sequence Ft

I(M j−1)→ Ft
I(M j)→ Ft

I(R/p j), we
obtain that Ft

I(M) = 0 by the assumption and induction on j.
The proof of (3)⇔ (4) is similar to the proof of (1)⇔ (2).
Next corollary is proved in [1, Theorem 2.6 (ii)]. Here we provide an easy method.

Corollary 2.1. Assume that dimM/IM = c > 0. Then Fc
I (M) is not finitely generated.

Proof. If Fc
I (M) is finitely generated, then Fi

I(M) is finitely generated for all i ≥ c. Hence
Fi

I(M) = 0 for all i≥ c by Theorem 2.1. In fact, Fc
I (M) 6= 0. It is a contradiction.

Now, we will present one of the main results in this paper.

Theorem 2.2. Let t be a non-negative integer such that Fi
I(M) is artinian for all i < t. Then

HomR(R/I,Ft
I(M)) is artinian.

Proof. Since Fi
I(M)∼= Fi

IR̂
(M̂) and

HomR̂(R̂/IR̂,Ft
IR̂

(M̂)∼= HomR̂(R/I⊗ R̂,Ft
I(M))

= HomR(R/I,HomR̂(R̂,Ft
I(M))) = HomR(R/I,Ft

I(M)).

Hence, we can assume that R is complete. Next, we use induction on t. When t = 0,
we get that AssR(F0

I (M)) = {p ∈ AssM : dimR/(I + p) = 0} by [9, Lemma 4.1], then
V (I)∩Supp(F0

I (M))⊆ {m}, it turns out that HomR(R/I,F0
I (M)) is artinian.

Now we suppose that t > 0, and the result holds for all values less than t. From the
short exact sequence 0→H0

I (M)→M→M/H0
I (M)→ 0, one has the following long exact

sequence

· · · → H i
m(H0

I (M))→ Fi
I(M)→ Fi

I(M/H0
I (M))→ H i+1

m (H0
I (M))→ ···

by [1, Lemma 2.3], so Fi
I(M/H0

I (M)) is artinian for all i < t. We split the exact sequence

Ht
m(H0

I (M))→ Ft
I(M)

f→ Ft
I(M/H0

I (M))
g→ Ht+1

m (H0
I (M))

to the following exact sequences

0→ ker f → Ft
I(M)→ im f → 0

and
0→ im f → Ft

I(M/H0
I (M))→ img→ 0.

Then we have the following exact sequences

0→ HomR(R/I,ker f )→ HomR(R/I,Ft
I(M))

→ HomR(R/I, im f )→ Ext1R(R/I,ker f )→ ··· ,

0→ HomR(R/I, im f )→ HomR(R/I,Ft
I(M/H0

I (M)))

→ HomR(R/I, img)→ ··· .
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Note that ker f and img are artinian, it is enough to show that HomR(R/I,Ft
I(M/H0

I (M)))
is artinian. So, we may assume that H0

I (M) = 0. Then there is an M-regular element x ∈ I.
The short exact sequence 0→M x→M→M/xM→ 0 provides the long exact sequence

· · · → Fi
I(M) x→ Fi

I(M)→ Fi
I(M/xM)→ Fi+1

I (M) x→ Fi+1
I (M)→ ··· .(2.1)

This induces that Fi
I(M/xM) is artinian for all i < t − 1. So HomR(R/I,Ft−1

I (M/xM)) is
artinian by the inductive hypothesis. From (2.1) we get the exact sequence

0→ Ft−1
I (M)/xFt−1

I (M)→ Ft−1
I (M/xM)→ (0 :Ft

I(M) x)→ 0,

which induces the exact sequence

HomR(R/I,Ft−1
I (M/xM))→ HomR(R/I,(0 :Ft

I(M) x))→ Ext1R(R/I,Ft−1
I (M)/xFt−1

I (M)).

It follows that HomR(R/I,(0 :Ft
I(M) x)) is artinian. Since x ∈ I, we have that

HomR(R/I,(0 :Ft
I(M) x))∼= HomR(R/I⊗R/xR,Ft

I(M))∼= HomR(R/I,Ft
I(M)),

and so HomR(R/I,Ft
I(M)) is artinian.

Theorem 2.3. Let M be a non-zero finitely generated R-module and let t be a non-negative
integer. Then the following statements are equivalent:

(a) Fi
I(M) is artinian for all i > t;

(b) I ⊆ Rad(0 : Fi
I(M)) for all i > t.

Proof. (a)⇒ (b). Let i > t. Since Fi
I(M) is artinian, we get that IsFi

I(M) = 0 for some
positive integer s by [7, Proposition 2.1]. So I ⊆ Rad(0 : Fi

I(M)) for all i > t.
(b)⇒ (a). We use induction on d = dimM. For d = 0, Fi

I(M) = 0 for all i > 0. So, in
this case the claim holds. Now, let d > 0 and assume that the claim holds for all values less
than d. One has the following long exact sequence

(2.2) · · · → H i
m(H0

I (M))→ Fi
I(M)→ Fi

I(M/H0
I (M))→ H i+1

m (H0
I (M))→ ···

by [1, Lemma 2.3]. So, it is enough to prove that Fi
I(M/H0

I (M)) is artinian for all i > t.
From (2.2) we can see that I ⊆ Rad(0 : Fi

I(M/H0
I (M))) for all i > t. Thus, we may assume

that H0
I (M) = 0. Then there is an M-regular element x ∈ I. For all i > t, there exists a

positive integer si such that xsiFi
I(M) = 0 by hypothesis. The short exact sequence 0→

M xsi→M→M/xsiM→ 0 provides the exact sequence

0→ Fi
I(M)→ Fi

I(M/xsiM)→ Fi+1
I (M)

for all i > t. This induces that I ⊆ Rad(0 : Fi
I(M/xsiM)) is artinian and by the inductive

hypothesis Fi
I(M/xsiM) is artinian for all i > t. Hence Fi

I(M) is artinian for all i > t.
Assume that M and N are finitely generated R-modules. Set q(I,M) := sup{i | Fi

I(M) is
not artinian}= sup{i | I * Rad(0 : Fi

I(M))} and fI(M,N) = inf{i |H i
I(M,N) is not finitely

generated}.

Remark 2.1. [1, Example 4.3(i)] In general, SuppM = SuppN not necessarily lead to
fgrade(I,M) = fgrade(I,N) for any finitely generated R-modules M and N. For exam-
ple, let (R,m) be a 2-dimensional regular local ring and I an ideal with dimR/I = 1.
The Hartshorne-Lichtenbaum Vanishing Theorem yields that cd(I,R) = 1, cd(I,R/m) = 0,
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fgrade(I,R) = 1 and fgrade(I,R/m) = 0. Set M =: R⊕R/m. Then M is a 2-dimensional se-
quentially Cohen-Macaulay R-module and SuppM = SuppR, but fgrade(I,M) = inf{fgrade
(I,R), fgrade(I,R/m)}= 0. However, we have the following result.

Proposition 2.6. Let M and L be finitely generated R-modules and SuppL⊆ SuppM. Then
q(I,L)≤ q(I,M). In particular, if SuppL = SuppM. Then q(I,M) = q(I,L).

Proof. Since Fi
I(K)∼= Fi

IR̂
(K̂) for any R-module K and all i≥ 0. Therefore, we may assume

that R is complete. Then, by Cohen’s Structure Theorem, R is a homomorphic image of a
regular complete local ring (T,n) such that R = T/J for some ideal J of T . Set b := I∩T .
In view of [1, Lemma 2.1], we have that

Fi
I(M)∼= Fi

b(M)∼= HomT (HdimT−i
b (M,T ),ET (T/n))

and
Fi

I(L)∼= Fi
b(L)∼= HomT (HdimT−i

b (L,T ),ET (T/n))
for all i≥ 0. It induces that

q(I,M) = sup{i | HdimT−i
b (M,T ) is not finitely generated}

= dimT − inf{i | H i
b(M,T ) is not finitely generated}= dimT − fb(M,T )

and q(I,L) = dimT − inf{i | H i
b(L,T ) is not finitely generated} = dimT − fb(L,T ). The

claim follows by [2, Theorem 2.1].
Next, we will give a proposition, before this, we give a lemma.

Lemma 2.2. Let 0→M1→M1⊕M2→M2→ 0 be an exact sequence of finitely generated
R-modules. Then q(I,M1⊕M2) = sup{q(I,M1),q(I,M2)}.
Proof. As formal local cohomology functor is additive, the result is clear.

Proposition 2.7. q(I,M) = sup{q(I,R/p) | p ∈ SuppM}.
Proof. Set K := ⊕p∈AssMR/p. Then K is finitely generated and SuppK = SuppM. So we
have that

q(I,M) = q(I,K) = sup{q(I,R/p) | p ∈ AssM}= sup{q(I,R/p) | p ∈ SuppM},
where the first equality is by Proposition 2.6, the second equality follows by Lemma 2.2.

Theorem 2.4. Let (R,m) be a commutative Noetherian local ring, I1 and I2 be two ideals
of R such that I1 ⊆ I2, and M a finitely generated R-module of dimension n. Then there is a
surjective homomorphism: Fn

I1(M)→ Fn
I2(M).

Proof. Let R = R/AnnR M. Note that Fi
I1(M) ∼= Fi

I1R(M) and Fi
I2(M) ∼= Fi

I2R(M). So we
can assume that AnnR M = 0, and then dimR = n. We may assume that R is complete
by [9, Theorem 3.3]. Then, by Cohen’s Structure Theorem, there exists a complete regular
local ring (T,n) such that R = T/J for some ideal J of T . Set J1 = I1 ∩ J and J2 = I2 ∩ J.
Since dimR M = dimT M, Fn

I1(M) ∼= Fn
J1

(M) and Fn
I2(M) ∼= Fn

J2
(M). Thus we may assume

that R = T . Then by [1, Lemma 2.1], it follows that

Fn
I1(M)∼= HomT (H0

J1
(M,T ),ET (T/n))

and
Fn

I2(M)∼= HomT (H0
J2

(M,T ),ET (T/n)).

Since H0
J2

(M,T ) is a submodule of H0
J1

(M,T ), the result is follows.
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Remark 2.2. In the above theorem, if Fn
I1(M) = Fn

I2(M) = 0, then the result always holds.
Now, we construct an example such that Fn

I1(M) 6= 0 and Fn
I2(M) 6= 0. Let k be a field. Let

R = k[[x,y]] denote the formal power series ring in two variables over k. Put I1 = (x2)R,
I2 = (x)R and M = R/I2. Then I1 ⊆ I2 and dimM = 1, F1

I1(M) 6= 0 and F1
I2(M) 6= 0.

Proposition 2.8. Let (R,m) be a commutative Noetherian local ring of dimension n and M a
finitely generated R-module. Then CoassFn

I (M)⊆ {p ∈ SpecR | p⊇AnnM,dimR/p = n}.

Proof. Since CoassFn
I (M) = Coass(Fn

I (R)⊗M) = SuppM∩CoassFn
I (R), let p ∈ CoassFn

I
(M), we have that p⊇ AnnM and p ∈ CoassFn

I (R/p), then dimR/p = n.

Remark 2.3.
(1) In Proposition 2.8, if Fn

I (M) = 0, then the result is clear. Here, we give an example
such that Fn

I (M) 6= 0. To this end, let R be a local domain of dimension 3, I = (0)
and M = R. Then F3

(0)(R) 6= 0.
(2) The inclusion in the above Proposition is not an equality in general. Let R be a local

domain of dimension 3 and I an ideal of R of dimension 1. Then CoassF3
I (R) = /0,

but (0) ∈ {p ∈ SpecR | p⊇ AnnR,dimAnnR,dimR/p = 3}.
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