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Abstract. This paper aims to model integer valued time series with possible negative values
and either positive or negative correlations by introducing the Poisson difference integer
valued autoregressive model of order one. This model has Poisson difference marginal
distribution and is defined by a new operator called the extended binomial thinning operator.
It includes previous integer valued autoregressive of order one model as special cases. The
model can be used as a tool to model non-stationary count data. The model is applied to
data from the Saudi stock exchange.
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1. Introduction

Various models have been proposed for stationary discrete time series. Jacobs and Lewis
[10–12] introduced what they had called the discrete autoregressive-moving average (DAR-
MA) models, which were obtained by a probabilistic mixture of a sequence of independent
identically distributed discrete random variables. Al-Osh and Alzaid [1], Alzaid and Al-
Osh [2] and McKenzie [15] introduced the integer-valued autoregressive-moving average
(INARMA) models. The INARMA models are defined on the basis of binomial thinning
operator. In these models, the Poisson distribution plays the same role as the Normal distri-
bution in Box-Jenkins models in terms of time reversibility and linear backward regression
properties.

The nonstationary integer-valued time series are frequently encountered in the real life
problems. Waiter et al. [17], Anderson and Grenfell [5] and Zaidi et al. [18] used the real
valued ARIMA to model such kind of data. However, when the time series consists of
small counts, this model may be inappropriate. Kim and Park [14] introduced an integer-
valued autoregressive process of order p with signed binomial thinning operator (INARS
(p)). Karlis and Anderson [13] defined the ZINAR process, as an extension of the INAR
model using the signed binomial thinning operator and studied the case where the innovation
has Skellam distribution. Freeland [8] defined the true integer-valued autoregressive process
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of order one (TINAR(1)) as the difference of two INAR processes which requires observing
the two processes.

The aims of this paper are to define a model that can handle nonstationary integer val-
ued time series, to model integer valued time series with possible negative values and to
model integer valued time series with either positive or negative correlations. The paper is
organized as follows. In Section 2, we define the extended binomial thinning operator. The
Poisson difference integer valued autoregressive model of order one is introduced in Section
3. In Section 4, we study the properties of the model and the question of time reversibil-
ity. The estimation of the model parameters is discussed in Section 5. Section 6 includes
applications from the Saudi stock exchange.

In the rest of this section we recall some definitions that are needed in the sequel.

Definition 1.1. Let X be a non-negative integer valued random variable, then for any α ∈
(0,1) the ” ◦ ” binomial thinning operator which is due to Steutel and Van Harn [16] is
defined by

(1.1) α ◦X =
X

∑
i=1

Yi

where {Yi} is a sequence of i.i.d. random variables, independent of X, such that

P(Yi = 1) = 1−P(Yi = 0) = α.

Al-Osh and Alzaid [1] introduced the integer valued autoregressive process of order one
(INAR (1)).

Definition 1.2. The INAR (1) process {Xt ; t ∈ Z} is defined by

(1.2) Xt = α ◦Xt−1 + εt

where α ∈ (0,1) and {εt} is a sequence of i.i.d. non-negative integer valued random vari-
ables having mean µ and variance σ2.

Note that for any fixed parameter α ∈ (0,1) and any non-negative integer valued ran-
dom variable Xt , the random variables α ◦Xt |Xt = xt ∼ Binomial(xt ,α) are assumed to be
independent of the history of the process and from the sequence{εt}.

The INAR (1) process has many properties similar to the AR (1) process. For exam-
ple, any discrete self decomposable distribution can serve as a marginal distribution for the
INAR (1). The Poisson distribution almost plays the same role of the normal distribution.
Assuming that {εt} is a sequence of i.i.d. Poisson (λ ) then the process {Xt} has Poisson
marginal distribution with mean µ = λ/(1−α).

Kim and Park [14] introduced an operator called the signed binomial thinning to develop
the INARS (p).

Definition 1.3. Let α be a real number on (−1,1) and {wt j(α)} be i.i.d. Bernoulli random
variables with P(wt j(α) = 1) = |α| for each given t. Define sgn(x) = 1 if x > 0 and sgn(x) =
−1 if x < 0. Using this notation, the signed binomial thinning is formally defined as

(1.3) α • yt ≡ sgn(α)sgn(yt)
|yt |

∑
j=1

wt j(α)

where the subscript t in wt j (α) describes the observed time of process yt . When yt > 0 and
α > 0, the signed binomial thinning is reduced to the binomial thinning operator.
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Definition 1.4. The integer-valued autoregressive process of order p with signed binomial
thinning by Kim and Park [14] is defined by

(1.4) yt =
p

∑
i=1

αi • yt−i + εt , t = 0,±1,±2, . . .

where the signed binomial thinning operator is given in (1.3), {εt} is a sequence of i.i.d.
integer-valued random variables with mean µε and variance σ2

ε ,0 6 |αi|6 1 for i = 1, . . . , p.
The {εt} are uncorrelated with yt−i for i > 1 and the counting series wt j(α) in the signed
binomial thinning are i.i.d and independent of yt .

Under the condition that all roots of the polynomial λ p−α1λ p−1− . . .−αp−1λ−αp = 0
are inside the unit circle, the process yt is stationary and ergodic.

Karlis and Anderson [13] studied (1.4) for p = 1 and {εt} has Skellam distribution.
However the marginal distribution of the process does not has Skellam distribution. They
computed the moment and conditional maximum likelihood estimates.

2. The extended binomial operator

It is well known that given two independent Poisson random variables the conditional dis-
tribution of one of them given their sum has binomial distribution. This idea was the basis
for defining the INAR models. Recently, Alzaid and Omair [3] extended this result to the
case where the two independent random variables are Poisson difference random variables
and called the conditional distribution as the conditional Poisson difference distribution. A
special case of this distribution was considered and named as the extended binomial distri-
bution. In an analogy to the INAR models we will use the result of Alzaid and Omair [3] to
introduce INAR model with Poisson difference marginal distributions.

For ease of reference, the definition of the Poisson difference distribution and the ex-
tended binomial distribution are given.

Definition 2.1. A random variable Z is said to have Poisson difference (Skellam) distribu-
tion with parameters θ1 > 0 and θ2 > 0 if its probability mass function (p.m.f.) is given
by:

(2.1) P(Z = z) = e−θ1−θ2

(
θ1

θ2

) z
2

Iz

(
2
√

θ1θ2

)
, z = . . . ,−1,0,1, . . .

where Iy(x) = (x/2)y
∑

∞
k=0 ((x2/4)k)/(k!(y+ k)!) is the modified Bessel function of the first

kind.

The Poisson difference distribution is denoted by PD(θ1,θ2).
Let X1 and X2 be two independent Poisson random variables with means θ1 > 0 and

θ2 > 0, respectively. Let Yi = Xi +W, i = 1,2 where W is a random variable independent of
X1 and X2. Then Z = Y1−Y2 = X1−X2 is PD(θ1,θ2).

Alzaid and Omair [4] introduced the following alternative formulas for the probability
mass function of the Poisson difference distribution

P(Z = z) = e−θ1−θ2θ
z
10F̃1(;z+1;θ1θ2), z = . . . ,−1,0,1, . . .

using the regularized hypergeometric function 0F̃1, which is defined by

(2.2) 0F̃1(;y;θ) =
∞

∑
k=0

θ k

k!Γ(y+ k)
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This function is linked with the modified Bessel function of the first kind through the identity

(2.3) Iy(θ) =
(

θ

2

)y

0F̃1

(
;y+1;

θ 2

4

)
.

Definition 2.2. A random variable X in Z has extended binomial distribution with param-
eters 0 < p < 1(q = 1− p),θ > 0 and z ∈ Z, denoted by X ∼ EB(z, p,θ) if

(2.4) P(X = x) =
pxqz−x

0F̃1
(
;x+1; p2θ

)
0F̃1
(
;z− x+1;q2θ

)
0F̃1 (;z+1;θ)

, x = . . . ,−1,0,1, . . . .

For X ∼ EB(z, p,θ):
I. The characteristic function:

(2.5) ΦX (t) =
(

peit +q
)z 0F̃1

(
;z+1;θ

(
pqeit + pqe−it +1−2pq

))
0F̃1 (;z+1;θ)

.

II. The mean:

(2.6) E(X) = pz.

III. The variance:

(2.7) V (X) = zpq+2pqθ
0F̃1(;z+2;θ)

0F̃1(;z+1;θ)
Next, we will introduce a new operator which will be used in defining the PDINAR (1)

model.

Definition 2.3. Let Z be an integer-valued random variable (which can take negative inte-
gers); then for any α ∈ [0,1] and θ > 0 the extended binomial thinning operator denoted
by ”Sα,θ (Z)” is defined such that Sα,θ (Z)|Z ∼ EB(Z,α,θ).

The extended binomial thinning operator has the following representation

(2.8) Sα,θ (Z) = (sgnZ)
|Z|

∑
i=1

Yi +
W (Z)

∑
i=1

Bi,

where Yi is a sequence of i.i.d. random variables, independent of Bi,Z and W (Z), such that
P(Yi = 1) = 1−P(Yi = 0) = α,{Bi} is a sequence of i.i.d. random variables independent of
{Yi},Z and W (Z) such that

P(Bi = 1) = P(Bi =−1) = α(1−α) and P(Bi = 0) = 1−2α(1−α)

and W (Z)|Z = z is a random variable having Bessel distribution with parameters (|z|,θ),
(see, for example, Devroye [7]).

Since ∑
|Z|
i=1 Yi|Z = z ∼ binomial(|z|,α),∑W (Z)

i=1 Bi|Z = z has the distribution with charac-
teristic function given by

Φ(t) = 0F̃1
(
; |z|+1;θ

(
αᾱeit +αᾱe−it +1−2αᾱ

))
0F̃1 (; |z|+1;θ)

,

where ᾱ = 1−α and since they are independent it is clear that Sα,θ (Z)|Z = z∼ EB(z,α,θ).
See Alzaid and Omair [3].
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Remark 2.1.
I. The extended binomial thinning includes the binomial thinning as a special case

when Z is non-negative integer valued random variable and θ = 0.
II. The extended binomial thinning operator multiplied by a sign yields the binomial

signed operator of Kim and Park [14] as a special case when θ = 0 as we will see
in the next section.

3. The Poisson difference integer valued autoregressive model of order one

In this section, we will define a new integer-valued autoregressive process of order one that
can handle negative integer-valued time series and allow for both positive and negative auto-
correlation. This process is called Poisson difference integer-valued process (PDINAR(1)).
Unlike the PINAR (1) where only positive correlation is obtained, in the PDINAR(1) pro-
cess we can model processes with positive and negative correlation. We will use the nota-
tion PDINAR+(1) for the process with positive correlation and PDINAR−(1) for the process
with negative correlation.

Definition 3.1. Let {εt} be a sequence of i.i.d. random variables with the Poisson difference
distribution PD(θ1,θ2). The PDINAR (1) process {Zt} is defined by

(3.1) Zt = δSα,θ (Zt−1)+ εt t = 0,1,2, . . . ,

where {Sα,θ (Zt)} is a sequence of i.i.d. integer-valued random variables that arise from
Zt by the extended binomial thinning and are assumed to be independent of the history of
the process and from the sequence {εt}. δ is a parameter with possible values 1 and −1
describing the sign of the correlation.

Throughout we denote by PDINAR+(1) or PDINAR−(1) to the PDINAR(1) according
to the value of δ is 1 or −1 respectively.

Let Sα,θ (Zt)|Zt ∼ EB(Zt ,α,θ) such that

α ∈ (0,1), θ =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1−δα

)2
)

.

It is also assumed that

Z0 ∼ PD
(

1
2

(
θ1 +θ2

1−α
+

θ1−θ2

1−δα

)
,

1
2

(
θ1 +θ2

1−α
− θ1−θ2

1−δα

))
.

According to the above definition, the process is Markovian.
The following proposition is proved in Alzaid and Omair [3].

Proposition 3.1. If Z ∼ PD(θ1,θ2) and X |Z = z∼ EB(z, p,θ), where θ = θ1θ2 then X and
Z−X are independent and X ∼ PD(pθ1, pθ2) and Z−X ∼ PD(qθ1,qθ2).

Proposition 3.2. Under all the above conditions, the PDINAR(1) process is a stationary
Markov process with the Poisson difference marginal distribution having parameters(

1
2

(
θ1 +θ2

1−α
+

θ1−θ2

1−δα

)
,

1
2

(
θ1 +θ2

1−α
− θ1−θ2

1−δα

))
.
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Proof.

Case 1. When δ = 1, the process is PDINAR+(1).
According to Proposition 3.1, if

Z0 ∼ PD
(

1
2

(
θ1 +θ2

1−α
+

θ1−θ2

1−α

)
=

θ1

1−α
,

1
2

(
θ1 +θ2

1−α
− θ1−θ2

1−α

)
=

θ2

1−α

)
and

Sα,θ (Z0)|Z0 ∼ EB
(

Z0,α,
θ1θ2

(1−α)2

)
,

then

Sα,θ (Z0)∼ PD
(

αθ1

1−α
,

αθ2

1−α

)
.

Since Sα,θ (Z0)∼ PD(αθ1/(1−α),αθ2/(1−α)) is independent of ε1∼ PD(θ1,θ2) and
the sum of two independent Poisson difference random variables is Poisson difference ran-
dom variable, we conclude that Z1 has the Poisson difference distribution with parameters
θ1/(1−α) and θ2/(1−α). That is Z1 has the same distribution as Z0. Since the process is
Markovian, {Zt} is stationary PD(θ1/(1−α),θ2/(1−α)).

Case 2. When δ =−1, the process is PDINAR−(1).
According to Proposition 3.1, if

Z0 ∼ PD
(

1
2

(
θ1 +θ2

1−α
+

θ1−θ2

1+α

)
=

θ1 +αθ2

1−α2 ,
1
2

(
θ1 +θ2

1−α
− θ1−θ2

1+α

)
=

θ2 +αθ1

1−α2

)
and

Sα,θ (Z0)|Z0 ∼ EB
(

Z0,α,

(
θ1 +αθ2

1−α2

)(
θ2 +αθ1

1−α2

))
then

Sα,θ (Z0)∼ PD
(

α
θ1 +αθ2

1−α2 ,α
θ2 +αθ1

1−α2

)
.

Since Sα,θ (Z0)∼PD
(
α(θ1 +αθ2)/(1−α2),α(θ2 +αθ1)/(1−α2)

)
is independent of ε1∼

PD(θ1,θ2), Z1 has the Poisson difference distribution as the difference of two independent
Poisson difference distributions with parameters (θ1 +αθ2)/(1−α2) and (θ2 +αθ1)/(1−
α2). That is Z1 has the same distribution as Z0. Since the process is Markovian, {Zt} is
stationary PD

(
(θ1 +αθ2)/(1−α2),(θ2 +αθ1)/(1−α2)

)
.

4. Properties of the PDINAR (1) model

In this section, we discuss some distributional properties of the PDINAR (1) model.

1. The conditional mean is

(4.1) E(Zt |Zt−1) = αδZt−1 +θ1−θ2

and hence it is linear in Zt−1. This implies that the PDINAR (1) model can be viewed as
a new member of the conditional linear model of Grunwald [9].
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2. The conditional variance is given by

(4.2) V (Zt |Zt−1) = α(1−α)Zt−1 +2α(1−α)θ 0F̃1 (;Zt−1 +2;θ)

0F̃1 (;Zt−1 +1;θ)
+θ1 +θ2,

where

θ =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1−δα

)2
)

=


θ1θ2

(1−α)2 δ = 1(
θ1+αθ2

1−α2

)(
θ2+αθ1

1−α2

)
δ =−1

which is clearly not linear.
3. The unconditional mean is given by

(4.3) E(Zt) =
θ1−θ2

1−δα
.

4. The unconditional variance is given by

(4.4) V (Zt) =
θ1 +θ2

1−α
.

5. For any k = 0,±1,±2, . . ., the covariance is given by

γk = Cov(Zt+k,Zt) = Cov
(
δSα,θ (Zt+k−1)+ εt+k,Zt

)
= E

(
Cov

(
δSα,θ (Zt+k−1)+ εt+k,Zt |Zt+k−1

))
+Cov

(
E
(
δSα,θ (Zt+k−1 + εt+k|Zt+k−1) ,E (Zt |Zt+k−1)

))
= Cov

(
E
(
Sα,θ (Zt+k−1 + εt+k|Zt+k−1) ,E (Zt |Zt+k−1)

))
= δα Cov(Zt+k−1,Zt) = (δα)k Cov(Zt ,Zt) = (αδ )k

(
θ1 +θ2

1−α

)
.(4.5)

6. The autocorrelation is

(4.6) ρk = Corr(Zt+k,Zt) = (αδ )k.

We can see that the autocorrelation function decays exponentially.
7. The one step ahead predictive distribution is

P(Zt = zt | Zt−1 = zt−1) =
∞

∑
i=−∞

P(Sα,θ (zt−1) = i | zt−1)P(εt = zt −δ i)

=
∞

∑
i=−∞

α i(1−α)zt−1−ie−θ1−θ2 θ
zt−δ i
1 0F̃1(; i+1;θ)0F̃1(;zt−1− i+1;θ)0F̃1(;zt −δ i+1;θ1θ2)

0F̃1(;zt−1 +1;θ)

where

θ =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1−δα

)2
)

.

Remark 4.1.
(1) The PDINAR+(1) has the PINAR(1) as a special case when θ2 = 0. In the PDINAR+(1),

if θ2 = 0, then {εt} is a sequence of i.i.d. random variables with Poisson distribution
Poisson(θ1) and the extended binomial thinning operator Sα,θ (Z) reduces to the bino-
mial thinning operator since θ2 = 0 implies that θ = 0.
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(2) If one defines a stationary Poisson difference INARS(1) process with positive corre-
lation, then one of the parameters of the Poisson difference distribution must be zero,
i.e it has either a Poisson distribution or the negative of a Poisson distribution. It can-
not be a difference of two Poisson distributions with nonzero parameters. Since in the
INARS(1) process θ = θ1θ2/((1−α)2) = 0 this implies that either θ1 = 0 or θ2 = 0.
It is impossible to define a stationary Poisson difference INARS (1) process with neg-
ative correlation since θ =

(
(θ1 +αθ2)/(1−α2)

)(
(θ2 +αθ1)/(1−α2)

)
= 0 implies

that both θ1 = 0 and θ2 = 0. We mention that Kim and Park [14] did not discuss the
marginal distribution of their process.

(3) If α = 0, the random variable Sα,θ (Zt)|Zt has a degenerate distribution. In this case, the
PDINAR(1) reduces to a sequence of i.i.d. random variables PD(θ1,θ2).

Proposition 4.1. The Poisson difference integer-valued autoregressive process of order one
with positive correlation PDINAR+(1) is time reversible.

Proof. Since the PDINAR+(1) is a Markov process, it is enough to compute the bivariate
probability characteristic function ΦZt−1,Zt (u,v), which is of the form

ΦZt−1,Zt (u,v) = E
(
eiuZt−1+ivZt

)
= E

(
eiuZt−1E

(
eivSα,θ (Zt−1)|Zt−1

))
Φ∈t (v)

= E

eiuZt−1
(
αeiv +α

)Zt−1
0F̃1

(
;Zt−1 +1; θ1θ2

(1−α)2

(
ααeiv +ααe−iv +1−2αα

))
0F̃1

(
Zt−1 +1; θ1θ2

(1−α)2

)
Φ∈t (v)

= e−
θ1+θ2
1−α

∞

∑
zt−1=−∞

((
θ1eiu

(
αeiv +α

)
1−α

)zt−1

× 0F̃1

(
;zt−1 +1;

(
θ1eiu

(
αeiv +α

)
1−α

)(
θ2e−iu

(
αe−iv +α

)
1−α

)))
Φ∈t (v)

= e−
θ1+θ2
1−α e

θ1
1−α

eiu(αeiv+α)+ θ2
1−α

e−iu(αe−iv+α)Φ∈t (v)

(4.7)

= e−
θ1+θ2
1−α

−θ1−θ2 e
θ1α

1−α
eiueiv+θ1eiu+ θ2α

1−α
e−iue−iv+θ2e−iu+θ1eiv+θ2e−iv

where in (4.7) we used the identity∑
∞
x=−∞ λ x

1 0F̃1(;x+1;λ1λ2) = eλ1+λ2 .
The bivariate characteristic function is a symmetric function in u and v, which im-

plies (Zt ,Zt−1)
d=(Zt−1,Zt) and hence the process is time reversible. Moreover, since the

PDINAR+(1) has linear forward regression it will have linear backward regression, that is

E(Zt |Zt−1 = z) = E(Zt−1|Zt = z) = αz+θ1−θ2.

5. Estimation

Let us assume that we have n+1 observations z0,z1, . . . ,zn from PDINAR(1) process. In the
PDINAR(1) model we have four parameters to be estimated δ ,α,θ1 and θ2. Three methods
will be considered in this section, Yule-Walker method, conditional maximum likelihood
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method and conditional least squares method. In all methods δ is estimated by

δ̂ =

{
1 if r1 > 0
−1 if r1 < 0

where r1 is the sample autocorrelation function.
1. Yule-Walker Method:

The simplest way to get an estimator for α is to replace ρ1 with the sample autocor-
relation function r1 in the Yule-Walker equation and solve for α to obtain

α̂YW =
_

δ r1 =
_

δ
∑

n−1
t=0 (zt − z̄)(zt+1− z̄)

∑
n
t=0 (zt − z̄)2 ,

where z̄ is the sample mean.
The following set of equations are used for estimating θ1 and θ2:

E(Zt) =
θ1−θ2

(1−δα)
and V (Zt) =

θ1 +θ2

(1−α)
.

For the PDINAR+(1), the Yule-Walker estimators are given by:

α̂
+
YW =

∑
n−1
t=0 (zt − z̄)(zt+1− z̄)

∑
n
t=0 (zt − z̄)2 ,

θ̂
+
1YW =

(
1− α̂

+
YW

)
2

(
z̄+ s2

z
)
,

θ̂
+
2YW = θ̂

+
1YW −

(
1− α̂

+
YW
)

z̄.

For the PDINAR−(1), the Yule-Walker estimators are given by:

α̂
−
YW =−∑

n−1
t=0 (zt − z̄)(zt+1− z̄)

∑
n
t=0 (zt − z̄)2 ,

θ̂
−
1YW =

1
2
((

1+ α̂
−
YW
)

z̄+
(
1− α̂

−
YW
)

s2
z
)
,

θ̂
−
2YW = θ̂

−
1YW −

(
1+ α̂

−
YW
)

z̄.

2. The Conditional Maximum Likelihood CML Method:
The conditional likelihood for the PDINAR(1) model is defined by

CL(α,θ1,θ2) =
n

∏
j=1

P(Zt = zt | Zt−1 = zt−1)

=
n

∏
t=1

∞

∑
i=−∞

P(Sα,θ (zt −1) = i | (zt−1) = P(εt = zt −δ i)

For the PDINAR+(1), the CML estimators for α̂
+
CML, α̂+

1CML and α̂
+
2CML are obtained

by maximizing the following conditional likelihood numerically
CL+(α,θ1,θ2)

=
n

∏
t=1

∞

∑
i=−∞

α i(1−α)zt−1−ie−θ1−θ2 θ
zt−i
1 0F̃1

(
; i+1;α2θ1θ2/(1−α)2)

0F̃1(;zt−1− i+1;θ1θ2)0F̃1(;zt − i+1;θ1θ2)

0F̃1 (;zt−1 +1;θ1θ2/(1−α)2)
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For the PDINAR−(1), the CML estimators for α̂
+
CML, α̂+

1CML and α̂
+
2CML are obtained

by maximizing the following conditional likelihood numerically

CL−(α,θ1,θ2)

=
n

∏
t=1

∞

∑
i=−∞

α i(1−α)zt−1−ie−θ1−θ2 θ
zt+i
1 0F̃1(; i+1;α2K)0F̃1(;zt−1− i+1;(1−α)2K)0F̃1(;zt + i+1;θ1θ2)

0F̃1(;zt−1 +1;K)

where

K =
(

θ1 +αθ2

1−α2

)(
θ2 +αθ1

1−α2

)
.

3. Conditional Least Squares Method:
The estimation procedure that we are going to apply was developed by Klimko and

Nelson (1978) with some modifications in order to be able to estimate all the parameters.
The Conditional least squares method is based on minimization of the sum of squared
deviations about the conditional expectation. The CLS estimator minimizes the criterion
function S1CLS given by

S1CLS =
n

∑
t=1

e2
1t =

n

∑
t=1

(Zt −E (Zt |Zt−1))
2 =

n

∑
t=1

(Zt −αδZt−1−θ1 +θ2)
2 .

It is clear that differentiating S1CLS with respect to θ1 and θ2 and equating the resulting
expressions to zero give the same equation. Therefore, θ1 and θ2 are not estimable
directly. In order to estimate these parameters using conditional least squares method,
we will use the following reparametrization

µ = θ1−θ2, σ
2 = θ1 +θ2

and estimate all the three parameters α,µ and σ2 as follows.
For the first step, the conditional mean prediction error is considered

e1t = Zt −E (Zt |Zt−1) = Zt −αδZt−1−µ

The CLS estimators of α and µ minimizes the criterion function S1CLS = ∑
n
t=1 e2

1t . From
the first step we obtain

α̂CLS = δ̂
∑

n
t=1 ZtZt−1−nZ̄Z̄0

∑
n
t=1 Z2

t−1−nZ̄2
0

, where Z̄ =
1
n

n

∑
t=1

Zt and Z̄0 = (1/n)
n

∑
t=1

Zt−1

µ̂CLS = Z̄− α̂CLSδ̂ Z̄0.

Note that in the case of PDINAR+(1), α̂
+
CLS and µ̂

+
CLS (when δ̂=1) are similar to the CLS

estimators of the PINAR(1) process.

To obtain an estimate of σ2 a second step is needed. The normal equations based on
the conditional variance prediction error (e2t) are used. Brannas and Quoreshi [6] used
the conditional variance prediction error as a second step to obtain feasible generalized
least square estimator for a long-lag integer-valued moving average model. The conditional
variance prediction error is defined by

e2t = (Zt −E (Zt |Zt−1))
2−V (Zt |Zt−1)

The two proposed methods for estimating σ2 are:
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1. Method 1 :
From the fact that ∑

n
t=1 e2t = 0, one can obtain a direct estimator of σ2 by solving the

nonlinear equation in the case of PDINAR+(1)
n

∑
t=1

(
ê2

1t − α̂
+
CLS

(
1− α̂

+
CLS

)
Zt−1−2α̂

+
CLS

(
1− α̂

+
CLS

)
A 0F̃1 (;Zt−1 +2;A)

0F̃1 (;Zt−1 +1;A)
−σ

2
)

= 0,

where

A =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1−α

)2
)

=
σ4−

(
µ̂

+
CLS

)2

4
(
1− α̂

+
CLS

)2 .

α̂
+
CLS and µ̂

+
CLS are those estimators obtained from the first step, and ê1t = Zt−α̂

+
CLSZt−1−

µ̂
+
CLS.

In the PDINAR−(1) process a direct estimator of σ2 is obtained by solving the fol-
lowing nonlinear equation

n

∑
t=1

(
ê2

1t − α̂
−
CLS

(
1− α̂

−
CLS

)
Zt−1−2α̂

−
CLS

(
1− α̂

−
CLS

)
B 0F̃1 (;Zt−1 +2;B)

0F̃1 (;Zt−1 +1;B)
−σ

2
)

= 0,

where α̂
−
CLS and µ̂

−
CLS are those estimators obtained from the first step,

B =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1+α

)2
)

=

(
1+ α̂

−
CLS

)2
σ4−

(
1− α̂

−
CLS

)2 (
µ̂
−
CLS

)2

4
(
1− α̂

−
CLS

)2

and ê1t = Zt + α̂
−
CLSZt−1− µ̂

−
CLS.

2. Method 2:
Minimize the criterion S2CLS = ∑

n
t=1 e2

2t with respect to σ2 by differentiating S2CLS

with respect to σ2 and equating the result to zero, with α̂CLS and µ̂CLS as those estimators
obtained from the first step.

In the case of PDINAR+(1)

∂S2CLS

∂σ2 = 2
n

∑
t=1

{(
ê2

1t − α̂CLS (1− α̂CLS)Zt−1− α̂CLS

(
σ4− µ̂2

CLS
)

2(1− α̂CLS)
0F̃1 (;Zt−1 +2;A)

0F̃1 (;Zt−1 +1;A)
−σ

2

)
∗(

−σ
2 α̂CLS

(1− α̂CLS)
0F̃1 (;Zt−1 +2;A)

0F̃1 (;Zt−1 +1;A)
− α̂CLS

(
σ4− µ̂2

CLS
)

(1− α̂CLS)
σ

2/
(

4(1− α̂CLS)
2
)
∗

0F̃1 (;Zt−1 +1;A)0F̃1 (;Zt−1 +3;A)−
(

0F̃1 (;Zt−1 +2;A)
)2(

0F̃1 (;Zt−1 +1;A)
)2 −1

)}
= 0

By solving the last nonlinear equation, another estimate of σ2 is obtained.
After estimating σ2 either using the first or the second method, the CLS estimates of

θ1 and θ2 are obtained from the following set of equations:

θ̂
+
1CLS = 1/2

(
σ̂

2+
CLS + µ̂

+
CLS

)
θ̂

+
2CLS = 1/2

(
σ̂

2+
CLS− µ̂

+
CLS

)
.

In the case of PDINAR−(1)

∂S2CLS

∂σ2 = 2
n

∑
t=1

{(
ê2

1t − α̂CLS (1− α̂CLS)Zt−1−2α̂CLS (1− α̂CLS)B∗ 0F̃1 (;Zt−1 +2;B)

0F̃1 (;Zt−1 +1;B)
−σ

2
)
∗



476 A. A. Alzaid and M. A. Omair(
− α̂CLS

σ2

1− α̂CLS
∗ 0F̃1 (;Zt−1 +2;B)

0F̃1 (;Zt−1 +1;B)

− α̂CLSB
σ2

1− α̂CLS

0F̃1 (;Zt−1 +1;B)0F̃1 (;Zt−1 +3;B)− 0F̃1 (;Zt−1 +2;B)2

0F̃1 (;Zt−1 +1;B)2 −1
)}

= 0

By solving the last nonlinear equation, another estimate of σ2 is obtained.
After estimating σ2 either using the first or the second method, the CLS estimates of

θ1 and θ2 are obtained from the following set of equations:

θ̂
−
1CLS = 1/2

(
σ̂

2−
CLS + µ̂

−
CLS

)
θ̂
−
2CLS = 1/2

(
σ̂

2−
CLS− µ̂

−
CLS

)
.

The CLS estimates obtained using the first method and the second method will be de-
noted by CLS (1) and CLS (2), respectively.

To provide an idea about the relative merits of each of the methods of estimation, a Monte
Carlo study is conducted. The estimation of α ,θ1 and θ2 in the stationary
PDINAR (1) by the Yule-Walker method, the conditional maximum likelihood and the CLS
using the two proposed method are compared. The conditional maximum likelihood has an
infinite sum, it was approximated to a finite one i ranges from -50 to 50 since increasing
this bound to larger values made no difference. To generate the data, the parameters se-
lected are (θ1,θ2) = (1,1),(5,5),(2,4),(4,2), α = 0.2,0.5,0.7 and n = 50,100,200. 1000
replications were made on each sample, and the average bias and the mean square error of
the parameters’ estimates are calculated. All simulation and estimation procedures are done
using the Mathematica 8 software.

Steps of generation of PDINAR(1):
1. Generate n independent observations from PD(θ1,θ2) which serves as {εt}n

t=1.
2. Generate one observation from

PD
((

1
2

)(
θ1 +θ2

1−α
+

θ1−θ2

1−δα

)
,

(
1
2

)(
θ1 +θ2

1−α
− θ1−θ2

1−δα

))
and call it z0.

3. Generate one observation from EB(z0,α,θ) and call it Sα,θ (z0) where

θ =
1
4

((
θ1 +θ2

1−α

)2

−
(

θ1−θ2

1−δα

)2
)

.

4. Let z1 = δSα,θ (z0)+ ε1.
5. Generate one observation from EB(z1,α,θ) and call it Sα,θ (z1).
6. Let z2 = δSα,θ (z1)+ ε2.
7. Repeat steps 5 and 6 until we obtain the nth observation zn.

Findings:
Regarding the MSE results we found that:

(I) In the three methods of estimation, for both the models (PDINAR+(1)
and PDINAR−(1)), the MSE of each parameter is reciprocally related to the sample
size. The pace of decrease in the MSE as a result of increase in the sample size is
similar for all methods (the MSE would be reduced by about 50% if the sample size
is doubled).
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(II) The MSE of α̂ for both models in the Yule-Walker, CML and CLS estimates de-
creases with the increase in α .

(III) The MSE of all estimates in the three methods are very close for both models. If a
ranking were to be made the CML would be first, followed by CLS (2), followed by
the CLS (1), and then the Yule-Walker method. The magnitude of gain, in terms of
MSE does not make it worth the extra calculations in the CML and CLS methods.

Regarding the bias for the PDINAR(1) we can summarize as follows:
(I) For the PDINAR+(1), in all cases, α̂ is biased negatively using all methods. While

for PDINAR−(1), when α = 0.5 and 0.7, α̂ is always biased negatively using all
methods and when α = 0.2, α̂ is biased positively.

(II) For the PDINAR+(1), the magnitude of the biases of α̂ increase with the increase
in α using all methods except for some few cases of θ̂1 and θ̂2. This is only true for
the PDINAR−(1) using the Yule-Walker method.

(III) For the PDINAR+(1), the amount of biases of all estimates of α̂ is reciprocally
related to the sample size. This is not true for the PDINAR−(1).

(IV) For both models, the proposed methods of CLS estimation give close biases of θ̂1
and θ̂2 . It has been noticed that for the PDINAR+(1)∣∣∣∣bias

(
θ̂1CLS(1)

)∣∣− ∣∣bias
(
θ̂1CLS(2)

)∣∣∣∣= ∣∣∣∣bias
(
θ̂2CLS(1)

)∣∣− ∣∣bias
(
θ̂2CLS(2)

)∣∣∣∣
in all cases.

Table 1. MSE (α) results of different estimation method for PDINAR+(1) model (θ1 = 1,
θ2 = 1)

n α MSE (α)
CML Y-W CLS

50 0.2 0.01621 0.02002 0.02058
0.5 0.01909 0.01998 0.01939
0.7 0.01641 0.01701 0.01880

100 0.2 0.009464 0.01002 0.01018
0.5 0.008547 0.00887 0.00874
0.7 0.006410 0.00707 0.00670

200 0.2 0.005225 0.00538 0.00540
0.5 0.004302 0.00450 0.00444
0.7 0.002987 0.00320 0.00309
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Table 2. MSE (θ 1) and MSE (θ 2) results of different estimation method for PDINAR+(1)
model (θ1 = 1, θ2 = 1)

MSE (θ1) MSE (θ2)
n α CML Y-W CLS(1) CLS(2) CML Y-W CLS(1) CLS(2)
50 0.2 0.07091 0.07770 0.07670 0.07652 0.08331 0.08838 0.08722 0.08699

0.5 0.07375 0.07778 0.07479 0.07435 0.08339 0.08753 0.083995 0.08369
0.7 0.07823 0.08965 0.08018 0.07986 0.0857 0.0965 0.0863 0.0862

100 0.2 0.03784 0.04012 0.03950 0.03926 0.03447 0.03651 0.036276 0.03608
0.5 0.03594 0.03873 0.03736 0.037006 0.03256 0.034488 0.033948 0.03359
0.7 0.03596 0.04038 0.03721 0.036984 0.03344 0.036897 0.034758 0.03459

200 0.2 0.01941 0.02005 0.01994 0.019883 0.01801 0.0185826 0.018626 0.01855
0.5 0.01738 0.01807 0.01786 0.01775 0.016265 0.017001 0.016936 0.016786
0.7 0.01685 0.01788 0.01723 0.017177 0.015699 0.016758 0.016272 0.016184

6. Applications

In this section we present an application of the PDINAR(1) model from the Saudi stock
market. In 2007, the minimum amount of change was SR 0.25 for all stocks. The daily
close price as number of ticks (ticks=close price*4) in 2007 for Saudi Telecommunication
Company (STC) stock and the Electricity stock are considered. The time series plots of
the two stocks are illustrated in Figures 1 and 2 respectively. The autocorrelation function
(ACF) and the partial autocorrelation function (PACF) for STC and Electricity are shown in
Figures 3–6.

Figures 1 and 2 show that both series are nonstationary in the mean. Figures 3–6 shows
the same phenomenon of the sustained large ACF and exceptionally large first lag PACF
indicating that differencing is needed.
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In order to get more information about the data, Table 3 displays some descriptive statis-
tics for the number of ticks of STC and Electricity and their lag one differences.

The time series plots of the two differenced stocks are illustrated in Figures 7 and 8
respectively. The autocorrelation function and the partial autocorrelation function for the
differenced stocks are shown in Figures 9–12.
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Table 3. Descriptive statistics of STC and Electricity with their lag one difference.

Variable No. of observation Mean Variance Minimum Median Maximum Range
STC 248 273.6 766.54 222 270 351 129
STC difference 247 0.004 22.232 -19 0 13 32
Electricity 248 49.819 22.06 45 48 66 21
Electricity difference 247 0.0202 1.6215 -5 0 5 10

It is clear from Figures 7 and 8 that both differenced series are stationary in the mean.
Figure 9 shows that the lag one correlation is positive and significant hence δ̂ = 1 and
PDINAR+(1) is proposed to model the differenced series of STC price as number of ticks.
Figure 10 shows that the lag one correlation is negative and significant hence δ̂ = −1 and
PDINAR−(1) is proposed to model the differenced series of Electricity price as number of
ticks. The estimates are obtained using the Yule-Walker method, the conditional maximum
likelihood method and the conditional least squares method (using the two proposed meth-
ods) and are displayed in Table 4. Standard errors for the CML estimates were derived from
the Hessian matrix and the standard errors for the YW and the CLS estimates were derived
through simulation based methods.

Table 4. Estimation results of STC and Electricity as PDINAR(1) with (standard errors)

Stock Parameter CML Y-W CLS (1) CLS (2)

STC
α 0.2187

(0.003)
0.2181
(0.062)

0.2201
(0.063)

0.2201
(0.063)

θ1 8.5586
(0.319)

8.69273
(0.921)

10.4088
(1.093)

10.397
(1.092)

θ2 8.5455
(0.154)

8.68956
(0.927)

10.3957
(1.101)

10.3839
(1.101)

Electricity
α 0.2798

(0.063)
0.2436
(0.063)

0.2462
(0.063)

0.2462
(0.064)

θ1 0.5574
(0.074)

0.6258
(0.082)

0.62467
(0.082)

0.616791
(0.081)

θ2 0.4995
(0.073)

0.6007
(0.079)

0.58921
(0.079)

0.58133
(0.078)

Using the Y-W estimates, the differenced price of the STC stock as number of ticks is
PDINAR+(1) with α = 0.22 and the process has marginal PD(11.1179, 11.1138). The dif-
ferenced price of the Electricity stock as number of ticks is PDINAR−(1) with α = 0.2436
and the process has marginal PD(0.821, 0.801). The relative frequency of the data and the
fitted Poisson difference distribution are plotted in the following graphs.

In order to visualize the adequacy of the models, the ACF and the PACF of the estimated
residuals are plotted in Figures 15–18 for both of the stocks. The estimated residuals are
computed as êt = Zt −δ α̂Zt−1− θ̂1 + θ̂2. Clearly, from Figures 15–18 of the ACF and the
PACF of the residuals, both the stocks can be considered as white noise.
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It is worth noting that even though we have fitted PDINAR (1) models to the data, based
on Figures 9–12, it is possible to find alternative models which may give better approxima-
tions.
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