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1. Introduction and main results

Let R denote the real number, Z the integers. Given a < b in Z, let Z[a,b] = {a,a + 1, . . . ,
b}. Let T > 1 and N be fixed positive integers. Consider the following nonlinear discrete
system involving the p-Laplacian

(1.1) ∆[Φp(∆x(t−1))]+∇F(t,x(t)) = 0, t ∈ Z,

where p > 1,q > 1, 1/p + 1/q = 1, Φp(u) = |u|p−2u =
(√

∑
N
i=1 u2

i

)p−2

(u1,u2, . . . ,uN)τ ,

u∈RN , ·τ stands for the transpose of a vector or a matrix, F : Z×RN→R,(t,x)→ F(t,x) is
T -periodic in t for all x∈RN and continuously differentiable and convex in x for every t ∈Z,
∇F(t,x) denotes the gradient of F(t,x) in x, and ∆x(t) = x(t +1)−x(t),∆2x(t) = ∆(∆x(t)).

When p = 2, problem (1.1) becomes the second order discrete nonlinear system. By
using the variational methods, some existence results for periodic solutions are obtained,
such as [1, 5, 6, 10–12]. When p > 1, recently, there are also some results, see [2–4, 7, 8].
Especially, in [7], by using the dual least principle, the authors obtained the following result:

Theorem 1.1. Suppose F satisfies the following conditions:
(A1) there exists β : Z→ RN such that for all (t,y) ∈ Z×RN ,

F(t,y)≥
(

β (t), |y|
p−2

2 y
)

and β (t +T ) = β (t);

Communicated by Rosihan M. Ali, Dato’.
Received: February 14, 2012; Revised: May 15, 2012.



500 X. Zhang

(A2) there are constants α ∈ (0,T−1), and γ : Z→ R such that for all (t,y) ∈ Z×RN ,

F(t,y)≤ α p

p
|y|p + γ(t) and γ(t +T ) = γ(t);

(A3) ∑
T
t=1 F(t,y)→+∞, as |y| → ∞, y ∈ RN .

Then, system (1.1) has at least one T -periodic solution.

In our paper, we improve two discrete inequalities in [7,8]. Furthermore, we improve the
condition (A2) and also obtain some estimates of periodic solution for system (1.1).

2. Preliminaries

In the following, we use | · | to denote the Euclidean norm in RN . Let

S = {u = (u1,u2)τ = {u(t)}|u(t) = (u1(t),u2(t))τ ∈ R2N ,

ui = {ui(t)},ui(t) ∈ RN , i = 1,2, t ∈ Z}.
E is defined as a subspace of S by

E = {u = {u(t)} ∈ S|u(t +T ) = u(t), t ∈ Z}.
For u = (u1,u2)τ ∈ E, set

‖ui‖r =

(
T

∑
t=1
|ui(t)|r

)1/r

,

where i = 1,2,r > 1. Then E can be equipped with the norm as follows:

‖u‖= ‖u1‖p +‖u2‖q

for u = (u1,u2)τ ∈ E. It is obvious that E is a reflexive Banach space with dimension 2NT,
which can be identified with R2NT . Let

W =

{
u = (u1,u2)τ ∈ E|ui(1) = ui(2) = · · ·= ui(T ) =

1
T

T

∑
t=1

ui(t), i = 1,2

}
and

Y =

{
u = (u1,u2)τ ∈ E|

T

∑
t=1

ui(t) = 0, i = 1,2

}
.

Then E can be decomposed into the direct sum E = Y ⊕W. So, for any u ∈ E, u can be
expressed in the form u = ũ+ ū, where ũ = (ũ1, ũ2)τ ∈Y and ū = (ū1, ū2)τ ∈W. Obviously,
ui = ũi + ūi, i = 1,2.

For u = (u1,u2)τ ∈ Y, let

‖∆ui‖r =

(
T

∑
t=1
|∆ui(t)|r

)1/r

,

where i = 1,2,r > 1. It is easy to verify that

‖∆u‖= ‖∆u1‖q +‖∆u2‖p

is also a norm on Y. Since Y is finite-dimensional, the norm ‖∆u‖ is equivalent to the norm
‖u‖ in E if u ∈ Y.

Γ0(RN) denotes the set of all convex lower semi-continuous(l.s.c.) functions F : RN →
(−∞,+∞] whose effective domain D(F) = {u∈RN : F(u) < +∞} is nonempty. Let H : Z×
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R2N →R, (t,u)→H(t,u) be a smooth Hamiltonian such that for each t ∈ Z[1,T ], H(t, ·) ∈
Γ0(R2N) is strictly convex and H(t,u)/|u|→+∞, if |u|→∞. The Fenchel transform H∗(t, ·)
of H(t, ·) is defined by

(2.1) H∗(t,v) = sup
u∈R2N

{(v,u)−H(t,u)}

or

(2.2)

{
H∗(t,v) = (v,u)−H(t,u),
v = ∇H(t,u), or u = ∇H∗(t,v).

If for u = (u1,u2),u1,u2 ∈RN , H(t,u) can be split into parts H(t,u) = H1(t,u1)+H2(t,u2),
then by (2.2), H∗(t,v) = H∗1 (t,v1)+H∗2 (t,v2),v = (v1,v2),v1,v2 ∈ RN . We denote by J the
symplectic matrix. Then J2 = −I and (Ju,v) = −(u,Jv) for all u,v ∈ R2N . It is clear that
(Jv̇,v) = (v̇2,v1)− (v̇1,v2), where v = (v1,v2)τ ∈ RN×RN , i = 1,2.

Let u1(t) = x(t), u2(t) = α−1Φp(∆u1(t−1)), t ∈ Z. Then problem (1.1) is equivalent to
the non-autonomous system

(2.3)

{
∆u2(t)+α−1∇F(t,u1(t)) = 0, t ∈ Z,

−∆u1(t−1)+αq−1Φq(u2(t)) = 0,

that is

(2.4) J∆u(t)+∇H(t,Lu(t)) = 0, t ∈ Z,

where Lu(t) = (u1(t),u2(t + 1))τ , L−1u(t) = (u1(t),u2(t − 1))τ ,u = (u1,u2)τ ,H(t,u) =
H1(t,u1)+H2(t,u2) and

H1(t,u1) =
1
α

F(t,u1), H2(t,u2) =
αq−1

q
|u2|q.

The dual action is defined on E by

I(v) =
1
2

T

∑
t=1

(L(J∆v(t−1)),v(t))+
T

∑
t=1

[H∗1 (t,∆v1(t))+H∗2 (t,∆v2(t))] ,

where v = (v1,v2)τ ∈ E. Since I(v) = I(ṽ+ v̄) = I(ṽ) for v = ṽ+ v̄ ∈ E, in order to find the
T -periodic solution of (1.1), it suffices to find the critical point of I on subspace Y of E. The
above knowledge and statement come from [7, 9, 12].

Lemma 2.1. Let u = (u1,u2) ∈ Y . Then

(2.5) max
t∈Z[1,T ]

|ui(t)| ≤min

{
(T −1)(p+1)/p

T
,

(
(T +1)p+1−2

T p(p+1)

)1/p}( T

∑
s=1
|∆ui(s)|q

)1/q

, i = 1,2,

(2.6) max
t∈Z[1,T ]

|ui(t)| ≤min

{
(T −1)(q+1)/q

T
,

(
(T +1)q+1−2

T q(q+1)

)1/q}( T

∑
s=1
|∆ui(s)|p

)1/p

, i = 1,2,

and

(2.7)
T

∑
t=1
|ui(t)|q ≤min

{
(T −1)2q−1

T q−1 ,
T q−1Θ(p,q)
(p+1)q/p

} T

∑
s=1
|∆ui(s)|q, i = 1,2,
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(2.8)
T

∑
t=1
|ui(t)|p ≤min

{
(T −1)2p−1

T p−1 ,
T p−1Θ(q, p)
(q+1)p/q

} T

∑
s=1
|∆ui(s)|p, i = 1,2.

where

Θ(p,q) =
T

∑
t=1

[( t
T

)p+1
+
(

1− t
T

+
1
T

)p+1

− 2
T p+1

]q/p

,

Θ(q, p) =
T

∑
t=1

[( t
T

)q+1
+
(

1− t
T

+
1
T

)q+1

− 2
T q+1

]p/q

.

Proof. Fix t ∈ Z[1,T ]. For every τ ∈ Z[1, t−1], we have

(2.9) u1(t) = u1(τ)+
t−1

∑
s=τ

∆u1(s)

and for every τ ∈ Z[t,T ],

(2.10) u1(t) = u1(τ)−
τ−1

∑
s=t

∆u1(s).

Summing (2.9) over Z[1, t−1] and (2.10) over Z[t,T ], we have

(2.11) (t−1)u1(t) =
t−1

∑
τ=1

u1(τ)+
t−1

∑
τ=1

t−1

∑
s=τ

∆u1(s) =
t−1

∑
τ=1

u1(τ)+
t−1

∑
s=1

s∆u1(s)

and

(2.12) (T − t +1)u1(t) =
T

∑
τ=t

u1(τ)−
T

∑
τ=t

τ−1

∑
s=t

∆u1(s) =
T

∑
τ=t

u1(τ)−
T−1

∑
s=t

(T − s)∆u1(s).

Set

φ(s) =

{
s, 1≤ s≤ t−1,

T − s, t ≤ s≤ T.

Since ∑
T
τ=1 u1(τ) = 0, combining (2.11) with (2.12) and using the Hölder inequality, we

obtain

T |u1(t)|=

∣∣∣∣∣t−1

∑
s=1

s∆u1(s)−
T−1

∑
s=t

(T − s)∆u1(s)

∣∣∣∣∣≤ t−1

∑
s=1

s|∆u1(s)|+
T−1

∑
s=t

(T − s)|∆u1(s)|

=
T−1

∑
s=1

φ(s)|∆u1(s)|=
T

∑
s=1

φ(s)|∆u1(s)| ≤

(
T

∑
s=1

[φ(s)]p

)1/p( T

∑
s=1
|∆u1(s)|q

)1/q

=

(
t−1

∑
s=1

sp +
T−1

∑
s=t

(T − s)p

)1/p( T

∑
s=1
|∆u1(s)|q

)1/q

.(2.13)

Since

(2.14)
t−1

∑
s=1

sp <
t p+1−1

p+1
,

T−1

∑
s=t

(T − s)p =
T−t

∑
k=1

kp <
(T − t +1)p+1−1

p+1
,



Periodic Solutions for a Nonlinear Discrete System Involving the p-Laplacian 503

and

(2.15)
t−1

∑
s=1

sp +
T−1

∑
s=t

(T − s)p ≤
T−1

∑
s=1

(T −1)p = (T −1)p+1,

it follows from (2.13) that (2.5) with i = 1 holds. On the other hand, from (2.13),(2.14) and
(2.15), we have

T q
T

∑
t=1
|u1(t)|q

≤

(
T

∑
s=1
|∆u1(s)|q

)
T

∑
t=1

(
t−1

∑
s=1

sp +
T−1

∑
s=t

(T − s)p

)q/p

≤

(
T

∑
s=1
|∆u1(s)|q

)
min

{
T

∑
t=1

(
t p+1−1

p+1
+

(T − t +1)p+1−1
p+1

)q/p

,T (T −1)2q−1

}

=

(
T

∑
s=1
|∆u1(s)|q

)

·min

 T 2q−1

(p+1)q/p

T

∑
t=1

[( t
T

)p+1
+
(

1− t
T

+
1
T

)p+1

− 2
T p+1

]q/p

,T (T −1)2q−1


= min

{
T 2q−1Θ(p,q)
(p+1)q/p ,T (T −1)2q−1

}( T

∑
s=1
|∆u1(s)|q

)
.

It follows that (2.7) with i = 1 holds. Similarly, we can prove other inequalities also hold.
Thus the proof is complete.

Remark 2.1. Since

min

{
(T −1)(p+1)/p

T
,

(
(T +1)p+1−2

T p(p+1)

)1/p
}
≤ (T −1)(p+1)/p

T
<

T (p+1)/p

T
= T 1/p

and

min

{
(T −1)(q+1)/q

T
,

(
(T +1)q+1−2

T q(q+1)

)1/q
}
≤ (T −1)(q+1)/q

T
<

T (q+1)/q

T
= T 1/q,

(2.5) and (2.6) improve (2.8) and (2.9) in [7] which shows that for u = (u1,u2) ∈ Y and
t ∈ Z[1,T ],

|ui(t)| ≤ T 1/p‖∆ui‖Lq , |ui(t)| ≤ T 1/q‖∆ui‖Lp , i = 1,2,

respectively. Moreover, Lemma 2.1 also improves [8, Lemma 2.2].

Lemma 2.2. For every u = (u1,u2)τ ∈ E,

T

∑
t=1

(L(J∆u(t−1)),u(t))≥−C
q
‖∆u1‖q

q−
C
p
‖∆u2‖p

p

and

(2.16)
T

∑
t=1

(L−1(J∆u(t)),u(t))≥−C
p
‖∆u1‖p

p−
C
q
‖∆u2‖q

q,
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where

C = C(p,q)+C(q, p), Cq(p,q) = min
{

(T −1)2q−1

T q−1 ,
T q−1Θ(p,q)
(p+1)q/p

}
,

and

Cp(q, p) = min
{

(T −1)2p−1

T p−1 ,
T p−1Θ(q, p)
(q+1)p/q

}
.

Proof. For u = (u1,u2) ∈ E, we write ui = ũi + ūi, where ūi = 1/T ∑
T
t=1 ui(t), i = 1,2. Since

∑
T
t=1 ũi(t) = 0 and ∆ui(t) = ∆ũi(t), i = 1,2, then by (2.7), (2.8), Hölder’s inequality and

Young’s inequality, we have
T

∑
t=1

(L(J∆u(t−1)),u(t)) =
T

∑
t=1

[(∆u2(t−1),u1(t))− (∆u1(t),u2(t))]

=
T

∑
t=1

[(∆ũ2(t−1), ũ1(t))− (∆ũ1(t), ũ2(t))]

≥−C(p,q)‖∆ũ2‖p‖∆ũ1‖q−C(q, p)‖∆ũ2‖p‖∆ũ1‖q

=−C‖∆u2‖p‖∆u1‖q ≥−
C
q
‖∆u1‖q

q−
C
p
‖∆u2‖p

p.

Similarly to the above process, (2.16) also holds for u = (u1,u2) ∈ E.

Remark 2.2. Note that

(2.17) C = C(p,q)+C(q, p)≤
(

(T −1)2q−1

T q−1

)1/q

+
(

(T −1)2p−1

T p−1

)1/p

< 2T.

So our Lemma 2.2 improves [7, Lemma 2.3].

Lemma 2.3. [9, Proposition 1.4] Let G ∈ C1(RN ,R) be a convex function. Then, for all
x,y ∈ RN , we have

G(x)≥ G(y)+(∇G(y),x− y).

3. Main results and proofs

Theorem 3.1. Suppose F satisfies (A1), (A3) and the following conditions:
(A2)′ there are constants α ∈ (0,2/C), and γ : Z→ R such that for all (t,y) ∈ Z×RN ,

F(t,y)≤ α p

p
|y|p + γ(t) and γ(t +T ) = γ(t).

Then, system (2.3) has at least one solution u ∈ E such that

v(t) =
(

v1(t)
v2(t)

)
=−J

[
u(t)− 1

T

T

∑
s=1

u(s)

]
=
(
−u2(t)+ 1

T ∑
T
s=1 u2(s)

u1(t)− 1
T ∑

T
s=1 u1(s)

)
minimizes the dual action I, that is to say, system (1.1) has at least one solution x = u1.

Proof. The proof is the same as in [7]. We only need to replace [7, Lemma 2.3] with our
Lemma 2.2 in the proof. In order to make the paper self-contained, we present a brief outline
of the proof. More details can be seen in [7].
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Step 1. We consider the existence of one T -periodic solution for a perturbed problem. Note
that α < 2/C. So there exists ε0 > 0 such that for any ε ∈ (0,ε0),

α(1+ ε)p−1 < 2/C, α(1+ ε)q−1 < 2/C.

Consider the following perturbed problem:

(3.1)


∆u2(t)+ εα p−1φp(u1(t))+∇H1(t,u1(t)) = 0, t ∈ Z,

−∆u1(t−1)+ εαq−1φq(u2(t))+∇H2(t,u2(t)) = 0,

u1(t +T ) = u1(t), u2(t +T ) = u2(t).

In order to obtain the solution of the perturbed problem, consider the following perturbed
dual action functional

Iε(v) =
1
2

T

∑
t=1

(L(J∆v(t−1)),v(t))+
T

∑
t=1

H∗ε (t,∆v(t)),

where

Hε(t,∆v) = εα
p−1 |u1|p

p
+H1(t,u1)+ εα

q−1 |u2|q

q
+H2(t,u2).

By (A1), (A2)′, [7, Lemma 2.1] and Lemma 2.2, one can obtain that

Iε(v)≥−
C
2q
‖∆v1‖q

q−
C
2p
‖∆v2‖p

p +
(1+ ε)−(q−1)α−1

q
‖∆v1‖q

q

+
(1+ ε)−(p−1)α−1

p
‖∆v2‖p

p−
1
α

T

∑
t=1

γ(t).
(3.2)

Since (1+ε)−(q−1)α−1 > C/2 and (1+ε)−(p−1)α−1 > C/2, Iε is bounded from below and
coercive in subspace Y . By [7, Lemma 2.2], we know that Iε is continuously differentiable
in Y . Then by [9, Theorem 1.1], Iε attains its minimum at some point vε ∈ Y . Then by [7,
Lemma 2.2],

uε(t) = L−1(∇H∗ε (t,∆vε(t))), uε = (u1ε ,u2ε)τ , vε = (v1ε ,v2ε)τ

is a solution of the perturbed problem (3.1).
Step 2. We prove that uε is bounded in E. By (A3), we can get a y0 ∈ E such that
∑

T
t=1 y0(t) = 0. Then

Iε(vε)≤ Iε(y0)≤
1
2

T

∑
t=1

(L(J∆y0(t−1)),y0(t))+
T

∑
t=1

H∗(t,∆y0(t)) < +∞.

Note that ∆uε(t) = J∆vε(t). So (3.2), (2.7) and (2.8) imply that there exists a constant K1
such that

(3.3) ‖ũ1ε‖p ≤ K1 and ‖ũ2ε‖q ≤ K1.

By virtue of the convexity of Hi(t, ·)(i = 1,2), (3.3), (A2)′ and (A3), we can obtain that
there exists a constant K2 such that

|ū1ε | ≤ K2 and |ū2ε | ≤ K2.

So

‖uε‖= ‖u1ε‖p +‖u2ε‖q ≤ ‖ũ1ε‖p + |ū1ε |p +‖ũ2ε‖q + |ū2ε |q ≤ 2K1 +K2(T 1/p +T 1/q),

which shows that uε is bounded in E.
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Step 3. We prove the existence of a T -periodic solution for system (1.1). Note that uε is
bounded in E and E is dimensional. Then there exists a sequence {εn} ⊂ (0,ε0) and some
point u = (u1,u2)τ ∈ E such that

εn→ 0, uεn → u as n→ ∞.

Let n→∞ in (3.1). Then it is easy to obtain that u1 is a T -periodic solution of system (1.1).
Moreover, since ∆vεn(t) =−J∆uεn(t), we have vεn(t) =−J(uεn(t)− ūεn). Let n→∞. Then

(3.4) vεn(t)→−J(u(t)− ū) := v(t).

Step 4. We prove that v = (v1,v2)τ ∈ E minimizes the dual action I. Since ∆vεn(t) =
∇Hεn(t,Luεn(t)),

∆v1εn(t) = ∇H1εn(t,u1εn(t)), ∆v2εn(t−1) = ∇H2εn(t,u2εn(t)).

Let n→ ∞. Then (3.4) and (2.4) imply that

(3.5) ∆v1(t) = ∇H1(t,u1(t)), ∆v2(t−1) = ∇H2(t,u2(t)).

As H∗ε (t,v)≤ H∗(t,v), we obtain that

Iεn(vεn)≤ Iεn(h)≤ I(h).

for all h ∈ E. Let n→∞. By (3.5) and [7, Lemma 2.1], we can get I(v)≤ I(h) for all h ∈ E.
Thus the proof is complete.

Remark 3.1. By (2.17), it is easy to obtain that 2/C > 2/(2T ) = 1/T . So Theorem 3.1
improves Theorem 1.1 since the range of α is larger.

Next, we consider the estimate of solutions for system (1.1).

Theorem 3.2. Assume that there exists α ∈
(
0,C−1

)
, β ,γ ∈ [0,+∞),δ ∈ (0,+∞) such that

(3.6) δ |y|p/2−β ≤ F(t,y)≤ α p

p
|y|p + γ,

for all t ∈ Z and y ∈ RN . Then each solution x = u1 of system (1.1) satisfies
T

∑
t=1
|x(t)|p/2 ≤ (γ +β )T

δ
+

αqC(q, p)B1/pD1/q

δ
,(3.7)

‖∆x‖p
p ≤

pT (γ +β )
1−Cα

,(3.8)

where

B =
pT (γ +β )

αq−Cαq+1 , D =
qT (γ +β )

α1−q/p−Cα
.

Proof. By (3.6), for all u = (u1,u2) ∈ RN×RN , we have

δ

α
|u1|p/2− β

α
+

αq−1

q
|u2|q ≤ H(t,u) =

1
α

F(t,u1)+
αq−1

q
|u2|q

≤ α p−1

p
|u1|p +

γ

α
+

αq−1

q
|u2|q.(3.9)

Then, we have

(u,v)−H(t,u)≥ (u,v)− α p−1

p
|u1|p−

γ

α
− αq−1

q
|u2|q, ∀ u ∈ RN×RN .
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Since

(u,v)− α p−1

p
|u1|p−

γ

α
− αq−1

q
|u2|q

= (u1,v1)+(u2,v2)−
α p−1

p
|u1|p−

γ

α
− αq−1

q
|u2|q

≤ |u1||v1|−
α p−1

p
|u1|p−

γ

α
+ |u2||v2|−

αq−1

q
|u2|q

≤ sup
u1∈RN

{
|u1||v1|−

α p−1

p
|u1|p−

γ

α

}
+ sup

u2∈RN

{
|u2||v2|−

αq−1

q
|u2|q

}
=
|v1|q

qα
− γ

α
+

1
pα
|v2|p, ∀ u ∈ RN×RN .

Hence, by (2.1), we have

H∗(t,v)≥ |v1|q

qα
− γ

α
+

1
pα
|v2|p.

When v = ∇H(t,u), by (2.2) and (3.9), we get

H∗(t,v) = (u,v)−H(t,u)≤ (u,v)+
β

α
.

Then

(3.10)
|v1|q

qα
− γ

α
+

1
pα
|v2|p ≤ (u,v)+

β

α
.

Note that

v = ∇H(t,u) =
(

∇H1(t,u1)
∇H2(t,u2)

)
=
( 1

α
∇F(t,u1)

αq−1|u2|q−2u2

)
.

Then by (2.2) and (3.10), we have∣∣∣ 1
α

∇F(t,u1)
∣∣∣q

qα
− γ

α
+

1
pα

∣∣∣αq−1|u2|q−2u2

∣∣∣p ≤ (u,∇H(t,u))+
β

α
,

that is
α−(1+q)

q
|∇F(t,u1)|q−

γ

α
+

αq−1

p
|u2|q ≤ (u,∇H(t,u))+

β

α
.

For each solution u ∈ E of system (1.1), by (2.3) and (2.4), we know

∇F(t,u1(t)) =−α∆u2(t)

and
L∇H(t,u(t)) = ∇H(t,Lu(t)) =−J∆u(t).

Hence
1

qα
|∆u2(t)|q−

γ

α
+

αq−1

p
|u2(t)|q ≤ (u(t),−L−1(J∆u(t)))+

β

α
.

Summing the above inequality over Z[1,T ] and using Lemma 2.2 and (2.3), we obtain

1
qα
‖∆u2‖q

q−
γT
α

+
αq−1

p
‖u2‖q

q
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≤−
T

∑
t=1

(u(t),L−1(J∆u(t)))+
βT
α
≤ C

q
‖∆u2‖q

q +
C
p
‖∆u1‖p

p +
βT
α

=
C
q
‖∆u2‖q

q +
Cαq

p
‖Φq(u2)‖p

p +
βT
α

=
C
q
‖∆u2‖q

q +
Cαq

p
‖u2‖q

q +
βT
α

.

So (
1

qα
− C

q

)
‖∆u2‖q

q +
(

αq−1

p
− Cαq

p

)
‖u2‖q

q ≤
T (β + γ)

α
.

Since α ∈
(
0,C−1

)
, we have

(3.11) ‖u2‖q
q ≤

pT (γ +β )
αq−Cαq+1 = B, ‖∆u2‖q

q ≤
qT (γ +β )

1−Cα
= D.

Hence,

(3.12) ‖∆u1‖p
p = α

q‖Φq(u2)‖p
p = α

q‖u2‖q
q ≤ Bα

q.

It follows that (3.8) holds. Since F is continuously differentiable and convex in x, then by
Lemma 2.3, (3.6), (2.3), Lemma 2.2, Hölder’s inequality, (3.11) and (3.12), we have

δ

T

∑
t=1
|u1(t)|p/2−βT ≤

T

∑
t=1

F(t,u1(t))≤
T

∑
t=1

[F(t,0)+(∇F(t,u1(t)),u1(t))]

≤ γT −
T

∑
t=1

(α∆u2(t),u1(t)) = γT −
T

∑
t=1

(α∆u2(t), ũ1(t))

≤ γT +α

(
T

∑
t=1
|ũ1(t)|p

)1/p( T

∑
t=1
|∆u2(t)|q

)1/q

≤ γT +αC(q, p)‖∆u1‖p‖∆u2‖q ≤ γT +α
qC(q, p)B1/pD1/q.

So, we get
T

∑
t=1
|u1(t)|p/2 ≤ (γ +β )T

δ
+

αqC(q, p)B1/pD1/q

δ
.

It follows that (3.7) holds. The proof is complete.
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