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1. Introduction and main results

Let R denote the real number, Z the integers. Given a < b in Z, let Z[a,b] = {a,a+1,...,
b}.Let T > 1 and N be fixed positive integers. Consider the following nonlinear discrete
system involving the p-Laplacian

(1.1) Al®,(Ax(t —1))] + VF(1,x(t)) =0, (€L,

p—2
where p > 1,4 > 1, 1/p+1/q:1,<I>p(u)=bt|p2M:( ivlu,z) (ur,u2,...,uy)",
u € RY .7 stands for the transpose of a vector or a matrix, F : Z x RY — R, (¢,x) — F(t,x) is
T-periodic in ¢ for all x € RY and continuously differentiable and convex in x for every ¢ € Z,
VF (t,x) denotes the gradient of F(z,x) in x, and Ax(¢) = x(t + 1) — x(¢), A’x(t) = A(Ax(1)).

When p = 2, problem (1.1) becomes the second order discrete nonlinear system. By
using the variational methods, some existence results for periodic solutions are obtained,
such as [1,5,6,10-12]. When p > 1, recently, there are also some results, see [2—4, 7, 8].
Especially, in [7], by using the dual least principle, the authors obtained the following result:

Theorem 1.1. Suppose F satisfies the following conditions:
(Ay) there exists B : Z — RY such that for all (t,y) € Z x RV,

Ft.0) 2 (BT ) and Ble+T)=B(0);
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(A2) there are constants o € (0,T~"), and y: 7 — R such that for all (t,y) € Z x RN,
Fits) < S+ and yo+T) = y0);
(A3) YL F(t,y) — +oo, as |y| — o, y € RV,
Then, system (1.1) has at least one T-periodic solution.

In our paper, we improve two discrete inequalities in [7,8]. Furthermore, we improve the
condition (A;) and also obtain some estimates of periodic solution for system (1.1).

2. Preliminaries
In the following, we use |- | to denote the Euclidean norm in RV Let
S = {u= (ur,u2)" = {u(t)}u(r) = (w1 (¢),u2(1))" € RV,
wi = {ui()},u;(t) ERN,i=1,2,t € Z}.
E is defined as a subspace of S by
E={u={u(t)} € Slu(t+T)=u(t),t € Z}.

For u = (uy,up)" € E, set
T 1/r
(il = (Zui(f)|r> ;
=1

where i = 1,2,7 > 1. Then E can be equipped with the norm as follows:

aall = [laer {1+ flu2llg

for u = (u1,u2)" € E. It is obvious that E is a reflexive Banach space with dimension 2NT,
which can be identified with R*M. Let

1

N

W= {u = (ur, )" €Elui(1) =u;(2) =+ =u(T) =

T
Y uilt).i= 1,2}
=1
and
T
Y= {u (ur,w2)* € E[Y ui(r) =0,i= 1,2}.
=1
Then E can be decomposed into the direct sum E =Y @ W. So, for any u € E, u can be
expressed in the form u = i+ i, where i = (ii1,42)" € Y and & = (i1, i2)* € W. Obviously,
up=1i;+i;,i=1,2.
For u = (u1,u2)" €7, let

T 1/r
(| Auil|» = (Z Aui(f)r> ;
=1

where i = 1,2,r > 1. It is easy to verify that
[[Aul| = [|Aur[lg+[|Aua |

is also a norm on Y. Since Y is finite-dimensional, the norm ||Au|| is equivalent to the norm
||| inEifuecy.

Iy (RN ) denotes the set of all convex lower semi-continuous(l.s.c.) functions F : RN —
(—o0, +o0] whose effective domain D(F) = {u € R : F(u) < +o0} is nonempty. Let H : Z x
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R?N — R, (t,u) — H(t,u) be a smooth Hamiltonian such that for each ¢ € Z[1,T], H(t,-) €
[o(R2V) is strictly convex and H (t,u)/|u| — oo, if |u| — co. The Fenchel transform H*(t,-)
of H(t,-) is defined by

(2.1 H*(I,V): sup {(v,u)fH(t,u)}
ucR2N
or
H*(t,v) = (vyu) —H(t,u),
@2) {v:VH(t,u), or u=VH*(t,v).

If for u = (uy,uz),ur,up € RN, H(t,u) can be split into parts H (t,u) = Hy (t,u1) + Ha(t,u2),
then by (2.2), H*(t,v) = H} (t,v1) + H; (t,v2),v = (v1,v2),v1,v2 € RV. We denote by J the
symplectic matrix. Then J?> = —I and (Ju,v) = —(u,Jv) for all u,v € R?N. It is clear that
(Jv,v) = (¥2,v1) — (v1,v2), where v = (v1,12)" € RN x RN i =1,2.

Letuy(t) = x(t), up(t) = &~ '®,(Au; (t — 1)),t € Z. Then problem (1.1) is equivalent to
the non-autonomous system

2.3 Auy(t) +a 'VF(t,us(t)) =0, tez,
" —Auy (1 — 1)+ a?7'®,(ua(t)) = 0,

that is

(2.4) JAu(t)+VH(t,Lu(t)) =0, t€Z,

where Lu(t) = (u1(t),uz(t + 1))%, L™ u(t) = (u1(t),uz(t — 1))%u = (u1,up)*, H(t,u) =
H(t,u1) + Ha(t,up) and
g—1

1
H](I,M[)ZEF(I,IM), Hz(l,uz)z |l/l2|q.

The dual action is defined on E by

[Hi (2,Av1(1)) + Hy (1, An2(1))],

gl

T
1) = %Z@(mm — D)) +

t=1 t=1

where v = (vi,v)* € E. Since I(v) = I(V+7V) = I(V) for v=17+7 € E, in order to find the
T -periodic solution of (1.1), it suffices to find the critical point of / on subspace Y of E. The
above knowledge and statement come from [7,9, 12].

Lemma 2.1. Let u = (u1,uz) €Y. Then

/pY /T 14
o < i [ L= DO (et 2] -
(2.5) t&lﬁ)}”u,(t)\ gmm{ T , T 1) ; Au;(s ,i=1,2,

(2.6) max _|u;(t)| < min (7 —1)leth/e ((T+1)q+1_2>1/q
’ teZ[1,T] ! - ) )

1=

; T T9(q+1

1/p
Aui(S)I”) , i=1,2,
5

and

(T —1)%1 T971'0(p,q) .
(2.7) Z'”l |"<m1n{ Tt 7 (p+1)a/r Z| ui(s)|?, i=1,2,
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(T—1)"" 1P7'0(g,p .
(2.8) ):\u, |l’<m1n{ T G P/q Z|Au, P, i=1,2.

where

ol ; N ) q/p
M:Z[() o(1-5+7) ‘ml] 7

t=1

T gt ; 1) 9+ ’ r/q
Z[() (“r*r) ‘ml] '

t=1

Proof. Fixt € Z[1,T]. For every T € Z[1,r — 1], we have

(2.9 ui(t) =u (1) —|—t_iAu1(s)

and for every 7 € Z[t,T],

(2.10) un(f) = i (7) — Z_;Aul(s)
=

Summing (2.9) over Z[1,z — 1] and (2.10) over Z[t, T], we have
—11-1 —1 -1

(2.11) (t—Dui (¢ Zul )+ Y Y Aui(s) = Y ui (1) + Y sAui(s)
T=15=7 =1 s=1

and

— T
; = Y ui(1) = ¥ (T —s)Aus(s).

T=t s=t

(])(s):{s’ 1<s<r—1,

T—s, t<s<T.

HM‘!

(2.12) (T —t+1uy(t Zul

Set

Since Zle u1(t) = 0, combining (2.11) with (2.12) and using the Holder inequality, we
obtain
-1 T—1

ZsAul(s)— Z( —8)Auy (s

s=1 s=t

- T T \r s r 1/q
Z $)|Auy (s Z s)|Auy (s (Z[(P(s)]”) (;Aul(S)l">

s=1

—1 T—1 Up /g 1/q
213) = (Zsf’+ Z(T—s)f’> (Z Au](s)|"> .
s=1 s=t s=1

Since

—1

Tu(t)| = < Zs|Au1 )|+ Z —5)|Auy (s)

t—1 +1 T—1 T—t +1
P —1 (T—t+1)PH —1
2.14 sP < , T—s)P=Y) kP < ,

s=1 s=t
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and
t—1 T-1 T-1
1
(2.15) Y s?+ Y (T—s5)P <Y (T—1)"=(T—1)P*,
s=1 s=t s=1

it follows from (2.13) that (2.5) with i = 1 holds. On the other hand, from (2.13),(2.14) and
(2.15), we have

T
Ty Jui (1)
=1

-1 T—1 a/p
<(Lamor) £ (Zer o)

t=1 \s=1

/p
Yy |Au1(s)|q> min{zT: (ﬂm L (Tt 1P~ 1>q 1 T(T — 1)2q1}

p+1 p+1

/p
. T2a-1 T 1 p\ptl P RV T ~
~min ZI[(T) +<1T+T) — | T =1
=

[T*7'0(p.q) Ay
= mm{(erl)q/p,T(T —1)%! } (; Aul(s)|q> .

It follows that (2.7) with i = 1 holds. Similarly, we can prove other inequalities also hold.
Thus the proof is complete. 1

Remark 2.1. Since

_ 1t/ +1_o\ /P _ 1)/ (p+1)/
min (T -1 ”7 (T+1)P =2 s(T )P ”<T” s
T Tr(p+1) T T
and
_1)(g+1)/ +1_o\ /4 _1)(g+1)/ (q+1)/
min (T—1)4 q’ (T+1)4t -2 S(T 1)l q<Tq q:T]/q7
T Ti(g+1) T T

(2.5) and (2.6) improve (2.8) and (2.9) in [7] which shows that for u = (u;,up) € Y and
t € Z[1,T],

Jui(6)| < TP\ Auglza, [ui(e)] < TV Aui| 1, i =12,
respectively. Moreover, Lemma 2.1 also improves [8, Lemma 2.2].

Lemma 2.2. Forevery u= (uj,u3)* € E,

C ¢ q ¢ p
Y (LAu(t = 1)), u(t)) > == || Au & — =[|Auz |5
=1 q p

and

(2.16)

=

_ C c
(L' (JAu()),u(r)) = —;HAM 15— g”AuZHZa

N
Il
-
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where

(T—1)%"! Tq‘®(p,61)}

= q = 1
C=C(p,q)+Clg,p), C'(p,q) mm{ T ()

and

(T —1)>"" T”'@)(q,p)}

P — i
C"(¢;p) mm{ T (gt )l

Proof. Foru= (u1,up) € E, we write u; = ii; + ii;, where @; = 1 /T Y. u;(t),i = 1,2. Since

Y7 i;(t) = 0 and Au;(t) = Adi(t),i = 1,2, then by (2.7), (2.8), Holder’s inequality and

Young’s inequality, we have
T

;(L(JAMU —1)),u())

Il
™~

[(Auz (2 = 1),1 () = (A (1), ua(7))]

N
Il

I
M~

[(Ady(t = 1), 801 (1)) — (At (1), @2(1))]
> —C(p,q)||Aia | | A [lg = Clg; p) Az || it 4

c c
= —Cl|Auz ||| Aus |4 > _E”Aul 14— ;IIAMHZ-

N
Il
R

Similarly to the above process, (2.16) also holds for u = (u;,u) € E. 1

Remark 2.2. Note that
1\ V4 2p—1\ /P
(T —1)>! (r—1)>*
(2.17) C=C(p,q)+C(gq,p) < (qu ) <2
So our Lemma 2.2 improves [7, Lemma 2.3].

Lemma 2.3. [9, Proposition 1.4] Let G € C'(RN,R) be a convex function. Then, for all
x,y € RN, we have

G(x) 2 G(y) +(VG(y),x—).
3. Main results and proofs

Theorem 3.1. Suppose F satisfies (A1), (A3) and the following conditions:
(Ay) there are constants o € (0,2/C), and y: Z — R such that for all (t,y) € Z x RV,

ol
F(t,y) < 7|y|”+7(t) and y(t+T)=1(1).
Then, system (2.3) has at least one solution u € E such that
vi(t) > Iy ( —ua(1) + 7 Ly ua(s) >
v(t) = =—Jult)— =Y u(s)| = T =5
(®) (vz(t) l ®) TS; (5) ul(t)—% ST:lul(s)
minimizes the dual action I, that is to say, system (1.1) has at least one solution x = u; .

Proof. The proof is the same as in [7]. We only need to replace [7, Lemma 2.3] with our
Lemma 2.2 in the proof. In order to make the paper self-contained, we present a brief outline
of the proof. More details can be seen in [7].
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Step 1. We consider the existence of one T-periodic solution for a perturbed problem. Note
that o0 < 2/C. So there exists & > 0 such that for any € € (0, &),

a(l+e)P' <2/C, a(l+e) ' <2/C.
Consider the following perturbed problem:
Aur () + £ 10, (ur (1) + VH (1, (1) =0, 1€,
(3.1) —Auy (t — 1) +ea? 19, (ur(t)) + VHa (t,uz(t)) = 0,
ul(t—i—T) = Ml(l), uz(l—l—T) = Mz(l‘).

In order to obtain the solution of the perturbed problem, consider the following perturbed
dual action functional

(LUJAV(t = 1)),v(2)) + Y Hg (t,A0(1)),

1 t=1

NI —
(gl

I.(v) =

t

where

q1|2|

p
Hg(t,Av):sa’”'u;'+H1(t,u1)+£a +Hy(t,u3).

By (A1), (A2)', [7, Lemma 2.1] and Lemma 2.2, one can obtain that

(1+¢)"laNg!

c c
Le(v) > —zfqllAWII?,—*HAVzHiJr [[Avy (I

(32) +(1+e) (P=1) g1

[Aval|f — — Z ()

Since (1+¢&)~ @ Va~!>C/2and (14¢&)~ P Da~! > C/2, I is bounded from below and
coercive in subspace Y. By [7, Lemma 2.2], we know that /¢ is continuously differentiable
in Y. Then by [9, Theorem 1.1], I attains its minimum at some point v¢ € Y. Then by [7,
Lemma 2.2],

Ms(t) (VH*(I AVS( )))a Ug = (uleyuk)ra Ve = (VlsaVZE)r

is a solution of the perturbed problem (3.1).

Step 2. We prove that u, is bounded in E. By (A3), we can get a yp € E such that
Y/—1y0(r) = 0. Then

1
2/
Note that Aug (1) = JAve (). So (3.2), (2.7) and (2.8) imply that there exists a constant K
such that

3.3) ||ﬂ]g||p <K; and ||ﬁ2£||q <Kj.

By virtue of the convexity of H;(z,-)(i = 1,2), (3.3), (A2)’ and (A3), we can obtain that
there exists a constant K> such that

lie] < K> and |ipe| < Ko.

IS(VS) < Is(yo) <

HMH

T
( (JAYo(r = 1)), y0(t)) + Y H* (1, Ay0 (1)) < +eo.
i=1

So
uell = [lurellp + uzellq < [ldrellp + lirel p + [li2e | + 2e | < 2K: + Ko (TP 1),

which shows that u, is bounded in E.
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Step 3. We prove the existence of a T-periodic solution for system (1.1). Note that u, is
bounded in E and E is dimensional. Then there exists a sequence {g,} C (0, &) and some

point u = (u;,uz)* € E such that
& —0, us, —-u as n-— oo,

n

Let n — oo in (3.1). Then it is easy to obtain that u; is a T-periodic solution of system (1.1).
Moreover, since Avg, (1) = —JAug, (1), we have v, (1) = —J (ug, () — ilg, ). Let n — oo, Then

(3.4) ve, (t) — —J(u(t) — i) :==v(z).

Step 4. We prove that v = (v{,v2)" € E minimizes the dual action I. Since Avg, (¢) =
VHe, (1, Lute, (1)),

Avig, (t) = VHig, (t,u1e, (1)), Avag,(t —1) = VHyg, (t,u2¢, (1)).
Let n — oo. Then (3.4) and (2.4) imply that
(3.5) Avi(t) = VH (t,u1(t)), Avp(t—1)=VHy(t,ux(t)).
As H} (t,v) < H*(t,v), we obtain that
Ig, (ve,) < Ig,(h) < I(h).

forallh € E. Let n — oo. By (3.5) and [7, Lemma 2.1], we can get I(v) < I(h) forallh € E.
Thus the proof is complete. 1

Remark 3.1. By (2.17), it is easy to obtain that 2/C > 2/(2T) = 1/T. So Theorem 3.1
improves Theorem 1.1 since the range of « is larger.

Next, we consider the estimate of solutions for system (1.1).

Theorem 3.2. Assume that there exists o € (0,C1), B,y € [0,40),8 € (0,4o0) such that
p/2 af ip
(3.6) Sy =B <F(t,y) < FM +7

forallt € Z andy € RN. Then each solution x = uy of system (1.1) satisfies

e q 1/ppl/a
3.7 Z|x(t)|p/2 < (y+B)T L C(q,p)B'/?D ’
=1 ) S
pT(v+B)
. P2 P
(38) laxy < ZEOER)
where

_pTr+B) 5 aT(r+pB)
ol —Codtl’ T al-ilr—Cco’

Proof. By (3.6), for all u = (uj,u) € RY x RV, we have

5 B ai! 1 ad™!
S B < H(tu) = ~F(t g
alul‘ a+ q |u2‘ =~ (,M) o (,M1)+ ‘l/l2|
ap—l a -1
(3.9) < Iul\”+g+ lua|?
Then, we have
—1 Y «a -1

() —H(t,w) > () — &
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Since
ar~! ai!
() = P = L = S
o1 ot
= (11,91) + (12,2) = [P = L~ e
ar~! ai!
< furllvr | = =] = L v =

ap—l aq—l
< sup {|u1|vl|— |u1|p—y}+ sup {|M2|V2|— uzl"}
)4 (04 q

uy €RN uy RN

q 1
:M_I+7|VZ|[’7 VMGRNXRN~
@  a  pa

Hence, by (2.1), we have
g 1
R L R
go. o pa
When v = VH(¢,u), by (2.2) and (3.9), we get

H*(t,v) = (u,v) — H(t,u) < (u,v)+ g.

Then
q 1
(3.10) bl Y L e < oy + B
ga o pa a
Note that |
_ B VH, (t,ul) . aVF(t,ul)
v=VH(t,u) = < VH(t,u) )~ \ a9 Mua|? 2uy )
Then by (2.2) and (3.10), we have
éVF(taul)‘q Y 1 p B
B T ot o2 < (0, VH () +
qo a  pa a
that is (o)
a~—(1+q ad!
VE@u)l L E ot < )+

For each solution u € E of system (1.1), by (2.3) and (2.4), we know
VF(t,ui(t)) = —otAuy(t)

and
LVH(t,u(t)) = VH(t, Lu(r)) = —JAu(1).
Hence '
.
s = E o)l < (a2 ) +

Summing the above inequality over Z[1,T] and using Lemma 2.2 and (2.3), we obtain

1 o1
L gy -
qo. a

luallg

507
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a T _C T
- Yo7 Ut o0+ EL < Sl + Sty + B
Ca T C Cad T
=Sl + X el + B = S ol + < |\u2|\z+%.

So

1 C =l Ccad T

) A (- EE ||u2||q§M_
q q

qa  q p p o

Since a € (0,C"), we have

pPT(r+B) _ g 9T(r+B) _
(3.11) (| || W =B, HAMZHq < 1_ca
Hence,
(3.12) [Aur||f = ]| g (ua) [} = o ||uz||§ < Bar?.

It follows that (3.8) holds. Since F is continuously differentiable and convex in x, then by
Lemma 2.3, (3.6), (2.3), Lemma 2.2, Holder’s inequality, (3.11) and (3.12), we have

5i Jur (1)|P* = BT < i‘,F(hm(t)) < i[F(t»O) + (VF(t,ur(t)),u(1))]
=1 =1

M~
M'\]

<7 Y (@ur(o), 1 (1)) = YT — Y (tBua (e), 1 (1))
t=1 1

T p s r 1/q
o(Fo0r) " (£ i)

< YT +aC(q. p)|[Aui [ || Auz | < ¥T +a?C(q, p)B'/PDV/1.

-
Il

So, we get

0)P? < (YJFB)TJFO“]C(%P)BI/’JD]/‘]
6 .

Z jur (1 5
It follows that (3.7) holds. The proof is complete. 1
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