Notes on Periodic Solutions for a Nonlinear Discrete System Involving the p-Laplacian

Xingyong Zhang
Department of Mathematics, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China zhangxingyong1@gmail.com

Abstract

In this paper, we first improve two inequalities, then by using critical point theory, improve an existence theorem of periodic solutions for a nonlinear discrete system involving the p-Laplacian, and present some estimates of periodic solutions.

2010 Mathematics Subject Classification: 39A23, 37J45, 35A15
Keywords and phrases: p-Laplacian systems, periodic solutions, critical point, Sobolev's inequality, Wirtinger's inequality.

1. Introduction and main results

Let \mathbb{R} denote the real number, \mathbb{Z} the integers. Given $a<b$ in \mathbb{Z}, let $\mathbb{Z}[a, b]=\{a, a+1, \ldots$, $b\}$. Let $T>1$ and N be fixed positive integers. Consider the following nonlinear discrete system involving the p-Laplacian

$$
\begin{equation*}
\Delta\left[\Phi_{p}(\Delta x(t-1))\right]+\nabla F(t, x(t))=0, \quad t \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

where $p>1, q>1,1 / p+1 / q=1, \Phi_{p}(u)=|u|^{p-2} u=\left(\sqrt{\sum_{i=1}^{N} u_{i}^{2}}\right)^{p-2}\left(u_{1}, u_{2}, \ldots, u_{N}\right)^{\tau}$, $u \in \mathbb{R}^{N},{ }^{\tau}$ stands for the transpose of a vector or a matrix, $F: \mathbb{Z} \times \mathbb{R}^{N} \rightarrow \mathbb{R},(t, x) \rightarrow F(t, x)$ is T-periodic in t for all $x \in \mathbb{R}^{N}$ and continuously differentiable and convex in x for every $t \in \mathbb{Z}$, $\nabla F(t, x)$ denotes the gradient of $F(t, x)$ in x, and $\Delta x(t)=x(t+1)-x(t), \Delta^{2} x(t)=\Delta(\Delta x(t))$.

When $p=2$, problem (1.1) becomes the second order discrete nonlinear system. By using the variational methods, some existence results for periodic solutions are obtained, such as $[1,5,6,10-12]$. When $p>1$, recently, there are also some results, see $[2-4,7,8]$. Especially, in [7], by using the dual least principle, the authors obtained the following result:

Theorem 1.1. Suppose F satisfies the following conditions:
$\left(A_{1}\right)$ there exists $\beta: \mathbb{Z} \rightarrow \mathbb{R}^{N}$ such that for all $(t, y) \in \mathbb{Z} \times \mathbb{R}^{N}$,

$$
F(t, y) \geq\left(\beta(t),|y|^{\frac{p-2}{2}} y\right) \quad \text { and } \quad \beta(t+T)=\beta(t)
$$

[^0]$\left(A_{2}\right)$ there are constants $\alpha \in\left(0, T^{-1}\right)$, and $\gamma: \mathbb{Z} \rightarrow \mathbb{R}$ such that for all $(t, y) \in \mathbb{Z} \times \mathbb{R}^{N}$,
$$
F(t, y) \leq \frac{\alpha^{p}}{p}|y|^{p}+\gamma(t) \quad \text { and } \quad \gamma(t+T)=\gamma(t)
$$
$\left(A_{3}\right) \sum_{t=1}^{T} F(t, y) \rightarrow+\infty$, as $|y| \rightarrow \infty, y \in \mathbb{R}^{N}$.
Then, system (1.1) has at least one T-periodic solution.
In our paper, we improve two discrete inequalities in [7,8]. Furthermore, we improve the condition $\left(A_{2}\right)$ and also obtain some estimates of periodic solution for system (1.1).

2. Preliminaries

In the following, we use $|\cdot|$ to denote the Euclidean norm in \mathbb{R}^{N}. Let

$$
\begin{aligned}
S & =\left\{u=\left(u_{1}, u_{2}\right)^{\tau}=\{u(t)\} \mid u(t)=\left(u_{1}(t), u_{2}(t)\right)^{\tau} \in \mathbb{R}^{2 N}\right. \\
u_{i} & \left.=\left\{u_{i}(t)\right\}, u_{i}(t) \in \mathbb{R}^{N}, i=1,2, t \in \mathbb{Z}\right\} .
\end{aligned}
$$

E is defined as a subspace of S by

$$
E=\{u=\{u(t)\} \in S \mid u(t+T)=u(t), t \in \mathbb{Z}\}
$$

For $u=\left(u_{1}, u_{2}\right)^{\tau} \in E$, set

$$
\left\|u_{i}\right\|_{r}=\left(\sum_{t=1}^{T}\left|u_{i}(t)\right|^{r}\right)^{1 / r}
$$

where $i=1,2, r>1$. Then E can be equipped with the norm as follows:

$$
\|u\|=\left\|u_{1}\right\|_{p}+\left\|u_{2}\right\|_{q}
$$

for $u=\left(u_{1}, u_{2}\right)^{\tau} \in E$. It is obvious that E is a reflexive Banach space with dimension $2 N T$, which can be identified with $\mathbb{R}^{2 N T}$. Let

$$
W=\left\{u=\left(u_{1}, u_{2}\right)^{\tau} \in E \left\lvert\, u_{i}(1)=u_{i}(2)=\cdots=u_{i}(T)=\frac{1}{T} \sum_{t=1}^{T} u_{i}(t)\right., i=1,2\right\}
$$

and

$$
Y=\left\{u=\left(u_{1}, u_{2}\right)^{\tau} \in E \mid \sum_{t=1}^{T} u_{i}(t)=0, i=1,2\right\} .
$$

Then E can be decomposed into the direct sum $E=Y \oplus W$. So, for any $u \in E, u$ can be expressed in the form $u=\tilde{u}+\bar{u}$, where $\tilde{u}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right)^{\tau} \in Y$ and $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}\right)^{\tau} \in W$. Obviously, $u_{i}=\tilde{u}_{i}+\bar{u}_{i}, i=1,2$.

For $u=\left(u_{1}, u_{2}\right)^{\tau} \in Y$, let

$$
\left\|\Delta u_{i}\right\|_{r}=\left(\sum_{t=1}^{T}\left|\Delta u_{i}(t)\right|^{r}\right)^{1 / r}
$$

where $i=1,2, r>1$. It is easy to verify that

$$
\|\Delta u\|=\left\|\Delta u_{1}\right\|_{q}+\left\|\Delta u_{2}\right\|_{p}
$$

is also a norm on Y. Since Y is finite-dimensional, the norm $\|\Delta u\|$ is equivalent to the norm $\|u\|$ in E if $u \in Y$.
$\Gamma_{0}\left(\mathbb{R}^{N}\right)$ denotes the set of all convex lower semi-continuous(l.s.c.) functions $F: \mathbb{R}^{N} \rightarrow$ $(-\infty,+\infty]$ whose effective domain $D(F)=\left\{u \in \mathbb{R}^{N}: F(u)<+\infty\right\}$ is nonempty. Let $H: \mathbb{Z} \times$
$\mathbb{R}^{2 N} \rightarrow \mathbb{R},(t, u) \rightarrow H(t, u)$ be a smooth Hamiltonian such that for each $t \in \mathbb{Z}[1, T], H(t, \cdot) \in$ $\Gamma_{0}\left(\mathbb{R}^{2 N}\right)$ is strictly convex and $H(t, u) /|u| \rightarrow+\infty$, if $|u| \rightarrow \infty$. The Fenchel transform $H^{*}(t, \cdot)$ of $H(t, \cdot)$ is defined by

$$
\begin{equation*}
H^{*}(t, v)=\sup _{u \in \mathbb{R}^{2 N}}\{(v, u)-H(t, u)\} \tag{2.1}
\end{equation*}
$$

or

$$
\left\{\begin{array}{l}
H^{*}(t, v)=(v, u)-H(t, u), \tag{2.2}\\
v=\nabla H(t, u), \quad \text { or } \quad u=\nabla H^{*}(t, v) .
\end{array}\right.
$$

If for $u=\left(u_{1}, u_{2}\right), u_{1}, u_{2} \in \mathbb{R}^{N}, H(t, u)$ can be split into parts $H(t, u)=H_{1}\left(t, u_{1}\right)+H_{2}\left(t, u_{2}\right)$, then by $(2.2), H^{*}(t, v)=H_{1}^{*}\left(t, v_{1}\right)+H_{2}^{*}\left(t, v_{2}\right), v=\left(v_{1}, v_{2}\right), v_{1}, v_{2} \in \mathbb{R}^{N}$. We denote by J the symplectic matrix. Then $J^{2}=-I$ and $(J u, v)=-(u, J v)$ for all $u, v \in \mathbb{R}^{2 N}$. It is clear that $(J \dot{v}, v)=\left(\dot{v}_{2}, v_{1}\right)-\left(\dot{v}_{1}, v_{2}\right)$, where $v=\left(v_{1}, v_{2}\right)^{\tau} \in \mathbb{R}^{N} \times \mathbb{R}^{N}, i=1,2$.

Let $u_{1}(t)=x(t), u_{2}(t)=\alpha^{-1} \Phi_{p}\left(\Delta u_{1}(t-1)\right), t \in \mathbb{Z}$. Then problem (1.1) is equivalent to the non-autonomous system

$$
\left\{\begin{array}{l}
\Delta u_{2}(t)+\alpha^{-1} \nabla F\left(t, u_{1}(t)\right)=0, \tag{2.3}\\
-\Delta u_{1}(t-1)+\alpha^{q-1} \Phi_{q}\left(u_{2}(t)\right)=0,
\end{array} \quad t \in \mathbb{Z},\right.
$$

that is

$$
\begin{equation*}
J \Delta u(t)+\nabla H(t, L u(t))=0, \quad t \in \mathbb{Z} \tag{2.4}
\end{equation*}
$$

where $L u(t)=\left(u_{1}(t), u_{2}(t+1)\right)^{\tau}, L^{-1} u(t)=\left(u_{1}(t), u_{2}(t-1)\right)^{\tau}, u=\left(u_{1}, u_{2}\right)^{\tau}, H(t, u)=$ $H_{1}\left(t, u_{1}\right)+H_{2}\left(t, u_{2}\right)$ and

$$
H_{1}\left(t, u_{1}\right)=\frac{1}{\alpha} F\left(t, u_{1}\right), \quad H_{2}\left(t, u_{2}\right)=\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} .
$$

The dual action is defined on E by

$$
I(v)=\frac{1}{2} \sum_{t=1}^{T}(L(J \Delta v(t-1)), v(t))+\sum_{t=1}^{T}\left[H_{1}^{*}\left(t, \Delta v_{1}(t)\right)+H_{2}^{*}\left(t, \Delta v_{2}(t)\right)\right]
$$

where $v=\left(v_{1}, v_{2}\right)^{\tau} \in E$. Since $I(v)=I(\tilde{v}+\bar{v})=I(\tilde{v})$ for $v=\tilde{v}+\bar{v} \in E$, in order to find the T-periodic solution of (1.1), it suffices to find the critical point of I on subspace Y of E. The above knowledge and statement come from [7,9, 12].
Lemma 2.1. Let $u=\left(u_{1}, u_{2}\right) \in Y$. Then
(2.5) $\max _{t \in \mathbb{Z}[1, T]}\left|u_{i}(t)\right| \leq \min \left\{\frac{(T-1)^{(p+1) / p}}{T},\left(\frac{(T+1)^{p+1}-2}{T^{p}(p+1)}\right)^{1 / p}\right\}\left(\sum_{s=1}^{T}\left|\Delta u_{i}(s)\right|^{q}\right)^{1 / q}, i=1,2$,
(2.6) $\max _{t \in \mathbb{Z}[1, T]}\left|u_{i}(t)\right| \leq \min \left\{\frac{(T-1)^{(q+1) / q}}{T},\left(\frac{(T+1)^{q+1}-2}{T^{q}(q+1)}\right)^{1 / q}\right\}\left(\sum_{s=1}^{T}\left|\Delta u_{i}(s)\right|^{p}\right)^{1 / p}, i=1,2$,
and

$$
\begin{equation*}
\sum_{t=1}^{T}\left|u_{i}(t)\right|^{q} \leq \min \left\{\frac{(T-1)^{2 q-1}}{T^{q-1}}, \frac{T^{q-1} \Theta(p, q)}{(p+1)^{q / p}}\right\} \sum_{s=1}^{T}\left|\Delta u_{i}(s)\right|^{q}, \quad i=1,2 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{t=1}^{T}\left|u_{i}(t)\right|^{p} \leq \min \left\{\frac{(T-1)^{2 p-1}}{T^{p-1}}, \frac{T^{p-1} \Theta(q, p)}{(q+1)^{p / q}}\right\} \sum_{s=1}^{T}\left|\Delta u_{i}(s)\right|^{p}, \quad i=1,2 . \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Theta(p, q)=\sum_{t=1}^{T}\left[\left(\frac{t}{T}\right)^{p+1}+\left(1-\frac{t}{T}+\frac{1}{T}\right)^{p+1}-\frac{2}{T^{p+1}}\right]^{q / p} \\
& \Theta(q, p)=\sum_{t=1}^{T}\left[\left(\frac{t}{T}\right)^{q+1}+\left(1-\frac{t}{T}+\frac{1}{T}\right)^{q+1}-\frac{2}{T^{q+1}}\right]^{p / q}
\end{aligned}
$$

Proof. Fix $t \in \mathbb{Z}[1, T]$. For every $\tau \in \mathbb{Z}[1, t-1]$, we have

$$
\begin{equation*}
u_{1}(t)=u_{1}(\tau)+\sum_{s=\tau}^{t-1} \Delta u_{1}(s) \tag{2.9}
\end{equation*}
$$

and for every $\tau \in \mathbb{Z}[t, T]$,

$$
\begin{equation*}
u_{1}(t)=u_{1}(\tau)-\sum_{s=t}^{\tau-1} \Delta u_{1}(s) \tag{2.10}
\end{equation*}
$$

Summing (2.9) over $\mathbb{Z}[1, t-1]$ and (2.10) over $\mathbb{Z}[t, T]$, we have

$$
\begin{equation*}
(t-1) u_{1}(t)=\sum_{\tau=1}^{t-1} u_{1}(\tau)+\sum_{\tau=1}^{t-1} \sum_{s=\tau}^{t-1} \Delta u_{1}(s)=\sum_{\tau=1}^{t-1} u_{1}(\tau)+\sum_{s=1}^{t-1} s \Delta u_{1}(s) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
(T-t+1) u_{1}(t)=\sum_{\tau=t}^{T} u_{1}(\tau)-\sum_{\tau=t}^{T} \sum_{s=t}^{\tau-1} \Delta u_{1}(s)=\sum_{\tau=t}^{T} u_{1}(\tau)-\sum_{s=t}^{T-1}(T-s) \Delta u_{1}(s) . \tag{2.12}
\end{equation*}
$$

Set

$$
\phi(s)= \begin{cases}s, & 1 \leq s \leq t-1 \\ T-s, & t \leq s \leq T\end{cases}
$$

Since $\sum_{\tau=1}^{T} u_{1}(\tau)=0$, combining (2.11) with (2.12) and using the Hölder inequality, we obtain

$$
\begin{aligned}
T\left|u_{1}(t)\right| & =\left|\sum_{s=1}^{t-1} s \Delta u_{1}(s)-\sum_{s=t}^{T-1}(T-s) \Delta u_{1}(s)\right| \leq \sum_{s=1}^{t-1} s\left|\Delta u_{1}(s)\right|+\sum_{s=t}^{T-1}(T-s)\left|\Delta u_{1}(s)\right| \\
& =\sum_{s=1}^{T-1} \phi(s)\left|\Delta u_{1}(s)\right|=\sum_{s=1}^{T} \phi(s)\left|\Delta u_{1}(s)\right| \leq\left(\sum_{s=1}^{T}[\phi(s)]^{p}\right)^{1 / p}\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right)^{1 / q} \\
2.13) & =\left(\sum_{s=1}^{t-1} s^{p}+\sum_{s=t}^{T-1}(T-s)^{p}\right)^{1 / p}\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right)^{1 / q} .
\end{aligned}
$$

Since

$$
\begin{equation*}
\sum_{s=1}^{t-1} s^{p}<\frac{t^{p+1}-1}{p+1}, \quad \sum_{s=t}^{T-1}(T-s)^{p}=\sum_{k=1}^{T-t} k^{p}<\frac{(T-t+1)^{p+1}-1}{p+1} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=1}^{t-1} s^{p}+\sum_{s=t}^{T-1}(T-s)^{p} \leq \sum_{s=1}^{T-1}(T-1)^{p}=(T-1)^{p+1} \tag{2.15}
\end{equation*}
$$

it follows from (2.13) that (2.5) with $i=1$ holds. On the other hand, from (2.13),(2.14) and (2.15), we have

$$
\begin{aligned}
& T^{q} \sum_{t=1}^{T}\left|u_{1}(t)\right|^{q} \\
& \leq\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right) \sum_{t=1}^{T}\left(\sum_{s=1}^{t-1} s^{p}+\sum_{s=t}^{T-1}(T-s)^{p}\right)^{q / p} \\
& \leq\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right) \min \left\{\sum_{t=1}^{T}\left(\frac{t^{p+1}-1}{p+1}+\frac{(T-t+1)^{p+1}-1}{p+1}\right)^{q / p}, T(T-1)^{2 q-1}\right\} \\
& =\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right) \\
& \quad \cdot \min \left\{\frac{T^{2 q-1}}{(p+1)^{q / p}} \sum_{t=1}^{T}\left[\left(\frac{t}{T}\right)^{p+1}+\left(1-\frac{t}{T}+\frac{1}{T}\right)^{p+1}-\frac{2}{T^{p+1}}\right]^{q / p}, T(T-1)^{2 q-1}\right\} \\
& =\min \left\{\frac{T^{2 q-1} \Theta(p, q)}{(p+1)^{q / p}}, T(T-1)^{2 q-1}\right\}\left(\sum_{s=1}^{T}\left|\Delta u_{1}(s)\right|^{q}\right) .
\end{aligned}
$$

It follows that (2.7) with $i=1$ holds. Similarly, we can prove other inequalities also hold. Thus the proof is complete.
Remark 2.1. Since

$$
\min \left\{\frac{(T-1)^{(p+1) / p}}{T},\left(\frac{(T+1)^{p+1}-2}{T^{p}(p+1)}\right)^{1 / p}\right\} \leq \frac{(T-1)^{(p+1) / p}}{T}<\frac{T^{(p+1) / p}}{T}=T^{1 / p}
$$

and

$$
\min \left\{\frac{(T-1)^{(q+1) / q}}{T},\left(\frac{(T+1)^{q+1}-2}{T^{q}(q+1)}\right)^{1 / q}\right\} \leq \frac{(T-1)^{(q+1) / q}}{T}<\frac{T^{(q+1) / q}}{T}=T^{1 / q}
$$

(2.5) and (2.6) improve (2.8) and (2.9) in [7] which shows that for $u=\left(u_{1}, u_{2}\right) \in Y$ and $t \in \mathbb{Z}[1, T]$,

$$
\left|u_{i}(t)\right| \leq T^{1 / p}\left\|\Delta u_{i}\right\|_{L^{q}}, \quad\left|u_{i}(t)\right| \leq T^{1 / q}\left\|\Delta u_{i}\right\|_{L^{p}}, \quad i=1,2
$$

respectively. Moreover, Lemma 2.1 also improves [8, Lemma 2.2].
Lemma 2.2. For every $u=\left(u_{1}, u_{2}\right)^{\tau} \in E$,

$$
\sum_{t=1}^{T}(L(J \Delta u(t-1)), u(t)) \geq-\frac{C}{q}\left\|\Delta u_{1}\right\|_{q}^{q}-\frac{C}{p}\left\|\Delta u_{2}\right\|_{p}^{p}
$$

and

$$
\begin{equation*}
\sum_{t=1}^{T}\left(L^{-1}(J \Delta u(t)), u(t)\right) \geq-\frac{C}{p}\left\|\Delta u_{1}\right\|_{p}^{p}-\frac{C}{q}\left\|\Delta u_{2}\right\|_{q}^{q} \tag{2.16}
\end{equation*}
$$

where

$$
C=C(p, q)+C(q, p), \quad C^{q}(p, q)=\min \left\{\frac{(T-1)^{2 q-1}}{T^{q-1}}, \frac{T^{q-1} \Theta(p, q)}{(p+1)^{q / p}}\right\}
$$

and

$$
C^{p}(q, p)=\min \left\{\frac{(T-1)^{2 p-1}}{T^{p-1}}, \frac{T^{p-1} \Theta(q, p)}{(q+1)^{p / q}}\right\} .
$$

Proof. For $u=\left(u_{1}, u_{2}\right) \in E$, we write $u_{i}=\tilde{u}_{i}+\bar{u}_{i}$, where $\bar{u}_{i}=1 / T \sum_{t=1}^{T} u_{i}(t), i=1,2$. Since $\sum_{t=1}^{T} \tilde{u}_{i}(t)=0$ and $\Delta u_{i}(t)=\Delta \tilde{u}_{i}(t), i=1,2$, then by (2.7), (2.8), Hölder's inequality and Young's inequality, we have

$$
\begin{aligned}
\sum_{t=1}^{T}(L(J \Delta u(t-1)), u(t)) & =\sum_{t=1}^{T}\left[\left(\Delta u_{2}(t-1), u_{1}(t)\right)-\left(\Delta u_{1}(t), u_{2}(t)\right)\right] \\
& =\sum_{t=1}^{T}\left[\left(\Delta \tilde{u}_{2}(t-1), \tilde{u}_{1}(t)\right)-\left(\Delta \tilde{u}_{1}(t), \tilde{u}_{2}(t)\right)\right] \\
& \geq-C(p, q)\left\|\Delta \tilde{u}_{2}\right\|_{p}\left\|\Delta \tilde{u}_{1}\right\|_{q}-C(q, p)\left\|\Delta \tilde{u}_{2}\right\|_{p}\left\|\Delta \tilde{u}_{1}\right\|_{q} \\
& =-C\left\|\Delta u_{2}\right\|_{p}\left\|\Delta u_{1}\right\|_{q} \geq-\frac{C}{q}\left\|\Delta u_{1}\right\|_{q}^{q}-\frac{C}{p}\left\|\Delta u_{2}\right\|_{p}^{p}
\end{aligned}
$$

Similarly to the above process, (2.16) also holds for $u=\left(u_{1}, u_{2}\right) \in E$.
Remark 2.2. Note that

$$
\begin{equation*}
C=C(p, q)+C(q, p) \leq\left(\frac{(T-1)^{2 q-1}}{T^{q-1}}\right)^{1 / q}+\left(\frac{(T-1)^{2 p-1}}{T^{p-1}}\right)^{1 / p}<2 T \tag{2.17}
\end{equation*}
$$

So our Lemma 2.2 improves [7, Lemma 2.3].
Lemma 2.3. [9, Proposition 1.4] Let $G \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ be a convex function. Then, for all $x, y \in \mathbb{R}^{N}$, we have

$$
G(x) \geq G(y)+(\nabla G(y), x-y) .
$$

3. Main results and proofs

Theorem 3.1. Suppose F satisfies $\left(A_{1}\right),\left(A_{3}\right)$ and the following conditions:
$\left(A_{2}\right)^{\prime}$ there are constants $\alpha \in(0,2 / C)$, and $\gamma: \mathbb{Z} \rightarrow \mathbb{R}$ such that for all $(t, y) \in \mathbb{Z} \times \mathbb{R}^{N}$,

$$
F(t, y) \leq \frac{\alpha^{p}}{p}|y|^{p}+\gamma(t) \quad \text { and } \quad \gamma(t+T)=\gamma(t) .
$$

Then, system (2.3) has at least one solution $u \in E$ such that

$$
v(t)=\binom{v_{1}(t)}{v_{2}(t)}=-J\left[u(t)-\frac{1}{T} \sum_{s=1}^{T} u(s)\right]=\binom{-u_{2}(t)+\frac{1}{T} \sum_{s=1}^{T} u_{2}(s)}{u_{1}(t)-\frac{1}{T} \sum_{s=1}^{T} u_{1}(s)}
$$

minimizes the dual action I, that is to say, system (1.1) has at least one solution $x=u_{1}$.
Proof. The proof is the same as in [7]. We only need to replace [7, Lemma 2.3] with our Lemma 2.2 in the proof. In order to make the paper self-contained, we present a brief outline of the proof. More details can be seen in [7].

Step 1. We consider the existence of one T-periodic solution for a perturbed problem. Note that $\alpha<2 / C$. So there exists $\varepsilon_{0}>0$ such that for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
\alpha(1+\varepsilon)^{p-1}<2 / C, \quad \alpha(1+\varepsilon)^{q-1}<2 / C .
$$

Consider the following perturbed problem:

$$
\left\{\begin{array}{l}
\Delta u_{2}(t)+\varepsilon \alpha^{p-1} \phi_{p}\left(u_{1}(t)\right)+\nabla H_{1}\left(t, u_{1}(t)\right)=0, \tag{3.1}\\
-\Delta u_{1}(t-1)+\varepsilon \alpha^{q-1} \phi_{q}\left(u_{2}(t)\right)+\nabla H_{2}\left(t, u_{2}(t)\right)=0, \\
u_{1}(t+T)=u_{1}(t), \quad u_{2}(t+T)=u_{2}(t)
\end{array} \quad t \in \mathbb{Z},\right.
$$

In order to obtain the solution of the perturbed problem, consider the following perturbed dual action functional

$$
I_{\varepsilon}(v)=\frac{1}{2} \sum_{t=1}^{T}(L(J \Delta v(t-1)), v(t))+\sum_{t=1}^{T} H_{\varepsilon}^{*}(t, \Delta v(t))
$$

where

$$
H_{\varepsilon}(t, \Delta v)=\varepsilon \alpha^{p-1} \frac{\left|u_{1}\right|^{p}}{p}+H_{1}\left(t, u_{1}\right)+\varepsilon \alpha^{q-1} \frac{\left|u_{2}\right|^{q}}{q}+H_{2}\left(t, u_{2}\right) .
$$

By (A1), (A2)', [7, Lemma 2.1] and Lemma 2.2, one can obtain that

$$
\begin{align*}
I_{\varepsilon}(v) \geq & -\frac{C}{2 q}\left\|\Delta v_{1}\right\|_{q}^{q}-\frac{C}{2 p}\left\|\Delta v_{2}\right\|_{p}^{p}+\frac{(1+\varepsilon)^{-(q-1)} \alpha^{-1}}{q}\left\|\Delta v_{1}\right\|_{q}^{q} \\
& +\frac{(1+\varepsilon)^{-(p-1)} \alpha^{-1}}{p}\left\|\Delta v_{2}\right\|_{p}^{p}-\frac{1}{\alpha} \sum_{t=1}^{T} \gamma(t) . \tag{3.2}
\end{align*}
$$

Since $(1+\varepsilon)^{-(q-1)} \alpha^{-1}>C / 2$ and $(1+\varepsilon)^{-(p-1)} \alpha^{-1}>C / 2, I_{\varepsilon}$ is bounded from below and coercive in subspace Y. By [7, Lemma 2.2], we know that I_{ε} is continuously differentiable in Y. Then by [9, Theorem 1.1], I_{ε} attains its minimum at some point $v_{\varepsilon} \in Y$. Then by [7, Lemma 2.2],

$$
u_{\varepsilon}(t)=L^{-1}\left(\nabla H_{\varepsilon}^{*}\left(t, \Delta v_{\varepsilon}(t)\right)\right), \quad u_{\varepsilon}=\left(u_{1 \varepsilon}, u_{2 \varepsilon}\right)^{\tau}, \quad v_{\varepsilon}=\left(v_{1 \varepsilon}, v_{2 \varepsilon}\right)^{\tau}
$$

is a solution of the perturbed problem (3.1).
Step 2. We prove that u_{ε} is bounded in E. By (A3), we can get a $y_{0} \in E$ such that $\sum_{t=1}^{T} y_{0}(t)=0$. Then

$$
I_{\varepsilon}\left(v_{\varepsilon}\right) \leq I_{\varepsilon}\left(y_{0}\right) \leq \frac{1}{2} \sum_{t=1}^{T}\left(L\left(J \Delta y_{0}(t-1)\right), y_{0}(t)\right)+\sum_{t=1}^{T} H^{*}\left(t, \Delta y_{0}(t)\right)<+\infty .
$$

Note that $\Delta u_{\varepsilon}(t)=J \Delta v_{\varepsilon}(t)$. So (3.2), (2.7) and (2.8) imply that there exists a constant K_{1} such that

$$
\begin{equation*}
\left\|\tilde{u}_{1 \varepsilon}\right\|_{p} \leq K_{1} \quad \text { and } \quad\left\|\tilde{u}_{2 \varepsilon}\right\|_{q} \leq K_{1} \tag{3.3}
\end{equation*}
$$

By virtue of the convexity of $H_{i}(t, \cdot)(i=1,2),(3.3),(\mathrm{A} 2)^{\prime}$ and (A3), we can obtain that there exists a constant K_{2} such that

$$
\left|\bar{u}_{1 \varepsilon}\right| \leq K_{2} \quad \text { and } \quad\left|\bar{u}_{2 \varepsilon}\right| \leq K_{2}
$$

So

$$
\left\|u_{\varepsilon}\right\|=\left\|u_{1 \varepsilon}\right\|_{p}+\left\|u_{2 \varepsilon}\right\|_{q} \leq\left\|\tilde{u}_{1 \varepsilon}\right\|_{p}+\left|\bar{u}_{1 \varepsilon}\right|_{p}+\left\|\tilde{u}_{2 \varepsilon}\right\|_{q}+\left|\bar{u}_{2 \varepsilon}\right|_{q} \leq 2 K_{1}+K_{2}\left(T^{1 / p}+T^{1 / q}\right),
$$

which shows that u_{ε} is bounded in E.

Step 3. We prove the existence of a T-periodic solution for system (1.1). Note that u_{ε} is bounded in E and E is dimensional. Then there exists a sequence $\left\{\varepsilon_{n}\right\} \subset\left(0, \varepsilon_{0}\right)$ and some point $u=\left(u_{1}, u_{2}\right)^{\tau} \in E$ such that

$$
\varepsilon_{n} \rightarrow 0, \quad u_{\varepsilon_{n}} \rightarrow u \quad \text { as } \quad n \rightarrow \infty .
$$

Let $n \rightarrow \infty$ in (3.1). Then it is easy to obtain that u_{1} is a T-periodic solution of system (1.1). Moreover, since $\Delta v_{\varepsilon_{n}}(t)=-J \Delta u_{\mathcal{E}_{n}}(t)$, we have $v_{\varepsilon_{n}}(t)=-J\left(u_{\varepsilon_{n}}(t)-\bar{u}_{\varepsilon_{n}}\right)$. Let $n \rightarrow \infty$. Then

$$
\begin{equation*}
v_{\varepsilon_{n}}(t) \rightarrow-J(u(t)-\bar{u}):=v(t) . \tag{3.4}
\end{equation*}
$$

Step 4. We prove that $v=\left(v_{1}, v_{2}\right)^{\tau} \in E$ minimizes the dual action I. Since $\Delta v_{\varepsilon_{n}}(t)=$ $\nabla H_{\mathcal{E}_{n}}\left(t, L u_{\varepsilon_{n}}(t)\right)$,

$$
\Delta v_{1 \varepsilon_{n}}(t)=\nabla H_{1 \varepsilon_{n}}\left(t, u_{1 \varepsilon_{n}}(t)\right), \quad \Delta v_{2 \varepsilon_{n}}(t-1)=\nabla H_{2 \varepsilon_{n}}\left(t, u_{2 \varepsilon_{n}}(t)\right)
$$

Let $n \rightarrow \infty$. Then (3.4) and (2.4) imply that

$$
\begin{equation*}
\Delta v_{1}(t)=\nabla H_{1}\left(t, u_{1}(t)\right), \quad \Delta v_{2}(t-1)=\nabla H_{2}\left(t, u_{2}(t)\right) \tag{3.5}
\end{equation*}
$$

As $H_{\varepsilon}^{*}(t, v) \leq H^{*}(t, v)$, we obtain that

$$
I_{\varepsilon_{n}}\left(v_{\varepsilon_{n}}\right) \leq I_{\varepsilon_{n}}(h) \leq I(h) .
$$

for all $h \in E$. Let $n \rightarrow \infty$. By (3.5) and [7, Lemma 2.1], we can get $I(v) \leq I(h)$ for all $h \in E$. Thus the proof is complete.

Remark 3.1. By (2.17), it is easy to obtain that $2 / C>2 /(2 T)=1 / T$. So Theorem 3.1 improves Theorem 1.1 since the range of α is larger.

Next, we consider the estimate of solutions for system (1.1).
Theorem 3.2. Assume that there exists $\alpha \in\left(0, C^{-1}\right), \beta, \gamma \in[0,+\infty), \delta \in(0,+\infty)$ such that

$$
\begin{equation*}
\delta|y|^{p / 2}-\beta \leq F(t, y) \leq \frac{\alpha^{p}}{p}|y|^{p}+\gamma, \tag{3.6}
\end{equation*}
$$

for all $t \in \mathbb{Z}$ and $y \in \mathbb{R}^{N}$. Then each solution $x=u_{1}$ of system (1.1) satisfies

$$
\begin{gather*}
\sum_{t=1}^{T}|x(t)|^{p / 2} \leq \frac{(\gamma+\beta) T}{\delta}+\frac{\alpha^{q} C(q, p) B^{1 / p} D^{1 / q}}{\delta} \tag{3.7}\\
\|\Delta x\|_{p}^{p} \leq \frac{p T(\gamma+\beta)}{1-C \alpha} \tag{3.8}
\end{gather*}
$$

where

$$
B=\frac{p T(\gamma+\beta)}{\alpha^{q}-C \alpha^{q+1}}, \quad D=\frac{q T(\gamma+\beta)}{\alpha^{1-q / p}-C \alpha} .
$$

Proof. By (3.6), for all $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$, we have

$$
\begin{align*}
\frac{\delta}{\alpha}\left|u_{1}\right|^{p / 2}-\frac{\beta}{\alpha}+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} & \leq H(t, u)=\frac{1}{\alpha} F\left(t, u_{1}\right)+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
& \leq \frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}+\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} . \tag{3.9}
\end{align*}
$$

Then, we have

$$
(u, v)-H(t, u) \geq(u, v)-\frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q}, \quad \forall u \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
$$

Since

$$
\begin{aligned}
& (u, v)-\frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
& =\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)-\frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
& \leq\left|u_{1}\right|\left|v_{1}\right|-\frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}+\left|u_{2}\right|\left|v_{2}\right|-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
& \leq \sup _{u_{1} \in \mathbb{R}^{N}}\left\{\left|u_{1}\right|\left|v_{1}\right|-\frac{\alpha^{p-1}}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}\right\}+\sup _{u_{2} \in \mathbb{R}^{N}}\left\{\left|u_{2}\right|\left|v_{2}\right|-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q}\right\} \\
& =\frac{\left|v_{1}\right|^{q}}{q \alpha}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p}, \quad \forall u \in \mathbb{R}^{N} \times \mathbb{R}^{N} .
\end{aligned}
$$

Hence, by (2.1), we have

$$
H^{*}(t, v) \geq \frac{\left|v_{1}\right|^{q}}{q \alpha}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p} .
$$

When $v=\nabla H(t, u)$, by (2.2) and (3.9), we get

$$
H^{*}(t, v)=(u, v)-H(t, u) \leq(u, v)+\frac{\beta}{\alpha}
$$

Then

$$
\begin{equation*}
\frac{\left|v_{1}\right|^{q}}{q \alpha}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p} \leq(u, v)+\frac{\beta}{\alpha} \tag{3.10}
\end{equation*}
$$

Note that

$$
v=\nabla H(t, u)=\binom{\nabla H_{1}\left(t, u_{1}\right)}{\nabla H_{2}\left(t, u_{2}\right)}=\binom{\frac{1}{\alpha} \nabla F\left(t, u_{1}\right)}{\alpha^{q-1}\left|u_{2}\right|^{q-2} u_{2}} .
$$

Then by (2.2) and (3.10), we have

$$
\frac{\left|\frac{1}{\alpha} \nabla F\left(t, u_{1}\right)\right|^{q}}{q \alpha}-\frac{\gamma}{\alpha}+\left.\left.\frac{1}{p \alpha}\left|\alpha^{q-1}\right| u_{2}\right|^{q-2} u_{2}\right|^{p} \leq(u, \nabla H(t, u))+\frac{\beta}{\alpha},
$$

that is

$$
\frac{\alpha^{-(1+q)}}{q}\left|\nabla F\left(t, u_{1}\right)\right|^{q}-\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{p}\left|u_{2}\right|^{q} \leq(u, \nabla H(t, u))+\frac{\beta}{\alpha} .
$$

For each solution $u \in E$ of system (1.1), by (2.3) and (2.4), we know

$$
\nabla F\left(t, u_{1}(t)\right)=-\alpha \Delta u_{2}(t)
$$

and

$$
L \nabla H(t, u(t))=\nabla H(t, L u(t))=-J \Delta u(t) .
$$

Hence

$$
\frac{1}{q \alpha}\left|\Delta u_{2}(t)\right|^{q}-\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{p}\left|u_{2}(t)\right|^{q} \leq\left(u(t),-L^{-1}(J \Delta u(t))\right)+\frac{\beta}{\alpha} .
$$

Summing the above inequality over $\mathbb{Z}[1, T]$ and using Lemma 2.2 and (2.3), we obtain

$$
\frac{1}{q \alpha}\left\|\Delta u_{2}\right\|_{q}^{q}-\frac{\gamma T}{\alpha}+\frac{\alpha^{q-1}}{p}\left\|u_{2}\right\|_{q}^{q}
$$

$$
\begin{aligned}
& \leq-\sum_{t=1}^{T}\left(u(t), L^{-1}(J \Delta u(t))\right)+\frac{\beta T}{\alpha} \leq \frac{C}{q}\left\|\Delta u_{2}\right\|_{q}^{q}+\frac{C}{p}\left\|\Delta u_{1}\right\|_{p}^{p}+\frac{\beta T}{\alpha} \\
& =\frac{C}{q}\left\|\Delta u_{2}\right\|_{q}^{q}+\frac{C \alpha^{q}}{p}\left\|\Phi_{q}\left(u_{2}\right)\right\|_{p}^{p}+\frac{\beta T}{\alpha}=\frac{C}{q}\left\|\Delta u_{2}\right\|_{q}^{q}+\frac{C \alpha^{q}}{p}\left\|u_{2}\right\|_{q}^{q}+\frac{\beta T}{\alpha} .
\end{aligned}
$$

So

$$
\left(\frac{1}{q \alpha}-\frac{C}{q}\right)\left\|\Delta u_{2}\right\|_{q}^{q}+\left(\frac{\alpha^{q-1}}{p}-\frac{C \alpha^{q}}{p}\right)\left\|u_{2}\right\|_{q}^{q} \leq \frac{T(\beta+\gamma)}{\alpha} .
$$

Since $\alpha \in\left(0, C^{-1}\right)$, we have

$$
\begin{equation*}
\left\|u_{2}\right\|_{q}^{q} \leq \frac{p T(\gamma+\beta)}{\alpha^{q}-C \alpha^{q+1}}=B, \quad\left\|\Delta u_{2}\right\|_{q}^{q} \leq \frac{q T(\gamma+\beta)}{1-C \alpha}=D \tag{3.11}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left\|\Delta u_{1}\right\|_{p}^{p}=\alpha^{q}\left\|\Phi_{q}\left(u_{2}\right)\right\|_{p}^{p}=\alpha^{q}\left\|u_{2}\right\|_{q}^{q} \leq B \alpha^{q} . \tag{3.12}
\end{equation*}
$$

It follows that (3.8) holds. Since F is continuously differentiable and convex in x, then by Lemma 2.3, (3.6), (2.3), Lemma 2.2, Hölder's inequality, (3.11) and (3.12), we have

$$
\begin{aligned}
\delta \sum_{t=1}^{T}\left|u_{1}(t)\right|^{p / 2}-\beta T & \leq \sum_{t=1}^{T} F\left(t, u_{1}(t)\right) \leq \sum_{t=1}^{T}\left[F(t, 0)+\left(\nabla F\left(t, u_{1}(t)\right), u_{1}(t)\right)\right] \\
& \leq \gamma T-\sum_{t=1}^{T}\left(\alpha \Delta u_{2}(t), u_{1}(t)\right)=\gamma T-\sum_{t=1}^{T}\left(\alpha \Delta u_{2}(t), \tilde{u}_{1}(t)\right) \\
& \leq \gamma T+\alpha\left(\sum_{t=1}^{T}\left|\tilde{u}_{1}(t)\right|^{p}\right)^{1 / p}\left(\sum_{t=1}^{T}\left|\Delta u_{2}(t)\right|^{q}\right)^{1 / q} \\
& \leq \gamma T+\alpha C(q, p)\left\|\Delta u_{1}\right\|_{p}\left\|\Delta u_{2}\right\|_{q} \leq \gamma T+\alpha^{q} C(q, p) B^{1 / p} D^{1 / q} .
\end{aligned}
$$

So, we get

$$
\sum_{t=1}^{T}\left|u_{1}(t)\right|^{p / 2} \leq \frac{(\gamma+\beta) T}{\delta}+\frac{\alpha^{q} C(q, p) B^{1 / p} D^{1 / q}}{\delta}
$$

It follows that (3.7) holds. The proof is complete.
Acknowledgement. This project is supported by the National Natural Science Foundation of China (No: 11301235), Tianyuan Fund for Mathematics of the National Natural Science Foundation of China (No: 11226135) and the Fund for Fostering Talents in Kunming University of Science and Technology (No: KKSY201207032).

References

[1] D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl. 326 (2007), no. 1, 297-302.
[2] G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal. 70 (2009), no. 9, 3180-3186.
[3] G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal. 88 (2009), no. 4, 605-616.
[4] P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the p Laplacian, Comput. Math. Appl. 56 (2008), no. 4, 959-964.
[5] Z. M. Z. Guo and J. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A 46 (2003), no. 4, 506-515.
[6] Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc. (2) 68 (2003), no. 2, 419-430.
[7] T. He and W. Chen, Periodic solutions of second order discrete convex systems involving the p-Laplacian, Appl. Math. Comput. 206 (2008), no. 1, 124-132.
[8] Z. Luo and X. Zhang, Existence of nonconstant periodic solutions for a nonlinear discrete system involving the p-Laplacian, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 373-382.
[9] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, New York, 1989.
[10] Y.-F. Xue and C.-L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput. 196 (2008), no. 2, 494-500.
[11] Y.-F. Xue and C.-L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal. 67 (2007), no. 7, 2072-2080.
[12] Z. Zhou, J. Yu and Z. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 5, 1013-1022.

[^0]: Communicated by Rosihan M. Ali, Dato'.
 Received: February 14, 2012; Revised: May 15, 2012.

