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Abstract. Let R be a ring. In this paper, F'P-Gorenstein cotorsion modules are introduced
and studied. An R-module N is said to be FP-Gorenstein cotorsion if Ext}q(F, N) =0 for
any finitely presented Gorenstein flat R-module F. We prove that the class of F P-Gorenstein
cotorsion modules is covering and preenveloping over coherent rings. F P-Gorenstein cotor-
sion dimension of modules and rings are also studied. Some properties of FP-Gorenstein
cotorsion modules are given.
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1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity and all modules will
be unitary. Unless otherwise stated, R-modules always denote left R-modules. For an R-
module M, the character module Homz(M,Q/Z) is denoted by M™*; fd(M), id(M), pd(M)
and FP-id(M) stand for the flat, injective, projective and F P-injective dimensions of M
respectively. As usual, we use g9t to denote the class of left R-modules, wD(R) the weakly
global dimension of R and D(R) the left global dimension of R. For unexplained concepts,
notions and facts, we refer the reader to [3,7-9, 17, 18,20, 21].

We first recall some notions and facts which we need in the later sections.

(1) Let M be an R-module and X a class of R-modules. A homomorphism ¢ : M — X with
X € X is called an X-preenvelope [7,16,18,20] of M if for any homomorphism f : M — X’
with X’ € X, there is a homomorphism g : X — X’ such that g¢ = f. Moreover, if the only
such g are automorphisms of X when X = X’ and f = ¢, the X-preenvelope ¢ is called
an X-envelope of M. X is a (pre)enveloping class provided that each module has an X-
(pre)envelope. Dually, X-precovers, X-covers, and covering classes of modules can be
defined.

(2) Let X, Y be two classes of R-modules. Xt = {N € g Extk(X,N) =0 for all X € X}
and LY = {M € g Ext}e(M, Y) =0 for all Y € Y}. A module M is said to have a special
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X-precover 7] if there is an exact sequence 0 —» K — X — M — 0 with X € X and K € X*.
Dually, M is said to be have a special Y-preenvelope if there is an exact sequence 0 » M —
Y>L->O0withYeYandLetY.

(3) Let X, Y be two classes of R-modules. The pair (X,Y) is called a cotorsion pair (or
cotorsion theory) [7-9]if X+ = Y and X = +Y. Let S be a class of R-modules. (+(S1),S1)
is called the cotorsion pair cogenerated by S. A cotorsion pair (X,Y) is called complete if
each module has a special Y-preenvelope and hereditary if Extjé X,Y)=0foralli>1,XeX
and Y € Y. (X,Y) is called perfect provided that X is a covering class and Y is an enveloping
class. We know that a cotorsion pair (X,Y) is a complete cotorsion pair if it is cogenerated
by a set [7, Theorem 7.4.1].

(4) An R-module M is called Gorenstein flat [7,9,20] if there exists an exact sequence
.ee> F] - Fy » F® > F! — ... of flat R-modules such that M = ker(F® — F!) and that
remains exact whenever E ®g — is applied for any injective right R-module E. The class
of Gorenstein flat modules is denoted by G#. An R-module N is called Gorenstein cotor-
sion [9] if Ext}Q(M, N) = 0 for any Gorenstein flat R-module M. The class of Gorenstein
cotorsion modules is denoted by GC. Over right coherent rings, (G¥,GC) is a hereditary
and perfect cotorsion pair [9, Theorem 3.1.9]. So we can define the Gorenstein cotorsion
dimension Ged(M) of an R-module M as the least nonnegative integer n such that there is
an exact sequence 0 > M —» C? - C! - ... - C" - 0 with C' e GCfor 0 <i <n.

In Section 2, we introduce the concept of F'P-Gorenstein cotorsion modules. We show
that the class of F'P-Gorenstein cotorsion modules is closed under extensions, pure sub-
modules, pure quotients, direct products and direct limits (and so direct sums) over coher-
ent rings. Some basic properties of F'P-Gorenstein cotorsion modules are given. In Section
3, we prove that over coherent rings, every R-module M has a surjective F'P-Gorenstein
cotorsion cover and an injective F P-Gorenstein cotorsion preenvelope. In Section 4, we
introduce and investigate the ' P-Goresntein cotorsion dimension of modules and rings. We
characterize some rings through F P-Gorenstein cotorsion dimensions.

2. Some properties of F'P-Gorenstein cotorsion modules
We begin with the following definition.

Definition 2.1. An R-module N is called F P-Gorenstein cotorsion if Ext}e(F, N) =0 for all
finitely presented Gorenstein flat R-modules F.

Proposition 2.1. The following hold:

(1) Injective modules, FP-injective modules and Gorenstein cotorsion modules are
F P-Goresntein cotorsion.

(2) Every direct product of F P-Gorenstein cotorsion modules is F P-Gorenstein cotor-
sion.

(3) Every finite direct sum of F P-Gorenstein cotorsion modules is F P-Gorenstein co-
torsion.

(4) Suppose N = N1 ®N,, then N is F P-Gorenstein cotorsion if and only if Ny and N;
are both F P-Gorenstein cotorsion.

Proof. By Definition 2.1. 1

Recall that a ring R is called left coherent (resp. right coherent) if every finitely generated
left (resp. right) ideal is finitely presented. A ring R is coherent if it is both left and right
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coherent. A ring R is left coherent if and only if every finitely generated submodule of a
finitely presented R-module is also finitely presented.

Proposition 2.2. Suppose R is a coherent ring and N an FP-Gorenstein cotorsion R-
module. Then Ext,(F,N) = 0 for any finitely presented Gorenstein flat R-module F and
foralli>1.

Proof. Let F be a finitely presented Gorenstein flat R-module. By Definition 2.1, we need
only to prove that Ext,(F, M) =0 fori> 2. Since R is coherent, we have a finitely generated
free resolution of F

s E B S S R B S0
Then every kerf; (for i > 0) is also finitely presented and Gorenstein flat by [9, Corollary
2.1.8]. Hence Exty'(F,N)= Exty(kerfi;,M)=0foralli> 1. 1

Corollary 2.1. Let R be a coherent ring and 0 —» N' — N — N"" — 0 a short exact sequence.
If N’ is FP-Goresntein cotorsion, then N is F P-Goresntein cotorsion if and only if N is
F P-Gorenstein cotorsion.

Proof. Let F be any finitely presented Gorenstein flat R-module, we get the following exact
sequence

0= Exti(F,N') = Extp(F,N) — Extp(F,N"") — Exth(F,N’).
By Proposition 2.2, Extlze(F, N’) = 0. Hence the result follows. 1

Lemma 2.1. Let R be a coherent ring. Then limN; is FP-Gorenstein cotorsion, where
—

((N),(fji) is a direct system of FP-Gorenstein cotorsion R-modules. In particular, the
class ¥ GC of F P-Gorenstein cotorsion R-modules is closed under direct sums.

Proof. Let F be a finitely presented Gorenstein flat R-module. By [19, Theorem 3.2], we
get
Exty(F,limN;) = lim Ext(F,N;) = 0.

Then the result follows. |

It is not hard to see that the condition “R is commutative” can be dropped in [2, Proposi-
tion 1.3]. Then we have the next lemma.

Lemma 2.2. If R is coherent, then a finitely presented R-module is Gorenstein flat if and
only if it is Gorenstein projective.

Remark 2.1.

(1) Let R be a coherent ring. Then each R-module with finite projective dimension is
F P-Gorenstein cotorsion since finitely presented Gorenstein projective R-modules
coincide with finitely presented Gorenstein flat R-modules by Lemma 2.2. Hence
any R-module with finite injective dimension is also F'P-Gorenstein cotorsion by [4,
Lemma 2.1].

(2) Let R=2Z. Then D(R) = 1, so every Goresntein flat R-module is flat. Since finitely
presented flat R-modules are finitely generated projective, every R-module is FP-
Gorenstein cotorsion by Definition 2.1. Note that the quotient field Q of R is a
flat R-module, but it is not a projective R-module. So there is an R-module L such
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that Ext}z(Q, L) # 0, i.e., L is neither cotorsion nor Gorenstein cotorsion. This
example shows that F'P-Gorenstein cotorsion modules need not to be cotorsion or
Gorenstein cotorsion. Then we get the following implications:

injective modules = Gorenstein cotorsion modules = cotorsion modules,
injective modules = F P-injective modules = F P-Gorenstein cotorsion modules.

Proposition 2.3. Let R be a coherent ring.
(1) If an R-module N has finite F P-injective dimension, then N is F P-Gorenstein co-
torsion.
(2) If a right R-module N has finite F P-injective dimension, then N* is F P-Gorenstein
cotorsion.
(3) If an R-module M has finite flat dimension, then M is F P-Gorenstein cotorsion.

Proof. (1). Suppose that FP-id(N) = n < co. Let F be a finitely presented Gorenstein flat
R-module. Then there exists an exact sequence

05F->P spP 5.l 1050

such that P' is finitely generated projective for 0 <i <n—1 and L is a finitely presented
Gorenstein flat R-module. Thus Extk(F, N) = EthH(L,N) =0 and hence N is F'P-Goren-
stein cotorsion.

(2). Let F be a finitely presented Gorenstein flat R-module and E an injective right
R-module. Then Tor’f(E, F)=0and [7, Theorem 3.2.1] shows

Exty(F,E*) = Homz( TorX(E, F),Q/Z) =0,

which implies that E* is F P-Gorenstein cotorsion for every injective right R-module E.
Next, we assume that FP-id(N) = n < co. Then there exists an exact sequence

0oN—>E' SE'... 5 E"' S L-0

such that each E' is injective for 0 <i < n—1 and L is FP-injective by [19, Lemma 3.1].
This exact sequence induces the following exact sequence

0_)L+_>(En*])+_>"'_)(El)+_)(E0)+_>N+_)O.

By Corollary 2.1, it is sufficient to prove that L* is FP-Gorenstein cotorsion. Since L is
F P-injective, L is a pure submodule of any right R-module which contains L. Then we get
a pure exact sequence

0-L—>E—>K-—>O0

with E injective. Note that

0K "-E"->L">0
splits, so L™ is F P-Gorenstein cotorsion since E* is F P-Gorenstein cotorsion by the proof
above. This completes the proof.

(3). Let F be a finitely presented Gorenstein flat R-module and F” a flat R-module. Then
F’" =1im P; for some direct system ((P;), (fj;)), where each P; is projective. By [10, Lemma

3.1.6], we have
Exth(F,F') = Exty(F,lim P;) = lim Exty(F,P;) = 0.
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Hence any flat R-module is F'P-Gorenstein cotorsion. Assume that fd(M) = n, then we have
the exact sequence

O0=F,>F,1—>—>F—>Fy—>M-0,
where F; is flat for 0 < i < n. By the proof above, each F; is F'P-Gorenstein cotorsion and
hence M is also F P-Gorenstein cotorsion by Corollary 2.1. 1

Recall that a submodule 7' of an R-module N is said to be a pure submodule of N if
00— A®rT — A®g N is exact for all right R-modules A, or equivalently, if Homg(A,N) —
Homg(A,N/T) — 0 is exact for all finitely presented R-modules A. An exact sequence

0->T 4 N is said to be pure exact if A(T) is a pure submodule of N.

Proposition 2.4. Let R be a ring and N an F P-Gorenstein cotorsion R-module. If the exact

T . . . . ., .
sequence 0 > N’ — N = N” — 0 is pure, then N’ is F P-Gorenstein cotorsion. In addition,
if R is coherent, then N” is also F P-Gorenstein cotorsion.

Proof. Let F be a finitely presented Gorenstein flat R-module. Then we have an exact
sequence
Homg(F,N) 5 Homg(F,N"") - Exth(F,N') - Exth(F,N) (=0)
— Exth(F,N"") — Exth(F,N").

Since F is finitely presented and 0 -» N* —» N LN 50is pure exact, m, is epimor-
phic. So Ext}e(F, N’) =0 and hence N’ is F P-Gorenstein cotorsion. If R is coherent, then
Extlze(F, N’) =0 by Proposition 2.3. So Ext}Q(F, N’") =0 and then N’ is also F P-Gorenstein
cotorsion. 1

Corollary 2.2. Suppose R is coherent. Then M is FP-Gorenstein cotorsion if and only if
M+ is FP-Gorenstein cotorsion.

Proof. Note that 0 - M — M™* is a pure exact sequence, then M is F P-Gorenstein cotor-
sion whenever M** is by Proposition 2.4.

Conversely, suppose that M is FP-Gorenstein cotorsion. Let F be a finitely presented
Gorenstein flat R-module and P a finitely generated projective resolution of . Then we
have

Exth(F, M) = H_;( Homg(P, M*™))

H_;( Homz(M* @ P,Q/Z)) = Homz(H(M* & P),Q/Z)
Homgz( Homz(H-1( Homg(P, M)),Q/Z),Q/Z)

Homgz( Homz( Extk(F, M),Q/Z),Q/Z) = 0.

R

IR

1R

The second step is Hom-tensor adjointness. The fourth step follows from the proof of [18,
Theorem 9.51] and [18, Remark, p.257]. Hence M** is F P-Gorenstein cotorsion. 1

3. Existences of F'P-Gorenstein cotorsion covers and preenvelopes

In the rest of this article, GF f, always denotes the class of finitely presented Gorenstein
flat R-modules.

Theorem 3.1. Let R be a coherent ring.
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(1) Every R-module M has a surjective F P-Gorenstein cotorsion cover f:C — M.

(2) The pair (*FGC,F GC) is a complete and hereditary cotorsion pair. In particular,
every R-module M has a special ~F GC-precover and a special FP-Gorenstein
cotorsion preenvelope.

Proof. (1). Since the class of F'P-Gorenstein cotorsion modules is closed under pure quo-
tient modules by Proposition 2.4 and closed under direct sums by Lemma 2.1, every R-
module M has an FP-Gorenstein cotorsion cover f : C — M by [12, Theorem 2.5]. Note
that each projective R-module is F P-Gorenstein cotorsion by Remark 2.1, then f is surjec-
tive.

(2). Firstly, it is easy to see that (*FGC,F GC) = (l(gff,,l),g?‘;p) is a cotorsion pair.

Secondly. For any finitely presented Gorenstein flat R-module F', Card(F) < K- Card(R).
Let Y be the set of all finitely presented Gorenstein flat R-modules F such that Card(F) <
No - Card(R). Then C is in ¥ GC if and only if Ext}e(F, C)=0for all F €Y. This just says
that the cotorsion pair (1 FGC,F GC) is cogenerated by the set Y and hence (*FGC,F GC)
is a complete cotorsion pair by [10, Theorem 3.2.1]. In particular, every R-module M has a
special +F GC-precover and a special ¥ GC-preenvelope.

Thirdly. FGC is coresolving by Proposition 2.1 and Corollary 2.1, so (*FGC,F GC) is
a hereditary cotorsion pair by [8, Theorem 2.1.4]. 1

Remark 3.1.

(1) Note that ¥ GC contains all injective modules, then every ¥ GC-preenvelope g :
M — C of an R-module M is a monomorphism. Clearly, *#GC contains all pro-
jective R-modules, so each *FGC-precover f : G — N of an R-module N is an
epimorphism.

(2) GF 2+FGC since GC € F GC. So every R-module M € ~FGC is Gorenstein flat.
In general, *FGC isn’t closed under direct limits. If +F GC is closed under direct
limits, then *#GC contains all flat R-modules since every flat module is a direct
limit of finitely generated free R-modules. Even over the ring Z, ~F GC doesn’t
contain all flat modules (see Remark 2.1(2)).

Corollary 3.1. Let R be a coherent ring and f : M — N a monomorphism.

(1) Ifcoker(f) € *FGC, then gf : M — C is also an F GC-preenvelope of M whenever
g:N — Cisan ¥ GC-preenvelope of N.

(2) Ifg: N — Cis a special ¥ GC-preenvelope of N, then coker(f) € *F GC if and only
ifgf : M — Cis a special F GC-preenvelope of M.

Proof. This is similar to the proof of [15, Proposition 2.6]. 1

Proposition 3.1. The following conditions are equivalent for a coherent ring R:

(1) Every R-module is F P-Gorenstein cotorsion.
(2) Every R-module M € *FGC is F P-Gorenstein cotorsion.

Proof. (1) = (2) is trivial.
(2) = (1). Let M be an R-module. By Theorem 3.1, we have a short exact sequence:
0->C—>F —f> M—0

such that f : F — M is a special *FGC-precover. So C is FP-Gorenstein cotorsion and
hence M is F P-Gorenstein cotorsion by Corollary 2.1. 1
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4. FP-Gorenstein cotorsion dimension of modules and rings

Definition 4.1. Let R be a ring. For an R-module M, the F P-Gorenstein cotorsion dimen-
sion F'P-Gecd(M) of M is defined to be the smallest integer n > 0 such that Extﬁ“(F, M)=0
for any finitely presented Gorenstein flat R-module F. Ifthere is no such n, set FP-Ged(M) =
oo, The (left) global F P-Gorenstein cotorsion dimension F P-G-cot.D(R) of R is defined as
the supremum of the F P-Gorenstein cotorsion dimensions of R-modules.

Dually, we can define the * F GC dimension of M, denoted by Gfd*(M). Note that +FGC
contains all projective R-modules, then Gfd(M) < Gfd*(M) < pd(M) for all R-modules M.
The (left) global +F GC dimension of R is defined by G-wD*(R) = sup{Gfd*(M)|M € g}.

Proposition 4.1. Let R be coherent and N an R-module.
(1) Consider the following two exact sequences
05No>G' 56 5 56 TsXx 50,
05N->G' 56 5. 56" X -0,

where G°,G1,--- ,G" 1 and G°,G!,--- ,G" are FP-Gorenstein cotorsion R-modu-
les. Then X is F P-Gorenstein cotorsion if and only if X is F P-Gorenstein cotorsion.
(2) Dually, consider the following two exact sequences

0->K—>Fp1>Fy2—>->Fy—>N->Q0,
0-K—>Fy1—>Fu2—>—>Fy—>N-DO0,

where Fo,-+ ,Fy_1 and Fo,--- ,F,,_1 are all in *F GC. Then K € *F GC if and only

ifK etFGC.
Proof. (1). Clearly, we can construct the following diagram:
0 N GO Gl cee anl X 0
0 N EO El Enfl L 0
0 N GO G! e Gn1 % 0

where E' is injective for 0 <i < n— 1. By mapping cone, we get the following two exact
sequences:

0->N->NeG' - E'@G' - - E G ' s E"'eX > L—0,
0->N->NoG' - E'eG' 5. . 5 E"?20G" ' 5 E"'9X > L—0.
Then we get two exact sequences by [7, Remark 1.4.14]:
0-G"—>E'@G' - - E" @G S E"'eX > L—0,
0-G">E'aG' - .. 5 206" s EV'eX 5 L—0.
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By Corollary 2.1, X is FP-Gorenstein cotorsion if and only if L is F'P-Gorenstein cotorsion
if and only if X is F P-Gorenstein cotorsion.
(2). The proof is dual to that of (1). 1
Over coherent rings, it is easily to see Gfd*(M) = Gfd(M) for every finitely presented
R-module M.

Theorem 4.1. Let R be a coherent ring.

(1) FP-Gecd(M) =0 or oo for an R-module M.
(2) FP-G-cot.D(R) =0 or co.
(3) (FGC,FGCH) is a perfect, hereditary cotorsion pair.

Proof. (1). Suppose that FP-Gcd(M) = n < oo for some nonnegative integer n. Let F be a
finitely presented Gorenstein flat R-module. Then there exists an exact sequence

0-F->P 5Pl 5P s 5P LS F 50

such that each P! is finitely generated projective for 0 <i <n—1and F’ is a finitely presented
Gorenstein flat. So we get Ext}e(F, M) = Ext;’;rl(F ’,M) =0. Hence M is FP-Gorenstein
cotorsion.

(2) is clear by (1).

(3). We first prove that (F GC,F GC") is a cotorsion pair. Note that (-(F GC*), F GC*)
is a cotorsion pair, then we must prove F GC = *(FGC). FGC C H(FGC™) is clear, so we
need to prove ¥ GC 2 H(FGC™). For any R-module M € +(FGC"), there exists an exact
sequence 0 » K — C — M — 0, where C — M is the F'P-Gorenstein cotorsion cover of M
by Theorem 3.1. Then K € ¥ GC* by [20, Lemma 2.1.1] and so Ext}e(M, K) =0. Hence
0 — K — C — M — 0 splits and then M € FGC. So FGC 2 *(FGCH).

Note that ¥ GC is resolving by Remark 2.1 and Theorem 4.1, then (F GC,F GC™) is a
complete, hereditary cotorsion pair by Theorem 3.1 and [7, Proposition 7.1.7].

Since ¥ GC is closed under direct limits by Proposition 2.4, (F GC,F GC™) is a perfect
cotorsion pair by [7, Theorem 7.2.6]. 1

Proposition 4.2. Let R be a coherent ring and M an R-module. Then the following are
equivalent for a nonnegative integer n:

(1) Gfd*(M) <n.

2) Ext;’e” (M, C) =0 for all FP-Gorenstein cotorsion R-modules C.

3) EXt}}(M, C) =0 for all FP-Gorenstein cotorsion R-modules C and all i > n+ 1.

(4) Ifthe sequence 0 — G" — G 15 ... 5 GY > M — 0is exact such that G°,G', - - -,

G" ! are all in *FGC, then G" is also in ~F GC.

(5) If f : M — C is a special F GC-preenvelope, then Gfd*(C) < n.

Consequently, the *F GC dimension of M is determined by the formula:
Gfd*(M) = sup{i € No[AC € FGC : Exth(M,C) # 0}.

Proof. By Definition 4.1, Proposition 4.1 and Theorem 3.1. 1
Corollary 4.1. Let R be a coherent ring and 0 - A — B — C — 0 an exact sequence of
R-modules. If two of Gfd*(A), Gfd*(B) and Gfd*(C) are finite, so does the third. Moreover,

(1) Gfd*(B) < max{Gfd*(A),Gfd*(C)},

(2) Gfd*(C) < max{Gfd*(A) + 1,Gfd*(B)},
(3) Gfd*(A) < max{Gfd*(B),Gfd*(C) - 1}.
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In particular, if B is in *F GC and Gfd*(C) > 0, then Gfd*(C) = Gfd*(A) + 1.

Corollary 4.2. Let R be a coherent ring with D(R) < co. Then G-wD*(R) = D(R). In partic-
ular, R is left hereditary if and only if G-wD*(R) < 1.

Proposition 4.3. Let R be a coherent ring with G-wD*(R) = n for some nonnegative integer
n and M an R-module. Then
(1) id(M) < n iffd(M) < oo,
(2) idd(M) <nif pd(M) < oo,
(3) id(M) < oo if and only if id(M) < n if and only if FP-id(M) < n if and only if FP-
id(M) < co.

Proof. (1). Since G-wD*(R) = n < oo, there exists an exact sequence
O->F,—»>F, > ---—>Fy—>N->0

for any R-module N such that F; € *FGC for 0 < i < n. Note that M € FGC if fd(M) < oo
by Proposition 2.3, then we have Ext;‘e+1 (N, M) = 0 for any R-module N. Hence id(M) < n.
(2) is a consequence of (1).
(3). id(M) < 00 = id(M) < n and FP-id(M) < oo = id(M) < n are similar to (1).
id(M) <n= FP-id(M) <n= FP-id(M) < oo are trivial. 1

Theorem 4.2. Let R be a Noetherian ring. Then the following are equivalent:
(1) R is quasi-Frobenius (i.e., 0-Gorenstein).
(2) Every FP-Gorenstein cotorsion R-module is injective.

(3) Every Gorenstein cotorsion R-module is injective.
(4) Gfd*(M) =0 for any R-module M.

Proof. (1) = (2). Since R is quasi-Frobenius, R/ is finitely presented Gorenstein flat
for any left ideal I of R. Then for any FP-Gorenstein cotorsion R-module N, we have
Ext}e(R/I, N)=0. So N is injective by Bear criterion.

(2) = (3) and (2) © (4) are trivial.

(3) = (1). Since (GF ,GC) is a cotorsion pair, every R-module is Gorenstein flat by (3).
Then R is quasi-Frobenius by [7, Theorem 12.3.1]. |

Remark 4.1. In general, G-wD(R) < G-wD*(R) < D(R). Theorem 4.2 shows that the the
second inequality may be strict. In fact, the first inequality may be also strict. For example,
consider Small’s triangular ring

(5 ¢

0 Q
Since wD(R) = 1 and D(R) =2 by [13, Example (5.62b)], we have G-wD(R) = wD(R) =1 <
G-wD*(R) =D(R) = 2.
Following [5], a ring R is called an n-FC ring if R is left and right coherent with FP-
id(gR) < n and F P-id(Rg) < n for an integer n > 0. An R-module M is said to be torsionless

(or semi-reflexive) [13] if the natural map i : M — M** is a monomorphism and an R-module
M is called reflexive if i : M — M** is an isomorphism, where M* = Homg(M, R).

Theorem 4.3. Let R be a coherent ring. Then the following are equivalent:
(1) Risan FC ring (i.e., 0-FC ring).
(2) Every FP-Gorenstein cotorsion R-module is F P-injective.
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Proof. (1) = (2). Since R is FC, every R-module is Gorenstein flat by [14, Proposition
5.5]. For any F P-Gorenstein cotorsion R-module N, we have Ext}e(F, N) =0 for any finitely
presented R-module F'. Hence N is F P-injective.

(2) = (1). Let M be a finitely presented R-module. Since every F P-Gorenstein cotorsion
R-module is F P-injective by (2), every finitely presented R-module M is Gorenstein flat and
hence Gorenstein projective. Then M can be embedded in a free R-module and is torsionless
by [13, Remarks 4.65]. By [19, Lemma 4.6], we have an exact sequence

0-M->M"*"—> Ext}e(L,R) -0

for some finitely presented R-module L. Note that L is finitely presented Gorenstein projec-
tive and hence Ext}e(L,R) = 0 since R is F P-Gorenstein cotorsion by Remark 2.1. Then M
is reflexive and R is an F'C ring by [19, Theorem 4.9]. 1

Example 4.1. By Theorems 4.1, 4.2 and 4.3, we get

(1) If R is quasi-Frobenius (i.e., 0-Gorenstein), then the cotorsion pair (F GC,F GC)
is exactly (Proj,g ), where Proj is the class of projective R-modules. In fact,
by Theorem 4.2, FP-Gorenstein cotorsion R-modules coincide with injective R-
modules. Note that R is quasi-Frobenius, so projective modules coincide with in-
jective modules. Then the result holds.

(2) If R is an FC ring, then the cotorsion pair (F GC,F GC") is exactly (Flat,Cot),
where ¥ lat (Cot) is the class of flat (cotorsion) R-modules.

Proposition 4.4. Let R be a coherent ring. Then the following are equivalent:
(1) Risn-FC.
(2) FP-id(M) < n for any F P-Gorenstein cotorsion (left and right) R-module M.

Proof. (1) = (2). Let N be a finitely presented R-module. Since R is n-FC, we get Gfd(N) <
n by [5, Theorem 7]. Then Ext’;;rl(N, M) = 0 for any F P-Gorenstein cotorsion R-module
M. So FP-id(M) < n by [19, Theorem 3.1].

(2) => (1). Suppose n > 1. Let N be a finitely presented R-module and M an FP-
Gorenstein cotorsion R-module. We get a finitely generated projective resolution of N:

0O->K—->P, >P,p—>--—>>Py—>N-O.

Since FP-id(M) <n, 0= Exti*'(N,M) = Extp(K, M). Then K is finitely presented Goren-
stein flat and hence R is n-FC by [5, Theorem 7] again.
Suppose n = 0. By Theorem 4.3, we easily get that R is an FC ring. 1

Corollary 4.3. Let R be an n-FC ring. Then the following are equivalent:

(1) *FGC is closed under direct limits.
(2) FGC=gGC.

Proof. (1) = (2). Since R is an n-FC ring, every Gorenstein flat R-module M is isomorphic
to lim P; for some inductive system ((P;),(fj;)) by [5, Theorem 5], where each P; is a finitely

presented Gorenstein flat R-module. By (1), every Gorenstein flat R-module is in +FGC,
so (2) follows.

(2) = (1). Since (*FGC,F GC) and (GF ,GC) are both cotorsion pairs, we get *FGC =
GF by (2). Hence *F GC is closed under direct limits by [9, Corollary 2.1.9]. ]

Theorem 4.4. Let R be a coherent ring.
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(1) If every FP-Gorenstein cotorsion R-module is Gorenstein cotorsion, then R is left
perfect.

(2) IfRis an n-FC ring and N is a pure-injective R-module, then N is F P-Gorenstein
cotorsion if and only if N is Gorenstein cotorsion.

(3) If R is left perfect, then Gfd*(F) = 0 or oo for any Gorenstein flat R-module F.
Furthermore, if G-wD*(R) < oo, then an R-module M is Gorenstein cotorsion if
and only if it is F P-Gorenstein cotorsion.

Proof. (1). For any flat R-module F, we have a short exact sequence
0-K—->P—->F-0.

Note that K is flat and so it is F'P-Gorenstein cotorsion by Proposition 2.3. Then we have
Ext}e(F, K) =0 and so the sequence splits. Thus F is projective and then R is left perfect.
(2). The sufficiency is trivial.
Necessity. Suppose n > 1. Let M be a Gorenstein flat R-module. Note that R is n-FC,
M = li_r)nC,- for some inductive system ((C;),(fj:)), where each C; is a finitely presented

Gorenstein projective R-module by [5, Theorem 5]. Note that N is pure-injective, then [10,
Lemma 3.3.4] implies

Extp(M,N) = Extp(limC;,N) = lim Exty(C;,N) = 0.

So N is Gorenstein cotorsion.

Suppose n = 0. Note that an R-module N is F P-Gorenstein cotorsion if and only if it is
F P-injective by Theorem 4.3, the rest proof is similar to the case n > 1.

(3). Let F be a Gorenstein flat R-module. Suppose Gfd*(Fp)=n<ooandlet f: G — Fy
be a special *F GC-precover. Then K = ker(f) is F P-Gorenstein cotorsion and Gorenstein
flat. There exists an exact sequence

O—->F,—»>P,.1>P,»—>--->P  -K-—>0

with each P; projective and F,, € *F GC. It is easy to see that F,, is F P-Gorenstein cotorsion.
Note that there is an exact sequence

O0-L—>P—>F,—0

with P projective and L € ¥ GC. The sequence splits and then F, is projective. It is not hard
to prove that every Gorenstein flat R-module is Gorenstein projective when R is coherent
and left perfect. Hence we get that K is projective and so the short exact sequence 0 —
K — G — Fy — 0 splits. Hence Fy is a direct summand of G and so Fy € *FGC. Then
Gfd*(Fy) = 0 or co.

Now, the last statement is obvious. 1

Remark 4.2. The condition G-wD*(R) < co in Theorem 4.4 (3) can be replaced by Gfd*(F) <
oo for all Gorenstein flat R-modules F.

Corollary 4.4. Let R be a coherent ring. Then the following hold:

(1) Every FP-Gorenstein cotorsion R-module is Gorenstein cotorsion if and only if R
is left perfect and Gfd*(F) < oo for all Gorenstein flat R-modules F.
(2) Gfd(M) < Gfd*(M) < pd(M) for any R-module M. Furthermore, if R is left perfect,
then
(a) Gfd(M) = Gfd*(M) if Gfd* (M) < co.
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(b) Gfd(M) = Gfd*(M) = pd(M) if pd(M) < oo.

Proof. (1). The sufficiency follows from Theorem 4.4 and Remark 4.2.

Necessity. Since (GF,GC) and (*F GC,F GC) are both cotorsion pairs, we easily get
GF = +F GC by hypothesis and hence Gfd*(F) = 0 < oo for any Gorenstein flat R-module
F.

(2). Gfd(M) < Gfd* (M) < pd(M) are obvious. (a) holds by Theorem 4.4.

For (b), we claim that if an R-module is Gorenstein flat, then it is Gorenstein projective.
Let F be a Gorenstein flat R-module. Note that R is left perfect, then we get an exact
sequence of projective R-modules

oo PPy PSP

with F = ker(P° — P') such that E ®g — is exact for any injective right R-module E. For
any projective R-module Q, Q% is right injective, then

Extp(F,Q**) = Homgz( Torf(Q*,F).Q/Z) =0
for all i > 1 by [7, Theorem 3.2.1] and [11, Theorem 3.6]. Since
0 N Q N Q++ N Q++/Q N O

is a pure short exact sequence, Q**/Q is flat by [13, Corollary 4.86] and hence projective.
This sequence splits and so Q is a direct summand of Q**. We get Exty(F,Q) = 0 for all
i > 1 and then F is Gorenstein projective by [11, Proposition 2.3]. Thus (b) follows. 1

Proposition 4.5. If R is an n-FC ring with n > 0, then the following are equivalent:

(1) wD(R) < co.

(2) Every finitely presented Gorenstein flat R-module is projective.

(3) Every R-module is F P-Gorenstein cotorsion.

(4) Every quotient of an F P-Gorenstein cotorsion R-module is F P-Gorenstein cotor-
sion.

(5) Every submodule of an F P-Gorenstein cotorsion R-module is F P-Gorenstein co-
torsion.

(6) The left/right symmetric of (1) ~ (5).

Proof. (1) = (2). Since fd(M) = 0 or co for any Gorenstein flat R-module M, M is flat by
hypothesis. Hence every finitely presented Gorenstein flat R-module is projective.

(2) = (3) is trivial.

3) © (4) & (5) hold by Theorems 3.1 and 4.1.

(3) = (1). Since *FGC C GF, we easily get every finitely presented Gorenstein flat R-
module is projective by hypothesis. For a Gorenstein flat R-module F, F = liLn G, for some

direct system ((G;), (f}:)) by [5, Theorem 5], where each G; is finitely presented Gorenstein
flat. Note that each G; is projective and hence F = limG; is flat, then wD(R) < o by [5,

Theorem 13].
(1) © (6). The proofs are similar to those of (1) ~ (5). 1

Proposition 4.6. Let R be a commutative coherent ring and M an R-module. Then the
following are equivalent:

(1) MeFgGC.

(2) Homg(P, M) € FGC for any projective R-module P.



F P-Gorenstein Cotorsion Modules 523

(3) G®r M € FGC for any flat R-module G.

Proof. (1) = (2). Let P be a projective R-module and F a finitely presented Gorenstein flat
R-module. Then there exists another projective R-module Q such that P& Q = R for some
set X. So we have
Exth(F, Homg(P® Q, M)) = Exty(F, Homg(R®, M)) = Ext}(F,( Homg(R, M))*)
= (Exth(F, M) = 0.

Hence Homg(P, M) € ¥ GC by Proposition 2.1.

(1) = (3). Let G be a flat R-module. Then G = lim F; for some direct system ((F;), (fji),
where each F; is a free R-module. For any finitely presented Gorenstein flat R-module F,
we have

Exth(F,G ®g M) = Exth(F,lim F;® M) = Exty(F,lim(F; ® M))

I3

lim Exth(F, F; ®¢ M) = lim Exth(F, M®) = 0.

The second isomorphism holds since — ®g — commutes with lim, the third follows by [10,

Lemma 3.1.6] and the fourth holds since F GC is closed under direct sums. Hence G ®p M

is F P-Gorenstein cotorsion.
(2) = (1) holds by letting P = R and (3) = (1) holds by letting G = R. 1
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