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Abstract. Let R be a ring. In this paper, FP-Gorenstein cotorsion modules are introduced
and studied. An R-module N is said to be FP-Gorenstein cotorsion if Ext1R(F,N) = 0 for
any finitely presented Gorenstein flat R-module F. We prove that the class of FP-Gorenstein
cotorsion modules is covering and preenveloping over coherent rings. FP-Gorenstein cotor-
sion dimension of modules and rings are also studied. Some properties of FP-Gorenstein
cotorsion modules are given.
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1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity and all modules will
be unitary. Unless otherwise stated, R-modules always denote left R-modules. For an R-
module M, the character module HomZ(M,Q/Z) is denoted by M+; fd(M), id(M), pd(M)
and FP-id(M) stand for the flat, injective, projective and FP-injective dimensions of M
respectively. As usual, we use RM to denote the class of left R-modules, wD(R) the weakly
global dimension of R and D(R) the left global dimension of R. For unexplained concepts,
notions and facts, we refer the reader to [3, 7–9, 17, 18, 20, 21].

We first recall some notions and facts which we need in the later sections.
(1) Let M be an R-module andX a class of R-modules. A homomorphism φ : M→ X with

X ∈ X is called an X-preenvelope [7,16,18,20] of M if for any homomorphism f : M→ X′

with X′ ∈ X, there is a homomorphism g : X→ X′ such that gφ = f . Moreover, if the only
such g are automorphisms of X when X = X′ and f = φ, the X-preenvelope φ is called
an X-envelope of M. X is a (pre)enveloping class provided that each module has an X-
(pre)envelope. Dually, X-precovers, X-covers, and covering classes of modules can be
defined.

(2) Let X,Y be two classes of R-modules. X⊥ = {N ∈ RM| Ext1R(X,N) = 0 for all X ∈ X}
and ⊥Y = {M ∈ RM| Ext1R(M,Y) = 0 for all Y ∈ Y}. A module M is said to have a special
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X-precover [7] if there is an exact sequence 0→ K→ X→ M→ 0 with X ∈ X and K ∈ X⊥.
Dually, M is said to be have a specialY-preenvelope if there is an exact sequence 0→M→
Y → L→ 0 with Y ∈ Y and L ∈ ⊥Y .

(3) Let X,Y be two classes of R-modules. The pair (X,Y) is called a cotorsion pair (or
cotorsion theory) [7–9] if X⊥ =Y and X = ⊥Y. Let S be a class of R-modules. (⊥(S⊥),S⊥)
is called the cotorsion pair cogenerated by S. A cotorsion pair (X,Y) is called complete if
each module has a specialY-preenvelope and hereditary if ExtiR(X,Y) = 0 for all i≥ 1,X ∈X
and Y ∈Y. (X,Y) is called perfect provided thatX is a covering class andY is an enveloping
class. We know that a cotorsion pair (X,Y) is a complete cotorsion pair if it is cogenerated
by a set [7, Theorem 7.4.1].

(4) An R-module M is called Gorenstein flat [7, 9, 20] if there exists an exact sequence
· · · → F1 → F0 → F0 → F1 → ·· · of flat R-modules such that M = ker(F0 → F1) and that
remains exact whenever E ⊗R − is applied for any injective right R-module E. The class
of Gorenstein flat modules is denoted by GF . An R-module N is called Gorenstein cotor-
sion [9] if Ext1R(M,N) = 0 for any Gorenstein flat R-module M. The class of Gorenstein
cotorsion modules is denoted by GC. Over right coherent rings, (GF ,GC) is a hereditary
and perfect cotorsion pair [9, Theorem 3.1.9]. So we can define the Gorenstein cotorsion
dimension Gcd(M) of an R-module M as the least nonnegative integer n such that there is
an exact sequence 0→ M→C0→C1→ ·· · →Cn→ 0 with Ci ∈ GC for 0 ≤ i ≤ n.

In Section 2, we introduce the concept of FP-Gorenstein cotorsion modules. We show
that the class of FP-Gorenstein cotorsion modules is closed under extensions, pure sub-
modules, pure quotients, direct products and direct limits (and so direct sums) over coher-
ent rings. Some basic properties of FP-Gorenstein cotorsion modules are given. In Section
3, we prove that over coherent rings, every R-module M has a surjective FP-Gorenstein
cotorsion cover and an injective FP-Gorenstein cotorsion preenvelope. In Section 4, we
introduce and investigate the FP-Goresntein cotorsion dimension of modules and rings. We
characterize some rings through FP-Gorenstein cotorsion dimensions.

2. Some properties of FP-Gorenstein cotorsion modules

We begin with the following definition.

Definition 2.1. An R-module N is called FP-Gorenstein cotorsion if Ext1R(F,N) = 0 for all
finitely presented Gorenstein flat R-modules F.

Proposition 2.1. The following hold:
(1) Injective modules, FP-injective modules and Gorenstein cotorsion modules are

FP-Goresntein cotorsion.
(2) Every direct product of FP-Gorenstein cotorsion modules is FP-Gorenstein cotor-

sion.
(3) Every finite direct sum of FP-Gorenstein cotorsion modules is FP-Gorenstein co-

torsion.
(4) Suppose N = N1 ⊕N2, then N is FP-Gorenstein cotorsion if and only if N1 and N2

are both FP-Gorenstein cotorsion.

Proof. By Definition 2.1.
Recall that a ring R is called left coherent (resp. right coherent) if every finitely generated

left (resp. right) ideal is finitely presented. A ring R is coherent if it is both left and right
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coherent. A ring R is left coherent if and only if every finitely generated submodule of a
finitely presented R-module is also finitely presented.

Proposition 2.2. Suppose R is a coherent ring and N an FP-Gorenstein cotorsion R-
module. Then ExtiR(F,N) = 0 for any finitely presented Gorenstein flat R-module F and
for all i ≥ 1.

Proof. Let F be a finitely presented Gorenstein flat R-module. By Definition 2.1, we need
only to prove that ExtiR(F,M) = 0 for i ≥ 2. Since R is coherent, we have a finitely generated
free resolution of F

· · · → Fn
fn
→ Fn−1

fn−1
→ ·· · → F1

f1
→ F0

f0
→ F→ 0.

Then every ker fi (for i ≥ 0) is also finitely presented and Gorenstein flat by [9, Corollary
2.1.8]. Hence Exti+1

R (F,N) � Ext1R(ker fi−1,M) = 0 for all i ≥ 1.

Corollary 2.1. Let R be a coherent ring and 0→ N′→ N→ N′′→ 0 a short exact sequence.
If N′ is FP-Goresntein cotorsion, then N is FP-Goresntein cotorsion if and only if N′′ is
FP-Gorenstein cotorsion.

Proof. Let F be any finitely presented Gorenstein flat R-module, we get the following exact
sequence

0 = Ext1R(F,N′)→ Ext1R(F,N)→ Ext1R(F,N′′)→ Ext2R(F,N′).

By Proposition 2.2, Ext2R(F,N′) = 0. Hence the result follows.

Lemma 2.1. Let R be a coherent ring. Then lim
→

Ni is FP-Gorenstein cotorsion, where
((Ni), ( f ji)) is a direct system of FP-Gorenstein cotorsion R-modules. In particular, the
class FGC of FP-Gorenstein cotorsion R-modules is closed under direct sums.

Proof. Let F be a finitely presented Gorenstein flat R-module. By [19, Theorem 3.2], we
get

Ext1R(F, lim
→

Ni) � lim
→

Ext1R(F,Ni) = 0.

Then the result follows.
It is not hard to see that the condition “R is commutative” can be dropped in [2, Proposi-

tion 1.3]. Then we have the next lemma.

Lemma 2.2. If R is coherent, then a finitely presented R-module is Gorenstein flat if and
only if it is Gorenstein projective.

Remark 2.1.
(1) Let R be a coherent ring. Then each R-module with finite projective dimension is

FP-Gorenstein cotorsion since finitely presented Gorenstein projective R-modules
coincide with finitely presented Gorenstein flat R-modules by Lemma 2.2. Hence
any R-module with finite injective dimension is also FP-Gorenstein cotorsion by [4,
Lemma 2.1].

(2) Let R = Z. Then D(R) = 1, so every Goresntein flat R-module is flat. Since finitely
presented flat R-modules are finitely generated projective, every R-module is FP-
Gorenstein cotorsion by Definition 2.1. Note that the quotient field Q of R is a
flat R-module, but it is not a projective R-module. So there is an R-module L such
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that Ext1R(Q,L) , 0, i.e., L is neither cotorsion nor Gorenstein cotorsion. This
example shows that FP-Gorenstein cotorsion modules need not to be cotorsion or
Gorenstein cotorsion. Then we get the following implications:

injective modules⇒ Gorenstein cotorsion modules⇒ cotorsion modules,
injective modules⇒ FP-injective modules⇒ FP-Gorenstein cotorsion modules.

Proposition 2.3. Let R be a coherent ring.

(1) If an R-module N has finite FP-injective dimension, then N is FP-Gorenstein co-
torsion.

(2) If a right R-module N has finite FP-injective dimension, then N+ is FP-Gorenstein
cotorsion.

(3) If an R-module M has finite flat dimension, then M is FP-Gorenstein cotorsion.

Proof. (1). Suppose that FP-id(N) = n <∞. Let F be a finitely presented Gorenstein flat
R-module. Then there exists an exact sequence

0→ F→ P0→ P1→ ·· · → Pn−1→ L→ 0

such that Pi is finitely generated projective for 0 ≤ i ≤ n− 1 and L is a finitely presented
Gorenstein flat R-module. Thus Ext1R(F,N) � Extn+1

R (L,N) = 0 and hence N is FP-Goren-
stein cotorsion.

(2). Let F be a finitely presented Gorenstein flat R-module and E an injective right
R-module. Then TorR

1 (E,F) = 0 and [7, Theorem 3.2.1] shows

Ext1R(F,E+) � HomZ( TorR
1 (E,F),Q/Z) = 0,

which implies that E+ is FP-Gorenstein cotorsion for every injective right R-module E.
Next, we assume that FP-id(N) = n <∞. Then there exists an exact sequence

0→ N→ E0→ E1 · · · → En−1→ L→ 0

such that each Ei is injective for 0 ≤ i ≤ n− 1 and L is FP-injective by [19, Lemma 3.1].
This exact sequence induces the following exact sequence

0→ L+→ (En−1)+→ ·· · → (E1)+→ (E0)+→ N+→ 0.

By Corollary 2.1, it is sufficient to prove that L+ is FP-Gorenstein cotorsion. Since L is
FP-injective, L is a pure submodule of any right R-module which contains L. Then we get
a pure exact sequence

0→ L→ E→ K→ 0

with E injective. Note that
0→ K+→ E+→ L+→ 0

splits, so L+ is FP-Gorenstein cotorsion since E+ is FP-Gorenstein cotorsion by the proof
above. This completes the proof.

(3). Let F be a finitely presented Gorenstein flat R-module and F′ a flat R-module. Then
F′ = lim

→
Pi for some direct system ((Pi), ( f ji)), where each Pi is projective. By [10, Lemma

3.1.6], we have

Ext1R(F,F′) � Ext1R(F, lim
→

Pi) � lim
→

Ext1R(F,Pi) = 0.
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Hence any flat R-module is FP-Gorenstein cotorsion. Assume that fd(M) = n, then we have
the exact sequence

0→ Fn→ Fn−1→ ·· · → F1→ F0→ M→ 0,

where Fi is flat for 0 ≤ i ≤ n. By the proof above, each Fi is FP-Gorenstein cotorsion and
hence M is also FP-Gorenstein cotorsion by Corollary 2.1.

Recall that a submodule T of an R-module N is said to be a pure submodule of N if
0→ A⊗R T → A⊗R N is exact for all right R-modules A, or equivalently, if HomR(A,N)→
HomR(A,N/T )→ 0 is exact for all finitely presented R-modules A. An exact sequence

0→ T
λ
→ N is said to be pure exact if λ(T ) is a pure submodule of N.

Proposition 2.4. Let R be a ring and N an FP-Gorenstein cotorsion R-module. If the exact
sequence 0→ N′→ N

π
→ N′′→ 0 is pure, then N′ is FP-Gorenstein cotorsion. In addition,

if R is coherent, then N′′ is also FP-Gorenstein cotorsion.

Proof. Let F be a finitely presented Gorenstein flat R-module. Then we have an exact
sequence

HomR(F,N)
π∗
→ HomR(F,N′′)→ Ext1R(F,N′)→ Ext1R(F,N) (= 0)

→ Ext1R(F,N′′)→ Ext2R(F,N′).

Since F is finitely presented and 0 → N′ → N
π
→ N′′ → 0 is pure exact, π∗ is epimor-

phic. So Ext1R(F,N′) = 0 and hence N′ is FP-Gorenstein cotorsion. If R is coherent, then
Ext2R(F,N′) = 0 by Proposition 2.3. So Ext1R(F,N′′) = 0 and then N′′ is also FP-Gorenstein

cotorsion.

Corollary 2.2. Suppose R is coherent. Then M is FP-Gorenstein cotorsion if and only if
M++ is FP-Gorenstein cotorsion.

Proof. Note that 0→ M→ M++ is a pure exact sequence, then M is FP-Gorenstein cotor-
sion whenever M++ is by Proposition 2.4.

Conversely, suppose that M is FP-Gorenstein cotorsion. Let F be a finitely presented
Gorenstein flat R-module and P a finitely generated projective resolution of F. Then we
have

Ext1R(F,M++) = H−1( HomR(P,M++))

� H−1( HomZ(M+⊗R P,Q/Z)) � HomZ(H1(M+⊗R P),Q/Z)
� HomZ( HomZ(H−1( HomR(P,M)),Q/Z),Q/Z)

� HomZ( HomZ( Ext1R(F,M),Q/Z),Q/Z) = 0.

The second step is Hom-tensor adjointness. The fourth step follows from the proof of [18,
Theorem 9.51] and [18, Remark, p.257]. Hence M++ is FP-Gorenstein cotorsion.

3. Existences of FP-Gorenstein cotorsion covers and preenvelopes

In the rest of this article, GF f p always denotes the class of finitely presented Gorenstein
flat R-modules.

Theorem 3.1. Let R be a coherent ring.
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(1) Every R-module M has a surjective FP-Gorenstein cotorsion cover f : C→ M.
(2) The pair (⊥FGC,FGC) is a complete and hereditary cotorsion pair. In particular,

every R-module M has a special ⊥FGC-precover and a special FP-Gorenstein
cotorsion preenvelope.

Proof. (1). Since the class of FP-Gorenstein cotorsion modules is closed under pure quo-
tient modules by Proposition 2.4 and closed under direct sums by Lemma 2.1, every R-
module M has an FP-Gorenstein cotorsion cover f : C → M by [12, Theorem 2.5]. Note
that each projective R-module is FP-Gorenstein cotorsion by Remark 2.1, then f is surjec-
tive.

(2). Firstly, it is easy to see that (⊥FGC,FGC) = (⊥(GF f p
⊥),GF ⊥f p) is a cotorsion pair.

Secondly. For any finitely presented Gorenstein flat R-module F, Card(F)≤ℵ0 ·Card(R).
Let Y be the set of all finitely presented Gorenstein flat R-modules F such that Card(F) ≤
ℵ0 ·Card(R). Then C is in FGC if and only if Ext1R(F,C) = 0 for all F ∈ Y . This just says
that the cotorsion pair (⊥FGC,FGC) is cogenerated by the set Y and hence (⊥FGC,FGC)
is a complete cotorsion pair by [10, Theorem 3.2.1]. In particular, every R-module M has a
special ⊥FGC-precover and a special FGC-preenvelope.

Thirdly. FGC is coresolving by Proposition 2.1 and Corollary 2.1, so (⊥FGC,FGC) is
a hereditary cotorsion pair by [8, Theorem 2.1.4].

Remark 3.1.
(1) Note that FGC contains all injective modules, then every FGC-preenvelope g :

M→ C of an R-module M is a monomorphism. Clearly, ⊥FGC contains all pro-
jective R-modules, so each ⊥FGC-precover f : G → N of an R-module N is an
epimorphism.

(2) GF ⊇ ⊥FGC since GC ⊆ FGC. So every R-module M ∈ ⊥FGC is Gorenstein flat.
In general, ⊥FGC isn’t closed under direct limits. If ⊥FGC is closed under direct
limits, then ⊥FGC contains all flat R-modules since every flat module is a direct
limit of finitely generated free R-modules. Even over the ring Z, ⊥FGC doesn’t
contain all flat modules (see Remark 2.1(2)).

Corollary 3.1. Let R be a coherent ring and f : M→ N a monomorphism.
(1) If coker( f ) ∈ ⊥FGC, then g f : M→C is also an FGC-preenvelope of M whenever

g : N→C is an FGC-preenvelope of N.
(2) If g : N→C is a special FGC-preenvelope of N, then coker( f ) ∈ ⊥FGC if and only

if g f : M→C is a special FGC-preenvelope of M.

Proof. This is similar to the proof of [15, Proposition 2.6].

Proposition 3.1. The following conditions are equivalent for a coherent ring R:
(1) Every R-module is FP-Gorenstein cotorsion.
(2) Every R-module M ∈ ⊥FGC is FP-Gorenstein cotorsion.

Proof. (1)⇒ (2) is trivial.
(2)⇒ (1). Let M be an R-module. By Theorem 3.1, we have a short exact sequence:

0→C→ F
f
→ M→ 0

such that f : F → M is a special ⊥FGC-precover. So C is FP-Gorenstein cotorsion and
hence M is FP-Gorenstein cotorsion by Corollary 2.1.
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4. FP-Gorenstein cotorsion dimension of modules and rings

Definition 4.1. Let R be a ring. For an R-module M, the FP-Gorenstein cotorsion dimen-
sion FP-Gcd(M) of M is defined to be the smallest integer n ≥ 0 such that Extn+1

R (F,M) = 0
for any finitely presented Gorenstein flat R-module F. If there is no such n, set FP-Gcd(M) =

∞. The (left) global FP-Gorenstein cotorsion dimension FP-G-cot.D(R) of R is defined as
the supremum of the FP-Gorenstein cotorsion dimensions of R-modules.

Dually, we can define the ⊥FGC dimension of M, denoted by Gfd∗(M). Note that ⊥FGC
contains all projective R-modules, then Gfd(M) ≤ Gfd∗(M) ≤ pd(M) for all R-modules M.
The (left) global ⊥FGC dimension of R is defined by G-wD∗(R) = sup{Gfd∗(M)|M ∈ RM}.

Proposition 4.1. Let R be coherent and N an R-module.
(1) Consider the following two exact sequences

0→ N→G0→G1→ ·· · →Gn−1→ X→ 0,

0→ N→ G̃0→ G̃1→ ·· · → G̃n−1→ X̃→ 0,

where G0,G1, · · · ,Gn−1 and G̃0,G̃1, · · · ,G̃n−1 are FP-Gorenstein cotorsion R-modu-
les. Then X is FP-Gorenstein cotorsion if and only if X̃ is FP-Gorenstein cotorsion.

(2) Dually, consider the following two exact sequences

0→ K→ Fm−1→ Fm−2→ ·· · → F0→ N→ 0,

0→ K̃→ F̃m−1→ F̃m−2→ ·· · → F̃0→ N→ 0,

where F0, · · · ,Fm−1 and F̃0, · · · , F̃m−1 are all in ⊥FGC. Then K ∈ ⊥FGC if and only
if K̃ ∈ ⊥FGC.

Proof. (1). Clearly, we can construct the following diagram:

0 // N // G0 //

��

G1 //

��

· · · // Gn−1 //

��

X //

��

0

0 // N // E0 // E1 // · · · // En−1 // L // 0

0 // N // G̃0 //

OO

G̃1 //

OO

· · · // G̃n−1 //

OO

X̃ //

OO

0

where Ei is injective for 0 ≤ i ≤ n− 1. By mapping cone, we get the following two exact
sequences:

0→ N→ N ⊕G0→ E0⊕G1→ ·· · → En−2⊕Gn−1→ En−1⊕X→ L→ 0,

0→ N→ N ⊕ G̃0→ E0⊕ G̃1→ ·· · → En−2⊕ G̃n−1→ En−1⊕ X̃→ L→ 0.

Then we get two exact sequences by [7, Remark 1.4.14]:

0→G0→ E0⊕G1→ ·· · → En−2⊕Gn−1→ En−1⊕X→ L→ 0,

0→ G̃0→ E0⊕ G̃1→ ·· · → En−2⊕ G̃n−1→ En−1⊕ X̃→ L→ 0.
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By Corollary 2.1, X is FP-Gorenstein cotorsion if and only if L is FP-Gorenstein cotorsion
if and only if X̃ is FP-Gorenstein cotorsion.

(2). The proof is dual to that of (1).
Over coherent rings, it is easily to see Gfd∗(M) = Gfd(M) for every finitely presented

R-module M.

Theorem 4.1. Let R be a coherent ring.
(1) FP-Gcd(M) = 0 or∞ for an R-module M.
(2) FP-G-cot.D(R) = 0 or∞.
(3) (FGC,FGC⊥) is a perfect, hereditary cotorsion pair.

Proof. (1). Suppose that FP-Gcd(M) = n <∞ for some nonnegative integer n. Let F be a
finitely presented Gorenstein flat R-module. Then there exists an exact sequence

0→ F→ P0→ P1→ P2→ ·· · → Pn−1→ F′→ 0

such that each Pi is finitely generated projective for 0≤ i≤ n−1 and F′ is a finitely presented
Gorenstein flat. So we get Ext1R(F,M) � Extn+1

R (F′,M) = 0. Hence M is FP-Gorenstein
cotorsion.

(2) is clear by (1).
(3). We first prove that (FGC,FGC⊥) is a cotorsion pair. Note that (⊥(FGC⊥),FGC⊥)

is a cotorsion pair, then we must prove FGC = ⊥(FGC⊥). FGC ⊆ ⊥(FGC⊥) is clear, so we
need to prove FGC ⊇ ⊥(FGC⊥). For any R-module M ∈ ⊥(FGC⊥), there exists an exact
sequence 0→ K→C→ M→ 0, where C→ M is the FP-Gorenstein cotorsion cover of M
by Theorem 3.1. Then K ∈ FGC⊥ by [20, Lemma 2.1.1] and so Ext1R(M,K) = 0. Hence
0→ K→C→ M→ 0 splits and then M ∈ FGC. So FGC ⊇ ⊥(FGC⊥).

Note that FGC is resolving by Remark 2.1 and Theorem 4.1, then (FGC,FGC⊥) is a
complete, hereditary cotorsion pair by Theorem 3.1 and [7, Proposition 7.1.7].

Since FGC is closed under direct limits by Proposition 2.4, (FGC,FGC⊥) is a perfect
cotorsion pair by [7, Theorem 7.2.6].

Proposition 4.2. Let R be a coherent ring and M an R-module. Then the following are
equivalent for a nonnegative integer n:

(1) Gfd∗(M) ≤ n.
(2) Extn+1

R (M,C) = 0 for all FP-Gorenstein cotorsion R-modules C.
(3) ExtiR(M,C) = 0 for all FP-Gorenstein cotorsion R-modules C and all i ≥ n + 1.
(4) If the sequence 0→Gn→Gn−1→ ·· ·→G0→M→ 0 is exact such that G0,G1, · · · ,

Gn−1 are all in ⊥FGC, then Gn is also in ⊥FGC.
(5) If f : M→C is a special FGC-preenvelope, then Gfd∗(C) ≤ n.

Consequently, the ⊥FGC dimension of M is determined by the formula:

Gfd∗(M) = sup{i ∈ N0|∃C ∈ FGC : ExtiR(M,C) , 0}.

Proof. By Definition 4.1, Proposition 4.1 and Theorem 3.1.

Corollary 4.1. Let R be a coherent ring and 0→ A→ B→ C → 0 an exact sequence of
R-modules. If two of Gfd∗(A), Gfd∗(B) and Gfd∗(C) are finite, so does the third. Moreover,

(1) Gfd∗(B) ≤max{Gfd∗(A),Gfd∗(C)},
(2) Gfd∗(C) ≤max{Gfd∗(A) + 1,Gfd∗(B)},
(3) Gfd∗(A) ≤max{Gfd∗(B),Gfd∗(C)−1}.
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In particular, if B is in ⊥FGC and Gfd∗(C) > 0, then Gfd∗(C) = Gfd∗(A) + 1.

Corollary 4.2. Let R be a coherent ring with D(R) <∞. Then G-wD∗(R) = D(R). In partic-
ular, R is left hereditary if and only if G-wD∗(R) ≤ 1.

Proposition 4.3. Let R be a coherent ring with G-wD∗(R) = n for some nonnegative integer
n and M an R-module. Then

(1) id(M) ≤ n if fd(M) <∞,
(2) id(M) ≤ n if pd(M) <∞,
(3) id(M) <∞ if and only if id(M) ≤ n if and only if FP-id(M) ≤ n if and only if FP-

id(M) <∞.

Proof. (1). Since G-wD∗(R) = n <∞, there exists an exact sequence

0→ Fn→ Fn−1→ ·· · → F0→ N→ 0

for any R-module N such that Fi ∈
⊥FGC for 0 ≤ i ≤ n. Note that M ∈ FGC if fd(M) <∞

by Proposition 2.3, then we have Extn+1
R (N,M) = 0 for any R-module N. Hence id(M) ≤ n.

(2) is a consequence of (1).
(3). id(M) <∞⇒ id(M) ≤ n and FP-id(M) <∞⇒ id(M) ≤ n are similar to (1).
id(M) ≤ n⇒ FP-id(M) ≤ n⇒ FP-id(M) <∞ are trivial.

Theorem 4.2. Let R be a Noetherian ring. Then the following are equivalent:
(1) R is quasi-Frobenius (i.e., 0-Gorenstein).
(2) Every FP-Gorenstein cotorsion R-module is injective.
(3) Every Gorenstein cotorsion R-module is injective.
(4) Gfd∗(M) = 0 for any R-module M.

Proof. (1) ⇒ (2). Since R is quasi-Frobenius, R/I is finitely presented Gorenstein flat
for any left ideal I of R. Then for any FP-Gorenstein cotorsion R-module N, we have
Ext1R(R/I,N) = 0. So N is injective by Bear criterion.

(2)⇒ (3) and (2)⇔ (4) are trivial.
(3)⇒ (1). Since (GF ,GC) is a cotorsion pair, every R-module is Gorenstein flat by (3).

Then R is quasi-Frobenius by [7, Theorem 12.3.1].

Remark 4.1. In general, G-wD(R) ≤ G-wD∗(R) ≤ D(R). Theorem 4.2 shows that the the
second inequality may be strict. In fact, the first inequality may be also strict. For example,
consider Small’s triangular ring

R =

(
Z Q
0 Q

)
.

Since wD(R) = 1 and D(R) = 2 by [13, Example (5.62b)], we have G-wD(R) = wD(R) = 1 <
G-wD∗(R) = D(R) = 2.

Following [5], a ring R is called an n-FC ring if R is left and right coherent with FP-
id(RR) ≤ n and FP-id(RR) ≤ n for an integer n ≥ 0. An R-module M is said to be torsionless
(or semi-reflexive) [13] if the natural map i : M→M∗∗ is a monomorphism and an R-module
M is called reflexive if i : M→ M∗∗ is an isomorphism, where M∗ = HomR(M,R).

Theorem 4.3. Let R be a coherent ring. Then the following are equivalent:
(1) R is an FC ring (i.e., 0-FC ring).
(2) Every FP-Gorenstein cotorsion R-module is FP-injective.
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Proof. (1)⇒ (2). Since R is FC, every R-module is Gorenstein flat by [14, Proposition
5.5]. For any FP-Gorenstein cotorsion R-module N, we have Ext1R(F,N) = 0 for any finitely
presented R-module F. Hence N is FP-injective.

(2)⇒ (1). Let M be a finitely presented R-module. Since every FP-Gorenstein cotorsion
R-module is FP-injective by (2), every finitely presented R-module M is Gorenstein flat and
hence Gorenstein projective. Then M can be embedded in a free R-module and is torsionless
by [13, Remarks 4.65]. By [19, Lemma 4.6], we have an exact sequence

0→ M→ M∗∗→ Ext1R(L,R)→ 0

for some finitely presented R-module L. Note that L is finitely presented Gorenstein projec-
tive and hence Ext1R(L,R) = 0 since R is FP-Gorenstein cotorsion by Remark 2.1. Then M
is reflexive and R is an FC ring by [19, Theorem 4.9].

Example 4.1. By Theorems 4.1, 4.2 and 4.3, we get
(1) If R is quasi-Frobenius (i.e., 0-Gorenstein), then the cotorsion pair (FGC,FGC⊥)

is exactly (Pro j,RM), where Pro j is the class of projective R-modules. In fact,
by Theorem 4.2, FP-Gorenstein cotorsion R-modules coincide with injective R-
modules. Note that R is quasi-Frobenius, so projective modules coincide with in-
jective modules. Then the result holds.

(2) If R is an FC ring, then the cotorsion pair (FGC,FGC⊥) is exactly (F lat,Cot),
where F lat (Cot) is the class of flat (cotorsion) R-modules.

Proposition 4.4. Let R be a coherent ring. Then the following are equivalent:
(1) R is n-FC.
(2) FP-id(M) ≤ n for any FP-Gorenstein cotorsion (left and right) R-module M.

Proof. (1)⇒ (2). Let N be a finitely presented R-module. Since R is n-FC, we get Gfd(N)≤
n by [5, Theorem 7]. Then Extn+1

R (N,M) = 0 for any FP-Gorenstein cotorsion R-module
M. So FP-id(M) ≤ n by [19, Theorem 3.1].

(2) ⇒ (1). Suppose n ≥ 1. Let N be a finitely presented R-module and M an FP-
Gorenstein cotorsion R-module. We get a finitely generated projective resolution of N:

0→ K→ Pn−1→ Pn−2→ ·· · → P0→ N→ 0.

Since FP-id(M) ≤ n, 0 = Extn+1
R (N,M) � Ext1R(K,M). Then K is finitely presented Goren-

stein flat and hence R is n-FC by [5, Theorem 7] again.
Suppose n = 0. By Theorem 4.3, we easily get that R is an FC ring.

Corollary 4.3. Let R be an n-FC ring. Then the following are equivalent:
(1) ⊥FGC is closed under direct limits.
(2) FGC = GC.

Proof. (1)⇒ (2). Since R is an n-FC ring, every Gorenstein flat R-module M is isomorphic
to lim
→

Pi for some inductive system ((Pi), ( f ji)) by [5, Theorem 5], where each Pi is a finitely

presented Gorenstein flat R-module. By (1), every Gorenstein flat R-module is in ⊥FGC,
so (2) follows.

(2)⇒ (1). Since (⊥FGC,FGC) and (GF ,GC) are both cotorsion pairs, we get ⊥FGC =

GF by (2). Hence ⊥FGC is closed under direct limits by [9, Corollary 2.1.9].

Theorem 4.4. Let R be a coherent ring.
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(1) If every FP-Gorenstein cotorsion R-module is Gorenstein cotorsion, then R is left
perfect.

(2) If R is an n-FC ring and N is a pure-injective R-module, then N is FP-Gorenstein
cotorsion if and only if N is Gorenstein cotorsion.

(3) If R is left perfect, then Gfd∗(F) = 0 or ∞ for any Gorenstein flat R-module F.
Furthermore, if G-wD∗(R) < ∞, then an R-module M is Gorenstein cotorsion if
and only if it is FP-Gorenstein cotorsion.

Proof. (1). For any flat R-module F, we have a short exact sequence

0→ K→ P→ F→ 0.

Note that K is flat and so it is FP-Gorenstein cotorsion by Proposition 2.3. Then we have
Ext1R(F,K) = 0 and so the sequence splits. Thus F is projective and then R is left perfect.

(2). The sufficiency is trivial.
Necessity. Suppose n ≥ 1. Let M be a Gorenstein flat R-module. Note that R is n-FC,

M � lim
→

Ci for some inductive system ((Ci), ( f ji)), where each Ci is a finitely presented
Gorenstein projective R-module by [5, Theorem 5]. Note that N is pure-injective, then [10,
Lemma 3.3.4] implies

Ext1R(M,N) � Ext1R(lim
→

Ci,N) � lim
←

Ext1R(Ci,N) = 0.

So N is Gorenstein cotorsion.
Suppose n = 0. Note that an R-module N is FP-Gorenstein cotorsion if and only if it is

FP-injective by Theorem 4.3, the rest proof is similar to the case n ≥ 1.
(3). Let F0 be a Gorenstein flat R-module. Suppose Gfd∗(F0) = n <∞ and let f : G→ F0

be a special ⊥FGC-precover. Then K = ker( f ) is FP-Gorenstein cotorsion and Gorenstein
flat. There exists an exact sequence

0→ Fn→ Pn−1→ Pn−2→ ·· · → P1→ K→ 0

with each Pi projective and Fn ∈
⊥FGC. It is easy to see that Fn is FP-Gorenstein cotorsion.

Note that there is an exact sequence

0→ L→ P→ Fn→ 0

with P projective and L ∈ FGC. The sequence splits and then Fn is projective. It is not hard
to prove that every Gorenstein flat R-module is Gorenstein projective when R is coherent
and left perfect. Hence we get that K is projective and so the short exact sequence 0→
K → G→ F0 → 0 splits. Hence F0 is a direct summand of G and so F0 ∈

⊥FGC. Then
Gfd∗(F0) = 0 or∞.

Now, the last statement is obvious.

Remark 4.2. The condition G-wD∗(R)<∞ in Theorem 4.4 (3) can be replaced by Gfd∗(F)<
∞ for all Gorenstein flat R-modules F.

Corollary 4.4. Let R be a coherent ring. Then the following hold:
(1) Every FP-Gorenstein cotorsion R-module is Gorenstein cotorsion if and only if R

is left perfect and Gfd∗(F) <∞ for all Gorenstein flat R-modules F.
(2) Gfd(M) ≤Gfd∗(M) ≤ pd(M) for any R-module M. Furthermore, if R is left perfect,

then
(a) Gfd(M) = Gfd∗(M) if Gfd∗(M) <∞.
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(b) Gfd(M) = Gfd∗(M) = pd(M) if pd(M) <∞.

Proof. (1). The sufficiency follows from Theorem 4.4 and Remark 4.2.
Necessity. Since (GF ,GC) and (⊥FGC,FGC) are both cotorsion pairs, we easily get

GF = ⊥FGC by hypothesis and hence Gfd∗(F) = 0 <∞ for any Gorenstein flat R-module
F.

(2). Gfd(M) ≤ Gfd∗(M) ≤ pd(M) are obvious. (a) holds by Theorem 4.4.
For (b), we claim that if an R-module is Gorenstein flat, then it is Gorenstein projective.

Let F be a Gorenstein flat R-module. Note that R is left perfect, then we get an exact
sequence of projective R-modules

· · · → P1→ P0→ P0→ P1→ ·· ·

with F = ker(P0 → P1) such that E ⊗R − is exact for any injective right R-module E. For
any projective R-module Q, Q+ is right injective, then

ExtiR(F,Q++) � HomZ( TorR
i (Q+,F),Q/Z) = 0

for all i ≥ 1 by [7, Theorem 3.2.1] and [11, Theorem 3.6]. Since

0→ Q→ Q++→ Q++/Q→ 0

is a pure short exact sequence, Q++/Q is flat by [13, Corollary 4.86] and hence projective.
This sequence splits and so Q is a direct summand of Q++. We get ExtiR(F,Q) = 0 for all
i ≥ 1 and then F is Gorenstein projective by [11, Proposition 2.3]. Thus (b) follows.

Proposition 4.5. If R is an n-FC ring with n ≥ 0, then the following are equivalent:
(1) wD(R) <∞.
(2) Every finitely presented Gorenstein flat R-module is projective.
(3) Every R-module is FP-Gorenstein cotorsion.
(4) Every quotient of an FP-Gorenstein cotorsion R-module is FP-Gorenstein cotor-

sion.
(5) Every submodule of an FP-Gorenstein cotorsion R-module is FP-Gorenstein co-

torsion.
(6) The left/right symmetric of (1) ∼ (5).

Proof. (1)⇒ (2). Since fd(M) = 0 or ∞ for any Gorenstein flat R-module M, M is flat by
hypothesis. Hence every finitely presented Gorenstein flat R-module is projective.

(2)⇒ (3) is trivial.
(3)⇔ (4)⇔ (5) hold by Theorems 3.1 and 4.1.
(3)⇒ (1). Since ⊥FGC ⊆ GF , we easily get every finitely presented Gorenstein flat R-

module is projective by hypothesis. For a Gorenstein flat R-module F, F = lim
→

Gi for some
direct system ((Gi), ( f ji)) by [5, Theorem 5], where each Gi is finitely presented Gorenstein
flat. Note that each Gi is projective and hence F = lim

→
Gi is flat, then wD(R) < ∞ by [5,

Theorem 13].
(1)⇔ (6). The proofs are similar to those of (1) ∼ (5).

Proposition 4.6. Let R be a commutative coherent ring and M an R-module. Then the
following are equivalent:

(1) M ∈ FGC.
(2) HomR(P,M) ∈ FGC for any projective R-module P.
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(3) G⊗R M ∈ FGC for any flat R-module G.

Proof. (1)⇒ (2). Let P be a projective R-module and F a finitely presented Gorenstein flat
R-module. Then there exists another projective R-module Q such that P⊕Q = R(X) for some
set X. So we have

Ext1R(F, HomR(P⊕Q,M)) � Ext1R(F, HomR(R(X),M)) � Ext1R(F, ( HomR(R,M))X)

� ( Ext1R(F,M))X = 0.

Hence HomR(P,M) ∈ FGC by Proposition 2.1.
(1)⇒ (3). Let G be a flat R-module. Then G = lim

→
Fi for some direct system ((Fi), ( f ji)),

where each Fi is a free R-module. For any finitely presented Gorenstein flat R-module F,
we have

Ext1R(F,G⊗R M) � Ext1R(F, lim
→

Fi⊗R M) � Ext1R(F, lim
→

(Fi⊗R M))

� lim
→

Ext1R(F,Fi⊗R M) � lim
→

Ext1R(F,M(X)) = 0.

The second isomorphism holds since −⊗R − commutes with lim
→

, the third follows by [10,
Lemma 3.1.6] and the fourth holds since FGC is closed under direct sums. Hence G⊗R M
is FP-Gorenstein cotorsion.

(2)⇒ (1) holds by letting P = R and (3)⇒ (1) holds by letting G = R.
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