Approximately Midconvex Set-Valued Functions

${ }^{1}$ Alireza Kamel Mirmostafaee and ${ }^{2}$ Mostafa Mahdavi
${ }^{1,2}$ Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad 91775, Iran
${ }^{1}$ mirmostafaei@ferdowsi.um.ac.ir, ${ }^{2}$ m_mahdavi1387@yahoo.com

$$
\begin{aligned}
& \text { Abstract. We will show that if } F \text { is a set-valued mapping which satisfies } \\
& \qquad F(x)+F(y) \subseteq 2 F((x+y) / 2)+K \\
& \text { for some convex compact set } K \text {, then under some restrictions, there are maximal superaddi- } \\
& \text { tive and midconvex mappings which are } K \text {-subclose to } F \text {. }
\end{aligned}
$$

2010 Mathematics Subject Classification: 39B62, 39B52, 39B82, 26B51
Keywords and phrases: Set-valued mappings, superadditive map, midconvex map.

1. Introduction

The notion of stability of functional equations has its origins with Ulam [25], who posed the fundamental problem in 1940 and with Hyers [6], who gave the first significant partial solution in 1941. A generalized version of Hyers theorem for approximately linear mappings was given by Rassias [19]. Since then, the stability problems of various functional equations have been extensively investigated by a number of authors (e.g. [1,7-12, 18, 22, 26]).

Functional inclusion is a tool for defining many notions of set-valued analysis, e.g. linear, affine, convex, midconvex, concave, superadditive and subadditive maps.

In set-valued analysis, a functional inclusion is called stable if any function which satisfies this inclusion approximately is near to a true solution of the functional inclusion. The Hyers-Ulam stability is discussed for set-valued functional equations and inclusions by some mathematicians [3, 15-17,24].

Let X and Y be semigroups and $F: X \rightarrow 2^{Y}$. If F satisfies

$$
\begin{equation*}
F(x)+F(y) \subseteq F(x+y) \quad(x \in X) \tag{1.1}
\end{equation*}
$$

then F is called superadditive. A function $F: X \rightarrow 2^{Y}$ is called midconvex if

$$
\begin{equation*}
F(x)+F(y) \subseteq 2 F\left(\frac{x+y}{2}\right) \quad(x, y \in X) \tag{1.2}
\end{equation*}
$$

Note that these notions are different. For example, if $F, G:[0, \infty) \rightarrow 2^{\mathbb{R}}$ are defined by $F(x)=[0, \sqrt{x}]$ and $G(x)=\left[0, x^{2}\right]$ for each $x \in[0, \infty)$, then F is midconvex but it is not superadditive, while the converse holds for G.

Some authors studied different properties of midconvex and additive set-valued functions (e.g. $[2,5,14,23]$). In this paper, we will show that, under certain circumstances, every approximately midconvex function F from an abelian semigroup to compact convex subsets of a topological vector space can be approximated by a set-valued additive mapping. We also prove that there exists a maximal midconvex set-valued mapping which approximates F.

2. Results

Throughout the paper, unless otherwise state, we will assume that X is an abelian semigroup divisible by two and Y is a topological vector space. If $A, B \subset Y$ and $\lambda \in \mathbb{R}$, we define

$$
A+B=\{a+b: a \in A, b \in B\}, \quad \lambda A=\{\lambda a: a \in A\} .
$$

One can easily see that for each $A, B \subset Y$ and $\lambda, \mu \geq 0$,

$$
\lambda(A+B)=\lambda A+\lambda B, \quad(\lambda+\mu) A \subseteq \lambda A+\mu A
$$

Moreover, if A is convex, then $(\lambda+\mu) A=\lambda A+\mu A$. We denote by $C(Y)$ and $C C(Y)$ the collection of all non-empty compact subsets and all non-empty compact convex subsets of Y respectively.

Definition 2.1. If K is a subset of Y and $F: X \rightarrow 2^{Y}$, we say that F is K-midconvex if

$$
\begin{equation*}
F(x)+F(y) \subseteq 2 F\left(\frac{x+y}{2}\right)+K \quad(x, y \in X) \tag{2.1}
\end{equation*}
$$

The above definition is known in the case where K is a convex cone. Many properties of such set-valued functions can be found, for instance in [13].

We need some axillary results. The first one is due to Rådström [20].
Lemma 2.1. Let A, B and C be nonempty subsets of a topological vector space Y. Suppose that B is closed and convex and C is bounded. If $A+C \subseteq B+C$, then $A \subseteq B$. If moreover, A is closed and convex and $A+C=B+C$, then $A=B$.

The following result may be found in [4, Lemma 29.2].
Lemma 2.2. Assume that $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are deceasing sequences of closed subsets of topological vector space and A_{1} is compact. Then

$$
\bigcap_{n=1}^{\infty}\left(A_{n}+B_{n}\right)=\bigcap_{n=1}^{\infty} A_{n}+\bigcap_{n=1}^{\infty} B_{n} .
$$

Definition 2.2. Let $F, G: X \rightarrow C(Y)$ be two set valued functions, for subset K of Y we say that F is K-subclose to G if $F(x) \subseteq G(x)+K \quad(x \in X)$.

Theorem 2.1. Let $F: X \rightarrow C C(Y)$ be a K-midconvex set-valued function, $K \in C C(Y)$ and $0 \in F(0)$. Then there exists a superadditive set-valued function $A: X \rightarrow C C(Y)$ which is maximal K-subclose to F and $A(2 x)=2 A(x)$ for each $x \in X$.

Proof. We divide the proof into three steps.
Step 1. There is a superadditive function $A: X \rightarrow C C(Y)$ such that $A(x) \subseteq F(x)+K$ for each $x \in X$.
Put $y=0$ in (2.1) to obtain

$$
F(x)+F(0) \subseteq 2 F\left(\frac{x}{2}\right)+K \quad(x \in X) .
$$

Since $0 \in F(0)$, we have

$$
\begin{equation*}
F(x) \subseteq 2 F\left(\frac{x}{2}\right)+K \quad(x \in X) \tag{2.2}
\end{equation*}
$$

Replacing x by $2^{n} x$ in (2.2), we see that

$$
\begin{equation*}
F\left(2^{n} x\right) \subseteq 2 F\left(2^{n-1} x\right)+K \quad(x \in X, n \in \mathbb{N}) \tag{2.3}
\end{equation*}
$$

By multiplying both sides of (2.3) by 2^{-n}, we get

$$
\begin{equation*}
2^{-n} F\left(2^{n} x\right) \subseteq 2^{-(n-1)} F\left(2^{(n-1)} x\right)+\frac{K}{2^{n}} \quad(x \in X, n \in \mathbb{N}) \tag{2.4}
\end{equation*}
$$

It follows from (2.4) that

$$
\begin{equation*}
2^{-n} F\left(2^{n} x\right)+\frac{K}{2^{n}} \subseteq 2^{-(n-1)} F\left(2^{(n-1)} x\right)+\frac{K}{2^{n-1}} \quad(x \in X, n \in \mathbb{N}) \tag{2.5}
\end{equation*}
$$

Let $A_{n}(x)=2^{-n} F\left(2^{n} x\right)+K / 2^{n} \quad(x \in X, n \in \mathbb{N})$. It follows from (2.5) that $\left\{A_{n}(x)\right\}$ is a non-increasing sequence of compact sets in Y for each $x \in X$. Hence

$$
A(x)=\bigcap_{n=0}^{\infty} A_{n}(x) \quad(x \in X)
$$

defines a non-empty compact convex valued function on X. In view of (2.5), $A_{n}(x) \subset$ $A_{0}(x)=F(x)+K$ for each $n \in \mathbb{N}$ and $x \in X$. Therefore $A(x) \subset F(x)+K$ for each $x \in X$. Moreover,

$$
\begin{aligned}
A(x)+A(y) & =\bigcap_{n=0}^{\infty} A_{n}(x)+\bigcap_{n=0}^{\infty} A_{n}(y) \\
& \subseteq \bigcap_{n=0}^{\infty}\left(A_{n}(x)+A_{n}(y)\right) \subseteq \bigcap_{n=1}^{\infty}\left(2^{-n} F\left(2^{n} x\right)+\frac{K}{2^{n}}+2^{-n} F\left(2^{n} y\right)+\frac{K}{2^{n}}\right) \\
& \subseteq \bigcap_{n=1}^{\infty}\left(2^{-n}\left(2 F\left(\frac{2^{n} x+2^{n} y}{2}\right)+K\right)+\frac{K}{2^{n-1}}\right) \\
& \subseteq \bigcap_{n=1}^{\infty}\left(2^{-(n-1)} F\left(2^{n-1} x+2^{n-1} y\right)+\frac{K}{2^{n-1}}+\frac{K}{2^{n}}\right) \\
& =\bigcap_{n=1}^{\infty}\left(2^{-(n-1)} F\left(2^{n-1} x+2^{n-1} y\right)+\frac{K}{2^{n-1}}\right)+\bigcap_{n=1}^{\infty} \frac{K}{2^{n}} \quad \text { by Lemma } 2.2 \\
& =\bigcap_{n=1}^{\infty} A_{n-1}(x+y)=A(x+y)
\end{aligned}
$$

for each $x, y \in X$. Hence A is superadditive.

Step 2. $A(2 x)=2 A(x)$.
For each $x \in X$, we have

$$
\begin{aligned}
A(2 x) & =\bigcap_{n=0}^{\infty} A_{n}(2 x)=\bigcap_{n=0}^{\infty}\left[2^{-n} F\left(2^{n+1} x\right)+\frac{K}{2^{n}}\right]=\bigcap_{n=0}^{\infty}\left[2^{-n} F\left(2^{n+1} x\right)+\frac{2 K}{2^{n+1}}\right] \\
& =2 \bigcap_{n=0}^{\infty}\left[2^{-(n+1)} F\left(2^{n+1} x\right)+\frac{K}{2^{n+1}}\right]=2 \bigcap_{n=0}^{\infty} A_{n+1}(x)=2 \bigcap_{n=0}^{\infty} A_{n}(x)=2 A(x) .
\end{aligned}
$$

Step 3. A is maximal superadditive K-subclose to F.
Let $B: X \rightarrow C C(Y)$ be a superadditive K-subclose to F. Then for each $n \in \mathbb{N}$ and $x \in X$

$$
2^{n} B(x) \subseteq B\left(2^{n} x\right) \subseteq F\left(2^{n} x\right)+K
$$

It follows that

$$
B(x) \subseteq A_{n}(x) \quad(x \in X, n \in \mathbb{N})
$$

Therefore $B(x) \subseteq A(x)$ for each $x \in X$.
Definition 2.3. By a selection f of a mapping $F: X \rightarrow 2^{Y}$ we mean a single-valued mapping $f: X \rightarrow Y$ such that $f(x) \in F(x)$ for each $x \in X$.

Corollary 2.1. Let $(X,+)$ be an additive group divisible by two and $F: X \rightarrow C(Y)$ be a midconvex function such that $0 \in F(0)$. Then F admits an additive selection.

Proof. By Theorem 2.1, there is a superadditive function $A: X \rightarrow C(Y)$ such that $A(x) \subseteq$ $F(x)$ for each $x \in X$ and $A(2 x)=2 A(x)$ for each $x \in X$. Therefore $A(0)+A(0) \subseteq A(0)+\{0\}$. On account of Lemma 2.1, $A(0)=\{0\}$. It follows that for each $x \in X, A(x)+A(-x) \subseteq$ $A(x-x)=\{0\}$. Hence A is single-valued. Let $A(x)=\{f(x)\}$ for each $x \in X$. Then f is a selection of F. Moreover for each $x, y \in X$,

$$
f(x)+f(y) \in A(x)+A(y) \subseteq A(x+y)=\{f(x+y)\} .
$$

This proves additivity of f.
We need the following well-known result (see e.g. [21, Theorem 1.13(b)]).
Lemma 2.3. Let X be a topological vector space and $A, B \subseteq X$, then $\bar{A}+\bar{B} \subseteq \overline{A+B}$.
Theorem 2.2. Let $F: X \rightarrow C(Y)$ be an K-midconvex set-valued function, $K \in C C(Y)$ and $0 \in F(0)$. Then there exists a maximal midconvex set-valued function $M: X \rightarrow C(Y)$ which is K-subclose to F.

Proof. Let

$$
\mathscr{P}=\{G: X \rightarrow C(Y): G \text { is midconvex and } G(x) \subseteq F(x)+K \text { for each } x \in X\} .
$$

The proof of Theorem 2.1 ensures that $\mathscr{P} \neq \emptyset$. Define a binary relation " \preceq " on \mathscr{P} as follows.

$$
G_{1} \preceq G_{2} \text { if and only if } G_{1}(x) \subseteq G_{2}(x) \text { for each } x \in X .
$$

Then (\mathscr{P}, \preceq) is a partially ordered set. Let \mathscr{P}_{0} be a chain in \mathscr{P}, define

$$
H(x)=\overline{\bigcup_{G \in \mathscr{P}_{0}} G(x)} \quad(x \in X)
$$

Since for each $x \in X$ and $G \in \mathscr{P}_{0}, G(x) \subseteq F(x)+K$ and $F(x)+K$ is compact, H is compactvalued. We will show that for each $x, y \in X$,

$$
\begin{equation*}
\bigcup_{G \in \mathscr{P}_{0}} G(x)+\bigcup_{G \in \mathscr{P}_{0}} G(y) \subseteq 2 H\left(\frac{x+y}{2}\right) . \tag{2.6}
\end{equation*}
$$

To prove (2.6), take some $x, y \in X, z_{1} \in \bigcup_{G \in \mathscr{P}_{0}} G(x)$ and $z_{2} \in \bigcup_{G \in \mathscr{P}_{0}} G(y)$. Then for some $G_{1}, G_{2} \in \mathscr{P}_{0}, z_{1} \in G_{1}(x)$ and $z_{2} \in G_{2}(y)$. Let $G_{1} \preceq G_{2}$, then

$$
z_{1}+z_{2} \in G_{1}(x)+G_{2}(y) \subseteq G_{2}(x)+G_{2}(y) \subseteq 2 G_{2}\left(\frac{x+y}{2}\right) \subseteq 2 H\left(\frac{x+y}{2}\right) .
$$

This proves (2.6). It follows from (2.6) and Lemma 2.3 that

$$
H(x)+H(y)=\overline{\bigcup_{G \in \mathscr{P}_{0}} G(x)}+\overline{\bigcup_{G \in \mathscr{P}_{0}} G(y) \subseteq \overline{\bigcup_{G \in \mathscr{P}_{0}} G(x)+\bigcup_{G \in \mathscr{P}_{0}} G(y)} \subseteq 2 H\left(\frac{x+y}{2}\right)}
$$

Therefore H is midconvex. By Zorn's Lemma, \mathscr{P} has a maximal element M. This completes our proof.
Example 2.1. Let $X=[0, \infty), Y=\mathbb{R}$ and $F: X \rightarrow C C(Y)$ be defined by

$$
F(x)= \begin{cases}{[0, \sqrt{x}]} & 0 \leq x<1 \\ {[0,2 \sqrt{x}]} & x \geq 1\end{cases}
$$

Since $g(t)=\sqrt{t}$ is concave, $\left.F\right|_{[0,1)}$ and $\left.F\right|_{[1, \infty)}$ satisfy (2.1). Since $F(0)+F(1)=[0,2]$ is not subset of $2 F((0+1) / 2)=[0, \sqrt{2} / 4], F$ is not midconvex. However,

$$
F(x)+F(y) \subseteq[0,1]+[0,2 \sqrt{y}] \subseteq 2 F\left(\frac{x+y}{2}\right)+[0,1]
$$

whenever $0 \leq x<1$ and $y \geq 0$. Hence for $K=[0,1], F$ satisfies (2.1). According to Theorem 2.2, there is a maximal midconvex set-valued map $M:[0, \infty) \rightarrow C(Y)$ such that $M(x) \subseteq$ $F(x)+[0,1]$.

Acknowledgement. We would like to thank the referees very much for their valuable comments and suggestions. This research was supported by a grant from Ferdowsi University of Mashhad No. MP91280MIM

References

[1] J. M. Almira and A. J. López-Moreno, On solutions of the Fréchet functional equation, J. Math. Anal. Appl. 332 (2007), no. 2, 1119-1133.
[2] J. Brzdȩk, D. Popa and B. Xu, Selections of set-valued maps satisfying a linear inclusion in a single variable, Nonlinear Anal. 74 (2011), no. 1, 324-330.
[3] T. Cardinali, K. Nikodem and F. Papalini, Some results on stability and on characterization of K-convexity of set-valued functions, Ann. Polon. Math. 58 (1993), no. 2, 185-192.
[4] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Sci. Publishing, River Edge, NJ, 2002.
[5] Z. Gajda and R. Ger, Subadditive multifunctions and Hyers-Ulam stability, in General Inequalities, 5, 281291, Internat. Schriftenreihe Numer. Math., 80 Birkhäuser, Basel, Oberwolfach, 1986.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[7] S.-M. Jung, A fixed point approach to the stability of differential equations $y^{\prime}=F(x, y)$, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 47-56.
[8] A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc. 46 (2009), no. 2, 387-400.
[9] A. K. Mirmostafaee and M. S. Moslehian, Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and Systems 160 (2009), no. 11, 1643-1652.
[10] M. S. Moslehian and T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math. 1 (2007), no. 2, 325-334.
[11] Z. Moszner, On the stability of functional equations, Aequationes Math. 77 (2009), no. 1-2, 33-88.
[12] A. Najati, J.-R. Lee and C. Park, On a Cauchy-Jensen functional inequality, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 253-263.
[13] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz. Mat. 559 (Rozprawy Nauk. 114), (1989).
[14] K. Nikodem and D. Popa, On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math. Anal. 3 (2009), no. 1, 44-51.
[15] C. Park, D. O'Regan and R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett. 24 (2011), no. 11, 1910-1914.
[16] M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequationes Math. 85 (2013), no. 1-2, 111-118.
[17] D. Popa, A property of a functional inclusion connected with Hyers-Ulam stability, J. Math. Inequal. 3 (2009), no. 4, 591-598.
[18] J. M. Rassias, The Ulam stability problem in approximation of approximately quadratic mappings by quadratic mappings, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 3, Article 52, 9 pp.
[19] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[20] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[21] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[22] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 (1986).
[23] A. Smajdor, Additive selections of superadditive set-valued functions, Aequationes Math. 39 (1990), no. 2-3, 121-128.
[24] W. Smajdor, Subadditive set-valued functions, Glas. Mat. Ser. III 21(41) (1986), no. 2, 343-348.
[25] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley \& Sons, Inc., New York, 1964.
[26] T. Z. Xu, J. M. Rassias and W. X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 633-649.

