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Abstract. We will show that if F is a set-valued mapping which satisfies

F(x)+F(y)⊆ 2F ((x+ y)/2)+K

for some convex compact set K, then under some restrictions, there are maximal superaddi-
tive and midconvex mappings which are K-subclose to F .
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1. Introduction

The notion of stability of functional equations has its origins with Ulam [25], who posed the
fundamental problem in 1940 and with Hyers [6], who gave the first significant partial so-
lution in 1941. A generalized version of Hyers theorem for approximately linear mappings
was given by Rassias [19]. Since then, the stability problems of various functional equations
have been extensively investigated by a number of authors (e.g. [1, 7–12, 18, 22, 26]).

Functional inclusion is a tool for defining many notions of set-valued analysis, e.g. linear,
affine, convex, midconvex, concave, superadditive and subadditive maps.

In set-valued analysis, a functional inclusion is called stable if any function which sat-
isfies this inclusion approximately is near to a true solution of the functional inclusion.
The Hyers-Ulam stability is discussed for set-valued functional equations and inclusions by
some mathematicians [3, 15–17, 24].

Let X and Y be semigroups and F : X → 2Y . If F satisfies

(1.1) F(x)+F(y)⊆ F(x+ y) (x ∈ X),

then F is called superadditive. A function F : X → 2Y is called midconvex if

(1.2) F(x)+F(y)⊆ 2F
(

x+ y
2

)
(x,y ∈ X).
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Note that these notions are different. For example, if F,G : [0,∞)→ 2R are defined by
F(x) = [0,

√
x ] and G(x) = [0,x2] for each x ∈ [0,∞), then F is midconvex but it is not

superadditive, while the converse holds for G.
Some authors studied different properties of midconvex and additive set-valued functions

(e.g. [2, 5, 14, 23]). In this paper, we will show that, under certain circumstances, every
approximately midconvex function F from an abelian semigroup to compact convex subsets
of a topological vector space can be approximated by a set-valued additive mapping. We
also prove that there exists a maximal midconvex set-valued mapping which approximates
F .

2. Results

Throughout the paper, unless otherwise state, we will assume that X is an abelian semigroup
divisible by two and Y is a topological vector space. If A,B⊂ Y and λ ∈ R, we define

A+B = {a+b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}.

One can easily see that for each A,B⊂ Y and λ ,µ ≥ 0,

λ (A+B) = λA+λB, (λ + µ)A⊆ λA+ µA.

Moreover, if A is convex, then (λ + µ)A = λA + µA. We denote by C(Y ) and CC(Y ) the
collection of all non-empty compact subsets and all non-empty compact convex subsets of
Y respectively.

Definition 2.1. If K is a subset of Y and F : X → 2Y , we say that F is K-midconvex if

(2.1) F(x)+F(y)⊆ 2F
(

x+ y
2

)
+K (x,y ∈ X).

The above definition is known in the case where K is a convex cone. Many properties of
such set-valued functions can be found, for instance in [13].

We need some axillary results. The first one is due to Rådström [20].

Lemma 2.1. Let A,B and C be nonempty subsets of a topological vector space Y . Suppose
that B is closed and convex and C is bounded. If A+C ⊆ B+C, then A⊆ B. If moreover, A
is closed and convex and A+C = B+C, then A = B.

The following result may be found in [4, Lemma 29.2].

Lemma 2.2. Assume that {An} and {Bn} are deceasing sequences of closed subsets of
topological vector space and A1 is compact. Then

∞⋂
n=1

(
An +Bn

)
=

∞⋂
n=1

An +
∞⋂

n=1

Bn.

Definition 2.2. Let F,G : X →C(Y ) be two set valued functions, for subset K of Y we say
that F is K-subclose to G if F(x)⊆ G(x)+K (x ∈ X).

Theorem 2.1. Let F : X →CC(Y ) be a K-midconvex set-valued function, K ∈CC(Y ) and
0 ∈ F(0). Then there exists a superadditive set-valued function A : X → CC(Y ) which is
maximal K-subclose to F and A(2x) = 2A(x) for each x ∈ X.
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Proof. We divide the proof into three steps.

Step 1. There is a superadditive function A : X → CC(Y ) such that A(x) ⊆ F(x) + K for
each x ∈ X.
Put y = 0 in (2.1) to obtain

F(x)+F(0)⊆ 2F
( x

2

)
+K (x ∈ X).

Since 0 ∈ F(0), we have

(2.2) F(x)⊆ 2F
( x

2

)
+K (x ∈ X).

Replacing x by 2nx in (2.2), we see that

(2.3) F(2nx)⊆ 2F
(
2n−1x

)
+K (x ∈ X ,n ∈ N).

By multiplying both sides of (2.3) by 2−n, we get

2−nF(2nx)⊆ 2−(n−1)F
(

2(n−1)x
)

+
K
2n (x ∈ X ,n ∈ N).(2.4)

It follows from (2.4) that

(2.5) 2−nF(2nx)+
K
2n ⊆ 2−(n−1)F

(
2(n−1)x

)
+

K
2n−1 (x ∈ X ,n ∈ N).

Let An(x) = 2−nF(2nx) + K/2n (x ∈ X ,n ∈ N). It follows from (2.5) that {An(x)} is a
non-increasing sequence of compact sets in Y for each x ∈ X . Hence

A(x) =
∞⋂

n=0

An(x) (x ∈ X)

defines a non-empty compact convex valued function on X . In view of (2.5), An(x) ⊂
A0(x) = F(x)+ K for each n ∈ N and x ∈ X . Therefore A(x) ⊂ F(x)+ K for each x ∈ X .
Moreover,

A(x)+A(y) =
∞⋂

n=0

An(x)+
∞⋂

n=0

An(y)

⊆
∞⋂

n=0

(An(x)+An(y))⊆
∞⋂

n=1

(
2−nF(2nx)+

K
2n +2−nF(2ny)+

K
2n

)
⊆

∞⋂
n=1

(
2−n

(
2F
(

2nx+2ny
2

)
+K

)
+

K
2n−1

)
⊆

∞⋂
n=1

(
2−(n−1)F

(
2n−1x+2n−1y

)
+

K
2n−1 +

K
2n

)
=

∞⋂
n=1

(
2−(n−1)F

(
2n−1x+2n−1y

)
+

K
2n−1

)
+

∞⋂
n=1

K
2n by Lemma 2.2

=
∞⋂

n=1

An−1(x+ y) = A(x+ y)

for each x,y ∈ X . Hence A is superadditive.
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Step 2. A(2x) = 2A(x).
For each x ∈ X , we have

A(2x) =
∞⋂

n=0

An(2x) =
∞⋂

n=0

[
2−nF(2n+1x)+

K
2n

]
=

∞⋂
n=0

[
2−nF(2n+1x)+

2K
2n+1

]
= 2

∞⋂
n=0

[
2−(n+1)F(2n+1x)+

K
2n+1

]
= 2

∞⋂
n=0

An+1(x) = 2
∞⋂

n=0

An(x) = 2A(x).

Step 3. A is maximal superadditive K-subclose to F.
Let B : X →CC(Y ) be a superadditive K-subclose to F . Then for each n ∈ N and x ∈ X

2nB(x)⊆ B(2nx)⊆ F(2nx)+K.

It follows that
B(x)⊆ An(x) (x ∈ X ,n ∈ N).

Therefore B(x)⊆ A(x) for each x ∈ X .

Definition 2.3. By a selection f of a mapping F : X→ 2Y we mean a single-valued mapping
f : X → Y such that f (x) ∈ F(x) for each x ∈ X.

Corollary 2.1. Let (X ,+) be an additive group divisible by two and F : X → C(Y ) be a
midconvex function such that 0 ∈ F(0). Then F admits an additive selection.

Proof. By Theorem 2.1, there is a superadditive function A : X → C(Y ) such that A(x) ⊆
F(x) for each x∈X and A(2x) = 2A(x) for each x∈X . Therefore A(0)+A(0)⊆A(0)+{0}.
On account of Lemma 2.1, A(0) = {0}. It follows that for each x ∈ X , A(x) + A(−x) ⊆
A(x− x) = {0}. Hence A is single-valued. Let A(x) = { f (x)} for each x ∈ X . Then f is a
selection of F . Moreover for each x,y ∈ X ,

f (x)+ f (y) ∈ A(x)+A(y)⊆ A(x+ y) = { f (x+ y)}.

This proves additivity of f .

We need the following well-known result ( see e.g. [21, Theorem 1.13(b)]).

Lemma 2.3. Let X be a topological vector space and A,B⊆ X, then A+B⊆ A+B.

Theorem 2.2. Let F : X →C(Y ) be an K-midconvex set-valued function, K ∈CC(Y ) and
0 ∈ F(0). Then there exists a maximal midconvex set-valued function M : X →C(Y ) which
is K-subclose to F.

Proof. Let

P = {G : X →C(Y ) : G is midconvex and G(x)⊆ F(x)+K for each x ∈ X}.

The proof of Theorem 2.1 ensures that P 6= /0. Define a binary relation ”�” on P as
follows.

G1 � G2 if and only if G1(x)⊆ G2(x) for each x ∈ X .

Then (P,�) is a partially ordered set. Let P0 be a chain in P , define

H(x) =
⋃

G∈P0

G(x) (x ∈ X).
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Since for each x∈ X and G∈P0, G(x)⊆ F(x)+K and F(x)+K is compact, H is compact-
valued. We will show that for each x,y ∈ X ,

(2.6)
⋃

G∈P0

G(x)+
⋃

G∈P0

G(y)⊆ 2H
(

x+ y
2

)
.

To prove (2.6), take some x,y ∈ X , z1 ∈
⋃

G∈P0
G(x) and z2 ∈

⋃
G∈P0

G(y). Then for some
G1,G2 ∈P0, z1 ∈ G1(x) and z2 ∈ G2(y). Let G1 � G2, then

z1 + z2 ∈ G1(x)+G2(y)⊆ G2(x)+G2(y)⊆ 2G2

(
x+ y

2

)
⊆ 2H

(
x+ y

2

)
.

This proves (2.6). It follows from (2.6) and Lemma 2.3 that

H(x)+H(y) =
⋃

G∈P0

G(x)+
⋃

G∈P0

G(y)⊆
⋃

G∈P0

G(x)+
⋃

G∈P0

G(y)⊆ 2H
(

x+ y
2

)
.

Therefore H is midconvex. By Zorn’s Lemma, P has a maximal element M. This
completes our proof.

Example 2.1. Let X = [0,∞), Y = R and F : X →CC(Y ) be defined by

F(x) =

{
[0,
√

x ] 0≤ x < 1
[0, 2
√

x ] x≥ 1.

Since g(t) =
√

t is concave, F |[0,1) and F |[1,∞) satisfy (2.1). Since F(0)+ F(1) = [0,2] is
not subset of 2F((0+1)/2) = [0,

√
2/4], F is not midconvex. However,

F(x)+F(y)⊆ [0,1]+ [0,2
√

y]⊆ 2F
(

x+ y
2

)
+[0,1],

whenever 0≤ x < 1 and y≥ 0. Hence for K = [0,1], F satisfies (2.1). According to Theorem
2.2, there is a maximal midconvex set-valued map M : [0,∞)→ C(Y ) such that M(x) ⊆
F(x)+ [0,1].
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