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Abstract. We deal with anti-periodic problems for second-order functional differential
equations. The main tools in our study will be the Schauder’s fixed point theorem and the
property of the continuous function space with anti-periodic conditions. Some new results
on the existence and uniqueness of anti-periodic solutions are obtained, which generalize
and extend previously known theorems.

2010 Mathematics Subject Classification: 34K13,47G20,45J05

Keywords and phrases: Anti-periodic solutions, second-order differential equations, delays.

1. Introduction

Consider the nonlinear second-order differential equations with delays of the form

(1.1) u′′+ f (t,x′(t),x(t),x(t− τ(t))) = 0, t ∈ R

where f : R4 → R is continuous function,τ is T -periodic with respect to t and T > 0 is a
constant.

Anti-periodic boundary value problems have been discussed in the past 20 years. Okochi
[16,17] initiated the study for anti-periodic solutions of evolution equation in Hilbert spaces.
Following Okochi’s work, Chen et al. [6,7], studied by fixed point theorem the anti-periodic
solution for first order semilinear evolution equations in a real separable Hilbert space.

Recently Liu in [13] studied the following anti-periodic problem of nonlinear evolution
equations with nonmonotone perturbations{

u′(t)+Au(t)+Gu(t) = f , a.e. t ∈ (0,T ),
u(0) =−u(T ),
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in a real reflexive Banach space V . A is monotone and G is not. Existence of solutions
for anti-periodic problem has been obtained by using the theory of pseudomonotone per-
turbations of maximal monotone mappings. Sufficient conditions for the existence of anti-
periodic solutions of the first order differential equations, we also refer to [2, 3, 8, 12].

Nevertheless second order differential equations with anti-periodic boundary value con-
ditions are discussed in few papers [1, 14, 18, 19]. Aftabizaden, Aizicovici and Pavel [1]
studied the anti-periodic solutions of second order evolution equations in Hilbert and Ba-
nach spaces by using monotone and accretive operator theory. In [14] the authors have dis-
cussed anti-periodic boundary value problems for second order differential equations, and
sufficient conditions for existence of coupled solutions and a unique solution are obtained
by using the monotone iterative technique. In [18, 19], the existence of at least one solution
is obtained by using the Schauder fixed point theorem and the Leray-Schauder topological
degree respectively.

Although second order differential equations with anti-periodic boundary conditions
have been discussed in [1, 4, 10, 14, 18–20], as we can see, the function f is independent
of x′ and x(t− τ(t)). Since anti-periodic boundary conditions appear in physics in a variety
of situations (see for example, in [5, 11] and the references therein), the development of the
general theory of the problem is timely.

However, to the best of our knowledge, few authors have considered the existence and
uniqueness of anti-periodic boundary value problems of second order functional differential
equations (1.1). Thus it is worth continuing the investigation of the existence and uniqueness
of anti-periodic solutions of equation (1.1). A primary purpose of this paper is to study the
existence and uniqueness of anti-periodic solutions of equation (1.1). We will establish
some sufficient conditions for the existence and uniqueness of anti-periodic solutions of
equation (1.1). Our results are different from the references listed above. In particular, an
example is also to be given to illustrate the effectiveness of our results.

2. Preliminaries

To prove our existence theorem, we need the following set of hypotheses:
(H1) f ∈C(R4,R),τ ∈C(R,R), and for all t,x,y,z ∈ R,

f
(

t +
T
2

,−x,−y,−z
)

=− f (t,x,y,z), τ

(
t +

T
2

)
= τ(t).

(H2) There exist three nonnegative constants a,b,c such that

a
T
2π

+b
T 2

4π2 + c
T 2

4
√

3π
< 1,

and ∀t,x1,x2,y1,y2,z1,z2 ∈ R,

| f (t,x1,y1,z1)− f (t,x2,y2,z2)| ≤ a|x1− x2|+b|y1− y2|+ c|z1− z2|.
(H̄2) There exist three nonnegative constants ā, b̄, c̄ such that

b̄
2π

+
c̄

2
√

3
<

ā
T

,

and
( f (t,x1,y,z)− f (t,x2,y,z))(x1− x2)≥ ā|x1− x2|2,
| f (t,x,y1,z1)− f (t,x,y2,z2)| ≤ b̄|y1− y2|+ c̄|z1− z2|,
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∀t,x,y,z,x1,x2,y1,y2,z1,z2 ∈ R.
(H3) There exist two nonnegative continuous functions p(t),q(t) and a nonnegative con-

stant L such that

| f (t,u,0,0)| ≤ p(t)|u|+q(t), ∀t ∈ [0,T ], |u|> L.

Let u(t) : R→ R be continuous in t. u(t) is said to be anti-periodic on R if,

u(t +T ) = u(t), u
(

t +
T
2

)
=−u(t), ∀t ∈ R.

We shall adopt the following notations:

Ck
T := {x ∈Ck(R,R),x is T −periodic}, k = {0,1, · · ·}

|x|p = (
∫ T

0
|x(t)|pdt)

1
p , ∀p≥ 1, |x|0 = max

t∈[0,T ]
|x(t)|,

C
k, 1

2
T := {x ∈Ck

T ,x(t +
T
2

) =−x(t), ∀t ∈ R},

which is a linear normed space endowed with the norm ‖ · ‖
Ck,1/2

T
defined by

‖x‖
Ck,1/2

T
= max{|x|0, |x′|0, · · · , |x(k)|0},∀x ∈Ck,1/2

T .

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.1. [15] If x ∈C1
T and

∫ T
0 x(t)dt = 0, then

(2.1)
∫ T

0
|x(t)|2dt ≤

(
T 2

4π2

)∫ T

0
|x′(t)|2dt

(Wirtinger inequality) and

(2.2) |x(t)|20 ≤
(

T
12

)∫ T

0
|x′(t)|2dt

(Sobolev inequality).

Lemma 2.2. [18] Let λ > 0,δ (t) ∈C0,1/2
T and x is an anti-periodic solution of

(2.3) −x′′(t)+λ
2x(t) = δ (t)

if and only if x satisfies

(2.4) x(t) =
∫ T

2

0

∫ T
2

0
G(t,s)G∗(s,u)(−δ (u))duds, ∀t ∈ [0,T/2]

where

G(t,s) =


eλ ( T

2 −t+s)

eλ
T
2 +1

, 0≤ s < t ≤ T
2 ,

−eλ (s−t)

eλ
T
2 +1

, 0≤ t ≤ s≤ T
2 ,

G∗(t,s) =


eλ (t−s)

eλ
T
2 +1

, 0≤ s < t ≤ T
2 ,

−eλ ( T
2 +t−s)

eλ
T
2 +1

, 0≤ t ≤ s≤ T
2 .

Lemma 2.3. [9] Let A be a continuous and compact mapping of a Banach space B into
itself, and suppose there exists a constant M such that

‖x‖B < M

for all x ∈ B and σ ∈ [0,1] satisfying x = σAx. Then A has a fixed point.
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3. Main results

In this section we study the existence and uniqueness of anti-periodic solutions to problem
(1.1).

Theorem 3.1. Assume that the condition (H1) and one of the two conditions (H2),(H̄2)
hold. Then equation (1.1) has at most one anti-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two anti-periodic solutions of equation (1.1). Then,
we have

(3.1) (x1(t)− x2(t))′′+ f (t,x′1(t),x1(t),x1(t− τ(t)))− f (t,x′2(t),x2(t),x2(t− τ(t))) = 0.

Since X(t) = x1(t)− x2(t) is an anti-periodic function on R, then∫ T

0
X(t)dt =

∫ T
2

0
X(t)dt +

∫ T

T
2

X(t)dt =
∫ T

2

0
X(t)dt +

∫ T
2

0
X(t +

T
2

)dt = 0.

By using the Sobolev inequality, we can get

(3.2) |X |0 ≤
√

T
12
|X ′|2.

Now suppose that (H2) (or (H̄2)) holds. We shall consider two cases as follows.

Case (i) If (H2) holds, multiplying both sides of (3.1) by−X(t) and then integrating it from
0 to T, we have from (2.1), (2.2) and Schwarz inequality

|X ′|22 =−
∫ T

0
X ′′(t)X(t)dt

=
∫ T

0
[ f (t,x′1(t),x1(t),x1(t− τ(t)))− f (t,x′2(t),x2(t),x2(t− τ(t)))]X(t)dt

≤
∫ T

0
{a|X ′(t)||X(t)|+b|X(t)|2 + c|X(t− τ(t))||X(t)|}dt

≤ a|X ′|2|X |2 +b|X |22 + c|X |0
∫ T

0
|X(t)|dt ≤

[
a

T
2π

+b
T 2

4π2 + c
T 2

4
√

3π

]
|X ′|22.

(3.3)

It follows from (H2) that X(t)≡ 0, ∀t ∈ R. Thus x1(t)≡ x2(t),∀t ∈ R.

Case (ii) If (H̄2) holds, multiplying both sides of (3.1) by X ′(t) and then integrating it from
0 to T, we obtain from (2.1), (2.2) and Schwarz inequality

ā|X ′|22 ≤
∫ T

0
[ f (t,x′1(t),x1(t),x1(t− τ(t))− f (t,x′2(t),x1(t),x1(t− τ(t)))]X ′(t)dt

=
∫ T

0
[ f (t,x′2(t),x2(t),x2(t− τ(t)))− f (t,x′2(t),x1(t),x1(t− τ(t)))]X ′(t)dt

≤
∫ T

0
{b̄|X ′(t)||X(t)|+ c̄|X(t− τ(t))||X ′(t)|}dt

≤ b̄|X ′|2|X |2 + c̄|X |0
∫ T

0
|X ′(t)|dt ≤

[
b̄

T
2π

+ c̄
T

2
√

3

]
|X ′|22.

It follows from (H̄2) that X(t) ≡ 0,∀t ∈ R. Thus x1(t) ≡ x2(t),∀t ∈ R. Therefore, equation
(1.1) has at most one anti-periodic solution. The proof of Theorem 3.1 is now complete.
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Now we show the existence of solutions for the anti-periodic problem (1.1).

Theorem 3.2. Let (H1) hold. Assume that either the condition (H2) or the conditions
(H̄2),(H3) are satisfied. Then equation (1.1) has at least one anti-periodic solution.

Proof. Define a mapping A : C1,1/2
T →C1,1/2

T by

(3.4) Ax(t) =
∫ T

2

0

∫ T
2

0
G(t,s)G∗(s,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))duds,

∀t ∈ [0,T/2], while Ax(t) = −Ax(t−T/2) ∀t ∈ [T/2,T ]. Lemma 2.2 implies that solving
problem (1.1) is equivalent to finding an x ∈C1,1/2

T such that x = Ax.
In the following we shall use the well-known fixed point theorem, Lemma 2.3 to com-

plete our proof.
We firstly show that A is completely continuous.

(i) A : C1,1/2
T →C1,1/2

T is continuous.
Let {xn} be a sequence such that xn→ x in C1,1/2

T as n→ ∞. Since f ∈C(R4,R), we easily
obtain ∀u ∈ [0,T/2]

lim
n→∞

f (u,x′n(u),xn(u),xn(u− τ(u)))+λ
2xn(u)

= f (u,x′(u),x(u),x(u− τ(u)))−λ
2x(u)].

(3.5)

From the definitions of the functions G,G∗ in Lemma 2.2, it is easy to get that

|G(t,s)| ≤ eλ
T
2

eλ
T
2 +1

, |G∗(t,s)| ≤ eλ
T
2

eλ
T
2 +1

.

In virtue of Governed Convergence Theorem, we obtain

(3.6) lim
n→∞
|A(xn)−A(x)|0 = 0.

By (3.4), we have ∀t ∈ [0,T/2]

Ax(t) =
∫ t

0

eλ ( T
2 −t+s)

eλ
T
2 +1

∫ T
2

0
G∗(s,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))duds

−
∫ T

2

t

eλ (s−t)

eλ
T
2 +1

∫ T
2

0
G∗(s,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))duds.

Differentiating both sides of the above identity,we have

(3.7) (Ax(t))′ =−λAx(t)+
∫ T

2

0
G∗(t,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))du.

(Ax(t))′′ =−λ (Ax(t))′+λ

∫ T
2

0
G∗(t,u)(− f (u,x′(u),x(u),x(u− τ(u)))

−λ
2x(u))du− f (t,x′(t),x(t),x(t− τ(t))−λ

2x(t))−λ (Ax(t))′

+λ ((′Ax(t))+λAx(t))− f (t,x′(t),x(t),x(t− τ(t)))−λ
2x(t))

= λ
2Ax(t)− f (t,x′(t),x(t),x(t− τ(t)))−λ

2x(t)).

(3.8)

In virtue of (3.5)–(3.7) and Governed Convergence Theorem again, we have

(3.9) lim
n→∞
|(A(xn))′− (A(x))′|0 = 0
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which shows that A : C1,1/2
T →C1,1/2

T is continuous.
(ii) Let D be a bounded set in C1,1/2

T , that is, there exists a d > 0 for any x ∈ D such that
|x|0 ≤ d and |x′|0 ≤ d. Thus,

|Ax|0 = max
t∈
[

0, T
2

] |∫ T
2

0

∫ T
2

0
G(t,s)G∗(s,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))duds|

≤ T 2eλT

4(eλ
T
2 +1)2

max
{
| f (s,u1,u2,u3)|+λ

2u2| : s ∈
[

0,
T
2

]
, |ui| ≤ d, i = 1,2,3.

}
=: M1.

|(Ax)′|0

= max
t∈
[

0, T
2

] |−λAx(t)+
∫ T

2

0
G∗(t,u)(− f (u,x′(u),x(u),x(u− τ(u)))−λ

2x(u))du|

≤ λ |Ax|0 +
Teλ

T
2

2(eλ
T
2 +1)

max
{
| f (s,u1,u2,u3)|+λ

2u2| : s ∈
[

0,
T
2

]
, |ui| ≤ d, i = 1,2,3.

}

≤M1 +
Teλ

T
2

2(eλ
T
2 +1)

max
{
| f (s,u1,u2,u3)|+λ

2u2| : s ∈
[

0,
T
2

]
, |ui| ≤ d, i = 1,2,3.

}
=: M2.

By (3.8) and the above two inequalities, we obtain

|(Ax(t))′′|0 = λ
2|Ax|0 +max

{
| f (s,u1,u2,u3)|+λ

2u2| : s ∈
[

0,
T
2

]
, |ui| ≤ d, i = 1,2,3.

}
+λ

2|x|0 ≤ Const.

which implies that A : C1,1/2
T → C2,1/2

T (⊂ C1,1/2
T ) is bounded. Therefore, by compact em-

bedding theorem we get that A : C1,1/2
T →C1,1/2

T is compact. Hence we have shown that A
is completely continuous.

In view of the fixed point theorem of Lemma 2.3, Assume that x is a solution of the
equation

(3.10) x = σAx, σ ∈ (0,1].

Then, like (3.8) we easily get

(3.11) x′′(t)+σ f (t,x′(t),x(t),x(t− τ(t))) = 0, t ∈ [0,T ].

We shall consider two cases as follows:
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Case (i) If (H2) holds, multiplying both sides of (3.11) by−x(t) and then integrating it from
0 to T, we have from (2.1), (2.2) and Schwarz inequality

|x′|22 =−
∫ T

0
x′′(t)x(t)dt = σ

∫ T

0
( f (t,x′(t),x(t),x(t− τ(t)))x(t)dt

≤
∫ T

0
(a|x′(t)||x(t)|+b|x(t)|2 + c|x(t− τ(t))||x(t)|dt +

∫ T

0
| f (t,0,0,0)x(t)|dt

≤ a|x′|2|x|2 +b|x|22 + c|x|0
∫ T

0
|x(t)|dt +(

∫ T

0
| f (t,0,0,0)|2dt)

1
2 |x|2

≤
[

a
T
2π

+b
T 2

4π2 + c
T 2

4
√

3π

]
|x′|22 +

T
2π

(∫ T

0
| f (t,0,0,0)|2dt

) 1
2
|x′|2.

(3.12)

It follows from (H2) that |x′|2 is bounded if x(t) is a solution (3.10). Therefore, we may
assume that

(3.13) |x′|2 ≤C1

if x is a solution (3.10), where C1 is a positive constant. Using inequality (2.2), we obtain

(3.14) |x|0 ≤
√

T
2
√

3
C1

where x is any solutions to (3.10).
Now we are going to show |x′|0 is also bounded if x is a solution (3.10). Multiplying

both sides of (3.11) by x′′(t) and then integrating it from 0 to T,

|x′′|22 =
∫ T

0
|x′′(t)|2dt = σ

∫ T

0
( f (t,x′(t),x(t),x(t− τ(t)))x′′(t)dt

≤
∫ T

0
| f (t,x′(t),x(t),x(t− τ(t)))x′′(t)|dt.

(3.15)

By use of (H2), we get

|x′′|22 ≤
∫ T

0
| f (t,x′(t),x(t),x(t− τ(t)))x′′(t)|dt

≤
∫ T

0
[a|x′(t)|+b|x(t)|+ c|x(t− τ(t))|]|x′′(t)|dt +

∫ T

0
| f (t,0,0,0)||x′′(t)|dt

≤
[

a|x′|2 +b|x|2 + c
√

T |x|0 +
(∫ T

0
| f (t,0,0,0)|2dt

) 1
2
]
|x′′|2

(3.16)

which implies that |x′′|2 is bounded from (2.1), (3.13) and (3.14). It follows from (2.2) that
there exists a positive constant C2 such that

(3.17) |x′|0 ≤
√

T
2
√

3
|x′′|2 ≤C2.

Therefore, under the assumption (H2), we have shown that for any x ∈ C1,1/2
T which is a

solution of (3.10), then

(3.18) ‖x‖
C

1, 1
2

T

< max
{ √

T
2
√

3
C1,C2

}
+1.
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Case (ii) If (H̄2) and (H3) hold, multiplying both sides of (3.11) by x′(t) and then integrating
it from 0 to T, we obtain from (2.1), (2.2) and Schwarz inequality

ā|x′|22 ≤
∫ T

0
[ f (t,x′(t),x(t),x(t− τ(t)))− f (t,0,x(t),x(t− τ(t)))]x′(t)dt

=
∫ T

0
| f (t,0,x(t),x(t− τ(t)))x′(t)|dt

≤
∫ T

0
{b̄|x(t)||x′(t)|+ c̄|x(t− τ(t))||x′(t)|dt +

∫ T

0
| f (t,0,0,0)||x′(t)|dt

≤ b̄|x′|2|x|2 + c̄|x|0
∫ T

0
|x′(t)|dt +

∫ T

0
| f (t,0,0,0)||x′(t)|dt

≤
[

b̄
T
2π

+ c̄
T

2
√

3

]
|x′|22 +

(∫ T

0
| f (t,0,0,0)|2dt

) 1
2
|x′|2

It follows from (H̄2) that hat |x′|2 is bounded if x(t) is a solution (3.10). Therefore, we may
assume that

(3.19) |x′|2 ≤ C̄1

if x is a solution (3.10), where C̄1 is a positive constant. Using inequality (2.2), we obtain

(3.20) |x|0 ≤
√

T
2
√

3
C̄1

where x is any solutions to (3.10).
Now we are going to show |x′|0 is also bounded if x is a solution (3.10).

Like (3.15), multiplying both sides of (3.11) by x′′(t) and then integrating it from 0 to T,

|x′′|22 =
∫ T

0
|x′′(t)|2dt = σ

∫ T

0
( f (t,x′(t),x(t),x(t− τ(t)))x′′(t)dt

≤
∫ T

0
| f (t,x′(t),x(t),x(t− τ(t)))x′′(t)|dt.

(3.21)

In virtue of (H̄2) and (H3), we get

|x′′|22 ≤
∫ T

0
| f (t,x′(t),x(t),x(t− τ(t)))x′′(t)|dt

≤
∫ T

0
[b̄|x(t)|+ c̄|x(t− τ(t))|]|x′′(t)|dt +

∫ T

0
| f (t,x′(t),0,0)||x′′(t)|dt

≤
[

b̄|x|2 + c̄
√

T |x|0]|x′′|2 +
(∫ T

0
(max{| f (t,u,0,0)| : |u| ≤ L})2dt

) 1
2
]
|x′′|2

+
∫ T

0
[p(t)|x′(t)|+q(t)]|x′′|dt

≤ {b̄|x|2 + c̄
√

T |x|0 +
(∫ T

0
(max{| f (t,u,0,0)| : |u| ≤ L})2dt

) 1
2

+ |p|0|x′(t)|2 + |q(t)|2}|x′′|2

(3.22)
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which implies that |x′′|2 is bounded from (2.1), (3.19) and (3.20). It follows from (2.2) that
there exists a positive constant C̄2 such that

(3.23) |x′|0 ≤ C̄2

Therefore, under the assumption (H̄2) and (H3), we also have shown that for any x ∈
C1,1/2

T which is a solution of (3.10),then

(3.24) ‖x‖
C

1, 1
2

T

< max{
√

T
2
√

3
C̄1,C̄2}+1.

In view of (3.18) and (3.24), we can choose a positive constant M such that

‖x‖
C

1, 1
2

T

< M,

for all x in the Banach space C1,1/2
T and σ ∈ [0,1] satisfying x = σAx. Therefore, by Lemma

2.3, A has a fixed point. The proof is complete.

4. An example

We conclude with a simple example which can be treated by the methods developed above.

Example 4.1. Consider the following nonlinear second-order differential equations with
delays of the form (the Rayleigh equation with delays)

(4.1) x′′(t)+
1
2
(sin2 t)x′(t)+

1
7

x(t)+
1+ sin4 t

2
√

3π
sin(x(t− sin2 t))− cos t = 0.

Then the above problem has a unique anti-periodic solution with periodic 2π .

Proof. By (24), we have

f (t,x′(t),x(t),x(t− τ(t))) =
1
2
(sin2 t)x′(t)+

1
7

x(t)+
1+ sin4 t

2
√

3π
sin(x(t− sin2 t))− cos t,

and a = 1/2,b = 1/7,c = 1/(
√

3π). It is obvious that assumption (H1) and (H2) hold.
Hence, by Theorem 3.1 and 3.2, equation (4.1) has a unique anti-periodic solution with
periodic 2π .
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