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1. Introduction

The Banach contractive mapping principle is an important result of analysis and it has been
applied widely in a number of branches of mathematics. Recently, some new results for
contractions in partially ordered metric spaces were presented and applied to the periodic
boundary value problem for different equations; see [1, 2, 4, 9, 12, 13] and the references
cited therein.

Recently, Bhaskar and Lakshmikantham [7] introduced the concepts of a mixed mono-
tone mapping and a coupled fixed point. Let (X ,�) be a partially ordered set. A sequence
{xn} ⊂ X is called nondecreasing if

x1 � x2 � ·· · � xn � ·· ·

and nonincreasing if
x1 � x2 � ·· · � xn � ·· · ,

where x� y denotes y� x for all x,y ∈ X . A mapping T : X ×X → X is called to be mixed
monotone if T (x,y) is monotone nondecreasing in x and is monotone nonincreasing in y,
that is, for any x,y ∈ X ,

x1,x2 ∈ X , x1 � x2⇒ T (x1,y)� T (x2,y),

y1,y2 ∈ X , y1 � y2⇒ T (x,y2)� T (x,y1).
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An element (x,y) ∈ X ×X is said a coupled fixed point of the mapping T if T (x,y) = x and
T (y,x) = y. In [7], Bhaskar and Lakshmikantham proved the following coupled fixed point
theorem:

Theorem 1.1. [7, Theorem 2.2] Let (X ,�) be partially ordered set and (X ,d) be a complete
metric space. Let T : X ×X → X be a mapping having the mixed monotone property on X.
Assume that there exists a k ∈ [0,1) such that

d(T (x,y),T (u,v))≤ [k(d(x,u)+d(y,v))]/2, ∀u� x, y� v.

Suppose either
(a) T is continuous; or
(b) X has the following property:

(i) if a nondecreasing sequence {xn}→ x, then xn � x, for each n≥ 1;
(ii) if a nonincreasing sequence {yn}→ y, then y� yn, for each n≥ 1.

If there exist x0,y0 ∈ X such that

x0 � T (x0,y0) and T (y0,x0)� y0,

then there exist x,y ∈ X such that T (x,y) = x and T (y,x) = y.

Recently, Lakshmikantham and Ćirić [10] introduced a new concept of commutative
mappings with the mixed monotone property. Let (X ,�) be a partially ordered set and
T : X×X → X and g : X → X . T is called to commute with g if

T (g(x),g(y)) = g(T (x,y))

for all x,y ∈ X . T is said to have the mixed g-monotone property if T is monotone g-
nondecreasing in its first argument and is monotone g-nonincreasing in its second argument,
that is, for any x,y ∈ X ,

x1,x2 ∈ X , g(x1)� g(x2) implies T (x1,y)� T (x2,y)

and
y1,y2 ∈ X , g(y1)� g(y2) implies T (x,y2)� T (x,y1).

An element (x,y) ∈ X×X is called a coupled coincidence point of the mappings T and g if

g(x) = T (x,y) and g(y) = T (y,x).

Lakshmikantham and Ćirić [10] proved the following theorem that extended and improved
Theorem 1.1 of Bhaskar and Lakshmikantham [7]:

Theorem 1.2. [10] Let (X ,�) be a partially ordered set and suppose there is a metric d on
X such that (X ,d) is a complete metric space. Assume that there is a function ϕ : [0,∞)→
[0,∞) with ϕ(t) < t and limr→t+ ϕ(r) < t for each t > 0 and also suppose that T : X×X→X
and g : X → X are such that T has the mixed g-monotone property and

d(T (x,y),T (u,v))≤ ϕ
(
[d(g(x),g(u))+d(g(y),g(v))]/2

)
for all x,y,u,v ∈ X for which g(x)� g(u) and g(v)� g(y). Suppose that T (X×X)⊂ g(X),
g is continuous and commutes with T and also suppose either

(a) T is continuous or
(b) X has the following property:

(i) if a nondecreasing sequence {xn}→ x, then xn � x for all n,
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(ii) if a nonincreasing sequence {yn}→ y, then y� yn for all n.

If there exist x0,y0 ∈ X such that

g(x0)� T (x0,y0) and T (y0,x0)� g(y0),

then there exist x,y ∈ X such that

g(x) = T (x,y) and g(y) = T (y,x),

that is, T and g have a coupled coincidence.

In fact, the fixed point theorems for contractions are investigated not only in partially
ordered metric spaces but also in partially ordered probabilistic metric spaces. Recently,
Ćirić, Miheţ and Saadati [5] considered some fixed point theorems for a class of contractive
mappings in partially ordered probabilistic metric spaces. The following theorem is the one
of main results of [5]:

Theorem 1.3. [5] Let (X ,�) be a partially ordered set and (X ,F,∆) be a complete Menger
probabilistic metric space under a t-norm ∆ of Hadžić-type. Let A,h : X → X be two self-
mappings of X such that A(X) ⊂ h(X), A be a h-nondecreasing mapping and, for some
k ∈ (0,1),

FA(x),A(y)(kt)≥min{Fh(x),h(y)(t),Fh(x),A(x)(t),Fh(y),A(y)(t)},

for all x,y ∈ X for which h(x)� h(y) and all t > 0.
Also suppose that h(X) is closed and if {h(xn)} ⊂ X is a nondecreasing sequence with

h(xn)→ h(z) in h(X), then h(z)� h(h(z)) and h(xn)� h(z) for all n hold. If there exists an
x0 ∈ X with h(x0) � A(x0), then A and h have a coincidence. Further, if A and h commute
at their coincidence points, then A and h have a common fixed point.

For the recent results on fixed point theorems in partially ordered probabilistic metric
spaces, we refer the reader to [6, 14].

In this paper, motivated and inspired by the results of Lakshmikantham and Ćirić [10]
and Ćirić, Mihet and Saadati [5], we prove several coupled common fixed point theorems
for nonlinear contractive mappings in a partially ordered probabilistic metric space. An
example is presented to illustrate the main result of this paper.

2. Preliminaries

In this section, we recall some definitions and results in the theory of probabilistic metric
spaces. For more details, the readers are referred to [3, 8, 15].

Definition 2.1. A mapping F : (0,∞)→ [0,1] is called a distribution function if it is non-
decreasing and left-continuous with infx∈R F(x) = 0. If in addition F(0) = 0, then F is
called a distance distribution function.

Definition 2.2. A distance distribution function F satisfying limt→∞ F(t) = 1 is called a
Menger distance distribution function.

The set of all Menger distance distribution functions is denoted by D+. This space D+

is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and only
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if F(t) ≤ G(t) for all t ∈ [0,∞). The maximal element for D+ in this order is the distance
distribution function ε0, given by

ε0(t) =

{
0 if t = 0,

1 if t > 0.

Definition 2.3. A triangular norm (shortly, t-norm) is a binary operation ∆ on [0,1] satis-
fying the following conditions:

(1) ∆ is associative and commutative;
(2) ∆ is continuous;
(3) ∆(a,1) = a for all a ∈ [0,1];
(4) ∆(a,b)≤ ∆(c,d) whenever a≤ c and b≤ d for all a,b,c,d ∈ [0,1].

Two typical examples of the continuous t-norm are ∆P(a,b) = ab, ∆M(a,b) = min{a,b}
for all a,b ∈ [0,1]. By (4), it is easy to see that ∆ satisfies the following

(2.1) min{∆(a,b),∆(c,d)} ≥ ∆(min{a,c},min{b,d}), ∀a,b,c,d ∈ [0,1].

Now, the t-norm is recursively defined by ∆1 = ∆ and

∆
n(x1, . . . ,xn+1) = ∆(∆n−1(x1, . . . ,xn),xn+1)

for all n ≥ 2 and xi ∈ [0,1], i = 1,2, . . . ,n + 1. A t-norm ∆ is said to be of Hadžić-type if
the family {∆n} is equicontinuous at x = 1, that is, for any ε ∈ (0,1), there exists δ ∈ (0,1)
such that

a > 1−δ =⇒ ∆
n(a) > 1− ε, ∀n≥ 1.

∆M is a trivial example of a t-norm of Hadžić-type [8].

Definition 2.4. A Menger probabilistic space (briefly, Menger PM-space) is a triple (X ,F,∆),
where X is a nonempty set, ∆ is a continuous t-norm and F is a mapping from X×X →D+

(Fx,y denotes the value of F at the pair (x,y)) satisfying the following conditions:
(PM-1) Fx,y(t) = 1 for all x,y ∈ X and t > 0 if and only if x = y;
(PM-2) Fx,y(t) = Fy,x(t) for all x,y ∈ X and t > 0;
(PM-3) Fx,z(t + s)≥ ∆(Fx,y(t),Fy,z(s)) for all x,y,z ∈ X and t,s≥ 0.

Definition 2.5. Let (X ,F,∆) be a Menger PM-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn→ x) if, for
any t > 0 and 0 < ε < 1, there exists a positive integer N such that Fxn,x(t) > 1− ε

whenever n≥ N.
(2) A sequence {xn} in X is called a Cauchy sequence if, for any t > 0 and 0 < ε < 1,

there exists a positive integer N such that Fxn,xm(t) > 1− ε whenever m,n≥ N.
(3) A Menger PM-space (X ,F,∆) is said to be complete if and only if every Cauchy

sequence in X is convergent to a point in X.

Theorem 2.1. [15] If (X ,F,∆) is a Menger PM-space and {xn} and {yn} are sequences
such that xn → x and yn → y, then limn→∞ Fxn,yn(t) = Fx,y(t) for every continuity point of
Fx,y.
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3. Main results

Lemma 3.1. For n ∈ N, let gn : (0,∞)→ (0,∞) and Fn,Gn,F,G : R→ [0,1]. Assume that
supt>0{min{F(t),G(t)}}= 1 and for any t > 0,

lim
n→∞

gn(t) = 0 and min{Fn(gn(t)),Gn(gn(t))} ≥min{F(t),G(t)}.

Proof. Fix t > 0 and ε > 0. By hypothesis, there is t0 > 0 such that min{F(t0),G(t0)} >
1−ε . Since gn(t0)→ 0, there is n0 ∈N such that gn(t0) < t for all n≥ n0. By monotonicity,

min{Fn(t),Gn(t)} ≥min{Fn(gn(t0)),Gn(gn(t0))}
≥min{F(t0),G(t0)}> 1− ε, ∀n≥ n0.

Hence we infer that limn→∞ Fn(t) = 1 and limn→∞ Gn(t) = 1, since Fn(t),Gn(t)≤ 1.

Theorem 3.1. Let (X ,�) be partially ordered set and (X ,F,∆) be a complete Menger PM-
space under a t-norm ∆ of Hadžić-type. Let a function ϕ : [0,∞)→ [0,∞) satisfy that, for
any t > 0,

0 < ϕ(t) < t and lim
n→∞

ϕ
n(t) = 0.

Let T : X×X → X and h : X → X be such that T has the mixed h-monotone property and

(3.1) FT (x,y),T (u,v)(ϕ(t))≥min{Fh(x),h(u)(t),Fh(y),h(v)(t)}

for all t > 0 and all x,y,u,v ∈ X with h(x) � h(u) and h(y) � h(v). Suppose T (X ×X) ⊂
h(X), h is continuous and commutes with T and also suppose either

(a) T is continuous or
(b) X has the following property:

(i) if a nondecreasing sequence {xn}→ x, then xn � x, for each n≥ 1;
(ii) if a nonincreasing sequence {yn}→ y, then y� yn, for each n≥ 1.

If there exist x0,y0 ∈ X such that

h(x0)� T (x0,y0) and T (y0,x0)� h(y0),

then there exist x,y ∈ X such that T (x,y) = h(x) and T (y,x) = h(y), that is, T and h have a
coupled coincidence.

Proof. By hypothesis we have h(x0)� T (x0,y0) and T (y0,x0)� h(y0). Since T (X ×X)⊂
h(X), there exist x1,y1 ∈ X such that T (x0,y0) = h(x1) and T (y0,x0) = h(y1). Further, there
exist x2,y2 ∈ X such that T (x1,y1) = h(x2) and T (y1,x1) = h(y2). Continuing this process,
we can choose two sequences {xn} and {yn} such that

(3.2) h(xn+1) = T (xn,yn) and h(yn+1) = T (yn,xn), ∀n≥ 0,

where N denotes the set of all positive integers.
Next we show by induction that

(3.3) h(xn)� h(xn+1) and h(yn+1)� h(yn), ∀n≥ 0.

First, by hypothesis we have h(x0) � T (x0,y0) = h(x1) and h(y1) = T (y0,x0) � h(y0). So,
(3.3) holds for n = 0. Assume that (3.3) holds for some positive integer n, i.e., h(xn) �
h(xn+1) and h(yn+1)� h(yn). Since T is the mixed h-monotone, one has

T (xn,yn)� T (xn+1,yn)� T (xn+1,yn+1)
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and
T (yn+1,xn+1)� T (yn+1,xn)� T (yn,xn),

i.e.,
h(xn+1)� h(xn+2) and h(yn+2)� h(yn+1).

Hence, (3.3) holds for all n≥ 0.
For each n ∈ N, we prove by induction that

(3.4) min{Fh(xn+1),h(xn)(ϕ
n(t)),Fh(yn+1),h(yn)(ϕ

n(t))} ≥min{Fh(x1),h(x0)(t),Fh(y1),h(y0)(t)}.
For n = 1, by (3.1)–(3.3) we have

Fh(x2),h(x1)(ϕ(t)) = FT (x1,y1),T (x0,y0)(ϕ(t))≥min{Fh(x1),h(x0)(t),Fh(y1),h(y0)(t)}
and

Fh(y2),h(y1)(ϕ(t)) = FT (y1,x1),T (y0,x0)(ϕ(t))≥min{Fh(x1),h(x0)(t),Fh(y1),h(y0)(t)}.
Hence, (3.4) holds for n = 1. Now, assume that (3.4) holds for some n ∈ N. Then, by
(3.1)–(3.4) and assumption we have

Fh(xn+2),h(xn+1)(ϕ
n+1(t)) = FT (xn+1,yn+1),T (xn,yn)(ϕ

n+1(t))

≥min{Fh(xn+1),h(xn)(ϕ
n(t)),Fh(yn+1),h(yn)(ϕ

n(t))}
≥min{Fh(x1),h(x0)(t),Fh(y1),h(y0)(t)}

and

Fh(yn+2),h(yn+1)(ϕ
n+1(t)) = FT (yn+1,xn+1),T (yn,xn)(ϕ

n+1(t))

≥min{Fh(xn+1),h(xn)(ϕ
n(t)),Fh(yn+1),h(yn)(ϕ

n(t))}
≥min{Fh(x1),h(x0)(t),Fh(y1),h(y0)(t)},

which implies that (3.4) holds for n+1. Therefore, (3.4) holds for all n≥ 1. By Lemma 3.1
and (3.4) we have, for any t > 0

(3.5) lim
n→∞

Fh(xn+1,h(xn))(t) = 1

and

(3.6) lim
n→∞

Fh(yn+1,h(yn))(t) = 1.

Now let n ∈ N and t > 0. We show by induction that, for any n≥ 0,

min{Fh(xn),h(xn+i)(t),Fh(yn),h(yn+i)(t)}
≥ ∆

i(min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))}).
(3.7)

This is obvious for i = 0, since Fh(xn),h(xn)(t) = 1 and Fh(yn),h(yn)(t) = 1. Assume that (3.7)
holds for some i. Hence, by (3.1), (2.1), commutativity of T and h and the monotonicity of
∆, we have

min{Fh(xn),h(xn+i+1)(t),Fh(yn),h(yn+i+1)(t)}
= min{Fh(xn),h(xn+i+1)(t−ϕ(t)+ϕ(t)),Fh(yn),h(yn+i+1)(t−ϕ(t)+ϕ(t))}
≥min{∆

(
Fh(xn),h(xn+1)(t−ϕ(t)),Fh(xn+1),h(xn+i+1)(ϕ(t))

)
,∆
(
Fh(yn),h(yn+1)(t−ϕ(t)),

Fh(yn+1),h(yn+i+1)(ϕ(t))
)
}

≥ ∆
(

min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))},min{Fh(xn+1),h(xn+i+1)(ϕ(t)),
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Fh(yn+1),h(yn+i+1)(ϕ(t))}
)

= ∆
(

min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))},min{FT (xn,yn),T (xn+i,yn+i)(ϕ(t)),

FT (yn,xn),T (yn+i,xn+i)(ϕ(t))}
)

≥ ∆
(

min{Fh(xn),h(xn+1)(t−ϕ(t)),Fyn,yn+1(t−ϕ(t))},min{Fh(xn),h(xn+i)(t),Fh(yn),h(yn+i)(t)}
)

≥ ∆
(

min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))},
∆

i(min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))})
)

= ∆
i+1(min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)(t−ϕ(t))

)
,

which completes the induction.
We show that {h(xn)} and {h(yn)} are the Cauchy sequences, i.e., limm,n→∞ Fh(xn),h(xm)(t)

= 1 and limm,n→∞ Fh(yn),h(ym)(t) = 1 for any t > 0. Let t > 0 and ε > 0. By hypothesis,
{∆n : n ∈ N} is equicontinuous at 1 and ∆n(1) = 1, so there exists δ > 0 such that

(3.8) if s ∈ (1−δ ,1], then ∆
n(s) > 1− ε for all n ∈ N.

Since, by (3.5) and (3.6), limn→∞ Fh(xn),h(xn+1)(t −ϕ(t)) = 1 and limn→∞ Fh(yn),h(yn+1)(t −
ϕ(t)) = 1, there is n0 ∈N such that, for any n≥ n0, min{Fh(xn),h(xn+1)(t−ϕ(t)),Fh(yn),h(yn+1)
(t−ϕ(t))} ∈ (1−δ ,1]. Hence, by (3.7) and (3.8), we get min{Fh(xn),h(xn+i)(t),Fh(yn),h(yn+i)
(t)}> 1−ε for any i∈N∪{0}. This shows that Fh(xn),h(xn+i)(t) > 1−ε and Fh(yn),h(yn+i)(t) >
1−ε for every i∈N∪{0}. This proves that {h(xn)} and {h(yn)} are the Cauchy sequences.

Since X is complete, there exist x,y ∈ X such that

(3.9) lim
n→∞

Fh(xn),x(t) = 1 and lim
n→∞

Fh(yn),y(t) = 1, ∀t > 0.

From (3.9) and the continuity of h,

(3.10) lim
n→∞

Fh(h(xn)),h(x)(t) = 1 and lim
n→∞

Fh(h(yn)),h(y)(t) = 1, ∀t > 0.

From (3.2) and commutativity of T and h, for any t > 0,

(3.11) Fh(h(xn+1)),T (x,y)(t) = Fh(T (xn,yn)),T (x,y)(t) = FT (h(xn),h(yn)),T (x,y)(t)

and

(3.12) Fh(h(yn+1)),T (y,x)(t) = Fh(T (yn,xn)),T (y,x)(t) = FT (h(yn),h(xn)),T (y,x)(t).

Now we show that h(x) = T (x,y) and h(y) = T (y,x). Suppose that the assumption (a)
holds. Taking the limit as n→ ∞ in (3.11) and (3.12), by (3.10) and the continuity of T we
get

Fh(x),T (x,y)(t) = lim
n→∞

Fh(h(xn+1)),T (x,y)(t) = lim
n→∞

FT (h(xn),h(yn)),T (x,y)(t) = FT (x,y),T (x,y)(t) = 1

and

Fh(y),T (y,x)(t) = lim
n→∞

Fh(h(yn+1)),T (y,x)(t) = lim
n→∞

FT (h(yn),h(xn)),T (y,x)(t) = FT (y,x),T (y,x)(t) = 1.

Hence, h(x) = T (x,y) and h(y) = T (y,x).
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Now suppose that (b) holds. By hypothesis, we have h(xn) � x and h(yn) � y for all
n≥ 1. Hence, by (3.2), commutativity of T and h and (3.1) we have

FT (x,y),h(x)(t)≥ ∆
(
FT (x,y),h(h(xn+1))(ϕ(t)),Fh(h(xn+1)),h(x)(t−ϕ(t))

)
= ∆

(
FT (x,y),h(T (xn,yn))(ϕ(t)),Fh(h(xn+1)),h(x)(t−ϕ(t))

)
= ∆

(
FT (x,y),T (h(xn),h(yn))(ϕ(t)),Fh(h(xn+1)),h(x)(t−ϕ(t))

)
≥ ∆

(
min{Fh(x),h(h(xn))(t),Fh(y),h(h(yn))(t)},Fh(h(xn+1)),h(x)(t−ϕ(t))

)
.

(3.13)

Letting n→∞ in (3.13) and noting that h is continuous, so it follows from (3.10) and (3.13)
that

FT (x,y),h(x)(t)≥ ∆(1,1).

This implies that T (x,y) = h(x). Similarly, we can prove that T (y,x) = h(y). Thus we prove
that T and h have a coupled coincidence point.

Now we shall prove the existence and uniqueness theorem of a coupled common fixed
point. Note that if (X ,�) is a partially ordered set, then we endow the product X ×X with
the following partial order:

for all (x,y),(u,v) ∈ X×X , (u,v)� (x,y)⇐⇒ u� x, v� y.

Theorem 3.2. In addition to the hypothesis of Theorem 3.1, suppose that for every (x,y),
(y∗,x∗) ∈ X ×X, there exists a (u,v) ∈ X ×X such that (T (u,v),T (v,u)) is comparable to
(T (x,y),T (y,x)) and (T (x∗,y∗),T (y∗,x∗)). Then T and h have a unique coupled common
fixed point. That is, there exist a unique (x,y) ∈ X×X such that

x = h(x) = T (x,y) and y = h(y) = T (y,x).

Proof. Existence of the set of coupled coincidence points is due to Theorem 3.1. Let
(x,y),(x∗,y∗) ∈ X × X be the coupled coincidence points, that is h(x) = T (x,y), h(y) =
T (y,x) and h(x∗) = T (x∗,y∗), h(y∗) = T (y∗,x∗). We shall show that

(3.14) h(x) = h(x∗) and h(y) = h(y∗).

By the assumption, there is (u,v) ∈ X ×X such that (T (u,v),T (v,u)) is comparable to
(T (x,y),T (y,x)) and (T (x∗,y∗),T (y∗,x∗)). Let u0 = u and v0 = v and choose u1,v1 ∈ X
so that h(u1) = F(u0,v0) and h(v1) = F(v1,u1). Then, similarly as in the proof of Theo-
rem 3.1, we can construct sequences {h(un)} and {h(vn)} such that h(un+1) = T (un,vn),
h(vn+1) = T (vn,un). Further, set x0 = x, y0 = y, x∗0 = x∗ and y∗0 = y∗ and, on the same
way, define the sequences {h(xn)}, {h(yn)}, {h(x∗n)} and {h(y∗n)}. Since (T (x,y),T (y,x)) =
(h(x1),h(y1)) = (h(x),h(y)) and

(T (u,v),T (v,u)) = (h(u1),h(v1))

are comparable, then h(x)� h(u1) and h(y)� h(v1). Since T is mixed h-monotone, we have
h(x) = T (x,y) � T (u1,y) � T (u1,v1) = h(u2) and h(y) = T (y,x) � T (v1,x) � T (v1,u1) =
h(v2). Similarly, we can prove that h(x)� h(un) and h(y)� h(vn) for all n≥ 3. Thus from
(3.1), it follows that

FT (x,y),T (un,vn)(ϕ
n(t))≥min{Fh(x),h(un)(ϕ

n−1(t)),Fh(y),h(vn)(ϕ
n−1(t))}

and
FT (vn,un),T (y,x)(ϕ

n(t))≥min{Fh(y),h(vn)(ϕ
n−1(t)),Fh(x),h(un)(ϕ

n−1(t))}
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By induction we can prove that for any t > 0,

min{FT (x,y),T (un,vn)(ϕ
n(t)),FT (vn,un),T (y,x)(ϕ

n(t))} ≥min{Fh(x),h(u1)(t),Fh(y),h(vn+1)(t).

By Lemma 3.1, we get that limn→∞ FT (x,y),T (un,vn)(t) = 1 and limn→∞ FT (vn,un),T (y,x)(t) = 1.
That is, limn→∞ Fh(x),h(un+1)(t) = 1 and limn→∞ Fh(y),h(vn+1)(t) = 1 for any t > 0. Similarly,
we also have limn→∞ Fh(x∗),h(un+1)(t) = 1 and limn→∞ Fh(y∗),h(vn+1)(t) = 1.

By the triangle inequality and the continuity of ∆, we have, for any t > 0,

Fh(x),h(x∗)(t)≥ ∆
(
Fh(x),h(un+1)(t/2),Fh(x∗),h(un+1)(t)

)
→ ∆(1,1),

Fh(y),h(y∗)(t)≥ ∆
(
Fh(y),h(vn+1)(t/2),Fh(y∗),h(vn+1)(t)

)
→ ∆(1,1).

This shows that h(x) = h(x∗) and h(y) = h(y∗). Hence we proved (3.14).
Since h(x) = T (x,y) and h(y) = T (y,x), by commutativity of T and h we have

h(h(x)) = h(T (x,y)) = T (h(x),h(y)),

h(h(y)) = h(T (y,x)) = T (h(y),h(x)).
(3.15)

Denote h(x) = z and h(y) = w. Then from (3.15),

(3.16) h(z) = T (z,w) and h(w) = T (w,z).

Thus (z,w) is a coupled coincidence point. Then from (3.14) with x∗ = z and y∗ = w it
follows that h(z) = h(x) and h(w) = h(y), that is,

(3.17) h(z) = z and h(w) = w.

From (3.16) and (3.17), we have

z = h(z) = F(z,w) and w = h(w) = T (w,z).

Therefore, (z,w) is a coupled common fixed point of T and h. To prove the uniqueness,
assume that (p,q) is another coupled common fixed point. Then by (3.14) we have p =
h(p) = h(z) = z and q = h(q) = q(w) = w. This completes the proof.

Theorem 3.3. Assume that the hypothesis of Theorem 3.1 hold. If x0 and y0 are comparable,
then x = y, where x and y are the coupled common fixed points of h and T , that is, h(x) =
T (x,x).

Proof. Suppose that x0 � y0. We show by induction that

(3.18) h(xn)� h(yn), ∀n≥ 1,

where xn and yn satisfy that h(xn) = T (xn−1,yn−1) and h(yn) = T (yn−1,xn−1). For n = 1, by
the mixed monotone property of T and h we have

h(x1) = T (x0,y0))� T (y0,y0)� T (y0,x0) = h(y1).

This shows that (3.18) holds for n = 1. Assume that (3.18) holds for some n ≥ 1, i.e.,
h(xn)� h(yn). Then, by the mixed monotone property of T and h, we have

h(xn+1) = T (xn,yn)� T (yn,yn)� T (yn,xn) = h(yn+1).

Therefore, (3.18) holds for all n≥ 1.
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Finally, we prove that x = y. Indeed, for all n≥ 1 and any t > 0, we have

Fx,y(t)≥ ∆(Fx,h(xn+1)(t/2),Fh(xn+1),y(t/2))

≥ ∆(Fx,h(xn+1)(t/2),∆(Fh(xn+1),h(yn+1)(ϕ(t/2)),Fh(yn+1),y(t/2−ϕ(t/2))))

= ∆(Fx,h(xn+1)(t/2),∆(Fh(yn+1),h(xn+1)(ϕ(t/2)),Fh(yn+1),y(t/2−ϕ(t/2))))

= ∆(Fx,h(xn+1)(t/2),∆(FT (yn,xn),T (xn,yn)(ϕ(t/2)),Fh(yn+1),y(t/2−ϕ(t/2))))

≥ ∆(Fx,h(xn+1)(t/2),∆(min{Fh(yn),h(xn)(t/2),Fh(xn),h(yn)(t/2)}),
Fh(yn+1),y(t/2−ϕ(t/2))))

= ∆(Fx,h(xn+1)(t/2),∆(Fh(yn),h(xn)(t/2),Fh(yn+1),y(t/2−ϕ(t/2))))

≥ ∆(Fx,h(xn+1)(t/2),∆(∆(∆(Fh(yn),y(t/8),Fy,x(t/8))),Fx,h(xn)(t/4)),

Fh(yn+1),y(t/2−ϕ(t/2)))).

(3.19)

Letting n→ ∞ in (3.19), since ∆ is continuous, h(xn)→ x and h(yn)→ y, we have

Fx,y(t)≥ Fx,y(t/8), ∀t > 0,

which implies that

(3.20) Fx,y(t)≥ Fx,y(t/8n), ∀t > 0, n≥ 1.

Letting n→ ∞ in (3.20), since Fx,y(t/8n)→ 1, we have

Fx,y(t)≥ 1.

This shows that x = y. Similarly, if y0 � x0, we also can prove that x = y. Hence, we have
proved that h(x) = T (x,x). This completes the proof.

If h = I, where I denotes the identity mapping, then we have the following corollaries:

Corollary 3.1. Let (X ,�) be partially ordered set and (X ,F,∆) be a complete Menger PM-
space under a t-norm ∆ of Hadžić-type. Let a function ϕ : [0,∞)→ [0,∞) satisfy that, for
any t > 0,

0 < ϕ(t) < t and lim
n→∞

ϕ
n(t) = 0.

Let T : X×X → X be such that T has the mixed monotone property and satisfies that

FT (x,y),T (u,v)(ϕ(t))≥min{Fx,u(t),Fy,v(t)}

for all t > 0 and x,y,u,v ∈ X with x� u and y� v). Suppose either

(a) T is continuous or
(b) X has the following property:

(i) if a nondecreasing sequence {xn}→ x, then xn � x, n≥ 1;
(ii) if a nonincreasing sequence {yn}→ y, then y� yn, n≥ 1.

If there exist x0,y0 ∈ X such that

x0 � T (x0,y0) and T (y0,x0)� y0,

then there exist x,y ∈ X such that T (x,y) = x and T (y,x) = y.

Corollary 3.2. In addition to the hypothesis of Corollary 3.1, suppose that for every (x,y),
(y∗,x∗) ∈ X ×X, there exists a (u,v) ∈ X ×X such that (T (u,v),T (v,u)) is comparable to
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(T (x,y),T (y,x)) and (T (x∗,y∗),T (y∗,x∗)). Then T has a unique couple fixed point. that is,
there exist a unique (x,y) ∈ X×X such that

x = T (x,y) and y = T (y,x).

Corollary 3.3. Assume that the hypothesis of Corollary 3.1 hold. If x0 and y0 are compa-
rable, then x = y, where x and y are the coupled fixed points of T , that is, x = T (x,x).

Finally, we illustrate Theorem 3.1 of this paper by an example as follows.

Example 3.1. Let X = [0,∞). Define a partially order� by the usual order. That is, x� y if
and only if x≤ y for all x,y ∈ X . Take ∆(a,b) = min{a,b} for all a,b ∈ [0,1]. Define Fx,y(t)
by

Fx,y(t) =
t

t + |x− y|
, ∀x,y ∈ X , t ∈ (0,∞).

Then (X ,F,∆) is a complete Menger PM-space. Define the mappings T : X ×X → X and
h : X → X by

T (x,y) = x/2 and h(x) = 2x
for all x,y ∈ X , respectively. It is easy to see that T is a mapping having mixed h-monotone
property. Indeed, if h(x1)≤ h(x2), i.e., x1 ≤ x2, then T (x1,y) = x1/2≤ x2/2 = T (x2,y) for
all y ∈ X and if h(y1) ≥ h(y2), i.e., y1 ≥ y2, then T (x,y2) = x/2 = T (x,y1) for all x ∈ X .
Hence, T is a mapping having mixed h-monotone property.

Take k = 1/4. For all x,y,u,v∈ X with h(x)≥ h(u) and h(y)≤ h(v), i.e., x≥ u and y≤ v,
find that

FT (x,y),T (u,v)(kt) =
t/4

t/4+ |x−u|/2
=

t
t +2|x−u|

≥min{Fh(x),h(u)(t),Fh(y),h(v)(t)}= min
{

t
t +2|x−u|

,
t

t +2|y− v|

}
.

This shows that T and h satisfy the condition (3.1). On the other hand, it is easy to see that
T (X ×X)⊂ h(X) and h is continuous and commutes with T . Moreover, the hypothesis (a)
and (b) are satisfied. Also, (x0,y0) = (0,0) is such that

h(x0)≤ T (x0,y0) and h(y0)≥ T (y0,x0).

Therefore, we show that all the hypothesis in Theorem 3.1 are satisfied. By Theorem 3.1, T
and h have a coupled common coincidence point, which is (x,y) = (0,0).

In fact, this example also may be used to illustrate Theorem 3.2 and 3.3.
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[5] L. Ćirić, D. Miheţ and R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric
spaces, Topology Appl. 156 (2009), no. 17, 2838–2844.
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