The Axiom of Hemi-Slant 3-Spheres in Almost Hermitian Geometry

Hakan Mete Taştan
Department of Mathematics, İstanbul University (1453), Vezneciler, 34134, İstanbul, Turkey hakmete@istanbul.edu.tr

Abstract

The axiom of hemi-slant 3-spheres is introduced. It is proved that if an almost Hermitian manifold M with dimension $2 m \geq 6$ satisfies this axiom for some slant angle $\theta \in(0, \pi / 2)$, then M has pointwise constant type α if and only if M has pointwise constant anti-holomorphic sectional curvature α, and using this result some conditions for constancy of sectional curvature of a considered almost Hermitian manifold are given.

2010 Mathematics Subject Classification: Primary 53B35, 53B25; Secondary 53C40
Keywords and phrases: Almost Hermitian manifold, Kaehler manifold, $R K$-manifold, sectional curvature, hemi-slant.

1. Introduction

In [2], Cartan defined the axiom of n-planes. A Riemannian manifold M of dimension $m \geq 3$ is said to satisfy the axiom of n-planes, where n is a fixed integer $2 \leq n \leq m-1$, if for each point $p \in M$ and any n-dimensional subspace σ of the tangent space $T_{p} M$ there exists an n-dimensional totally geodesic submanifold N such that $p \in N$ and $T_{p} N=\sigma$. He gave a criterion for constancy of sectional curvature in the following theorem.

Theorem 1.1. Let M be a Riemannian manifold of dimension $m \geq 3$. If M satisfies the axiom of n-planes for some $n, 2 \leq n \leq m-1$, then M has constant sectional curvature.

In [21], Yano and Mogi applied Cartan's idea to Kaehlerian manifolds. A Kaehlerian manifold M is said to satisfy the axiom of holomorphic planes if for each point $p \in M$ and each holomorphic plane $\sigma \subset T_{p} M$, there exists a totally geodesic submanifold N such that $p \in N$ and $T_{p} N=\sigma$. They proved the following theorem.

Theorem 1.2. A Kaehlerian manifold satisfying the axiom of holomorphic planes is a complex space form.

In [12], Leung and Nomizu defined the axiom of n-spheres by taking totally umbilical submanifold N with parallel mean curvature vector field instead of totally geodesic submanifold N in the axiom of n-planes. They proved the following theorem.

[^0]Theorem 1.3. If a Riemannian manifold M of dimension $m \geq 3$ satisfies the axiom of n spheres for some $n, 2 \leq n \leq m-1$, then M has constant sectional curvature.

Afterwards, many studies have been made in this direction. Kaehlerian manifolds were studied in [4, 6, 8, 11, 19], the papers [17] and [19] discussed nearly Kaehlerian (almost Tachibana) manifolds, and results concerning larger classes of almost Hermitian manifolds can be found in $[9,10,16,17]$.

In this paper, we shall introduce the axiom of hemi-slant 3 -spheres and as an application, we shall give an interesting relation between the notion of constant type and antiholomorphic sectional curvature for a $2 m(m \geq 3)$-dimensional almost Hermitian manifold satisfying this axiom for some slant angle $\theta \in(0, \pi / 2)$. Using this fact, we shall prove some theorems related to sectional curvature for a considered almost Hermitian manifold. We shall also give some results related to the Weyl conformal curvature tensor and the Bochner curvature tensor of a certain almost Hermitian manifold satisfying the axiom of hemi-slant 3 -spheres. Our work is motivated by the above-cited papers.

2. Preliminaries

A C^{∞}-manifold M is called almost Hermitian if its tangent bundle has an almost complex structure J and a Riemannian metric g such that $g(J X, J Y)=g(X, Y)$ for all $X, Y \in \chi(M)$, where $\chi(M)$ is the Lie algebra of C^{∞} vector fields on M. Let ∇ be the covariant derivative on M, the Riemannian curvature tensor R associated with ∇ defined by $R(X, Y)=$ $\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]$. We denote $g(R(X, Y) Z, U)$ by $R(X, Y, Z, U)$. The sectional curvature K of M determined by orthonormal vector fields X and Y is given by $K(X, Y)=R(X, Y, X, Y)$. The Weyl conformal curvature tensor W is defined by

$$
\begin{aligned}
W & (X, Y, Z, U) \\
= & R(X, Y, Z, U)-\frac{1}{2 m-2}\{g(X, U) \operatorname{Ric}(Y, Z)-g(X, Z) \operatorname{Ric}(Y, U)+g(Y, Z) \operatorname{Ric}(X, U) \\
& -g(Y, U) \operatorname{Ric}(X, Z)\}+\frac{S}{(2 m-1)(2 m-2)}\{g(X, U) g(Y, Z)-g(X, Z) g(Y, U)\}
\end{aligned}
$$

for all $X, Y, Z, U \in T_{p} M$, where Ric and S are the Ricci tensor and the scalar curvature of M, respectively. A $2 m$-dimensional almost Hermitian manifold with $m \geq 2$ is conformally flat if and only if $W=0$ identically [10,20].

By an r-plane we mean an r-dimensional linear subspace of a tangent space $T_{p} M, p \in M$. Motivated from [3], we have the following definition.
Definition 2.1. Let σ be a 2-plane. The angle $\theta \in[0, \pi / 2]$ between σ and $J \sigma$ is defined by

$$
\cos \theta=|g(X, J Y)|
$$

where $\{X, Y\}$ is an orthonormal basis of σ. If $\theta=$ constant, then σ is called a slant-plane and θ is called slant angle of σ.

This is a generalization of holomorphic and anti-holomorphic planes. In fact, holomorphic and anti-holomorphic planes are slant planes with slant angle θ equal to 0 and $\pi / 2$, respectively, see [4,6,8]. Now, motivated from [1] and [14] we have the following definition.
Definition 2.2. A 3-plane σ in $T_{p} M$ is called hemi-slant if it contains a slant 2-plane with slant angle $\theta \in[0, \pi / 2)$ and a nonzero vector $Z \in T_{p} M$ such that $J Z$ is perpendicular to σ, in which case $\sigma=D^{\theta} \oplus\{Z\}$ with $J Z \perp \sigma$, where D^{θ} is the corresponding slant 2-plane.

The sectional curvature of M restricted to a holomorphic (resp. an anti-holomorphic) plane σ is called holomorphic (resp. anti-holomorphic) sectional curvature. If the holomorphic (resp. anti-holomorphic) sectional curvature at each point $p \in M$, does not depend on σ, then M is said to be pointwise constant holomorphic (resp. pointwise constant antiholomorphic) sectional curvature. A connected Riemannian (resp. Kaehlerian) manifold of (global) constant sectional curvature (resp. of constant holomorphic sectional curvature) is called a real space form (resp. a complex space form) [9,20]. The following useful notion was defined by Gray in [7].

Definition 2.3. Let M be an almost Hermitian manifold. Then M is said to be of constant type at $p \in M$ provided that for all $X \in T_{p} M$, we have $\lambda(X, Y)=\lambda(X, Z)$ whenever the planes span $\{X, Y\}$ and $\operatorname{span}\{X, Z\}$ are anti-holomorphic and $g(Y, Y)=g(Z, Z)$, where the function λ is defined by $\lambda(X, Y)=R(X, Y, X, Y)-R(X, Y, J X, J Y)$. If this holds for all $p \in M$, then we say that M has (pointwise) constant type. Finally, if for $X, Y \in \chi(M)$ with $g(X, Y)=g(J X, Y)=0$, the value $\lambda(X, Y)$ is constant whenever $g(X, X)=g(Y, Y)=1$, then we say that M has global constant type.

Vanhecke introduced to the notion of $R K$-manifold in [16]. An almost Hermitian manifold M is called an $R K$-manifold if

$$
\begin{equation*}
R(X, Y, Z, U)=R(J X, J Y, J Z, J U) \tag{2.1}
\end{equation*}
$$

for all $X, Y, Z, U \in \chi(M)$. He proved many theorems. Recall some of them.
Theorem 2.1. [16] Let M be an $R K$-manifold. Then M has (pointwise) constant type if and only if there exists $\alpha \in \mathscr{F}(M)$ such that

$$
\lambda(X, Y)=\alpha\left\{g(X, X) g(Y, Y)-g^{2}(X, Y)-g^{2}(X, J Y)\right\},
$$

for all $X, Y \in \chi(M)$. Furthermore, M has global constant type if and only if α is a constant function.

Theorem 2.2. [16] Let M be an $R K$-manifold. Suppose that M has constant holomorphic sectional curvature μ at a point $p \in M$, let $X, Y \in T_{p} M$ be any orthonormal vectors. Then we have

$$
K(X, Y)=\frac{\mu}{4}\left\{1+3 g^{2}(X, J Y)\right\}+\frac{5}{8} \lambda(X, Y)+\frac{1}{8} \lambda(X, J Y),
$$

where $K(X, Y)$ is sectional curvature determined by X and Y.
Theorem 2.3. [16] Let M be an RK-manifold with pointwise constant anti-holomorphic (resp. holomorphic) sectional curvature v (resp. μ). Then M has pointwise constant holomorphic (resp.anti-holomorphic) sectional curvature μ (resp. v) if and only if M has pointwise constant type α, in which case

$$
4 v=\mu+3 \alpha
$$

The dimension of M is supposed to be ≥ 6.
We shall call an almost Hermitian manifold M as Kaehlerian if $\nabla_{X} J=0$ for all $X \in$ $\chi(M)$, nearly Kaehlerian (almost Tachibana or K-space) if $\left(\nabla_{X} J\right) X=0$ for all $X \in \chi(M)$, and para-Kaehlerian if $R(X, Y, Z, U)=R(X, Y, J Z, J U)$ for all $X, Y, Z, U \in \chi(M)$. These manifolds satisfy (2.1), so they are $R K$-manifolds. It is easy to see that a para-Kaehlerian manifold has global constant type [16, 17].

For a $2 m$-dimensional Kaehlerian manifold, the Bochner curvature tensor B is defined by

$$
\begin{aligned}
& B(X, Y, Z, U) \\
&= R(X, Y, Z, U)-\frac{1}{2(m+2)}\{g(X, U) \operatorname{Ric}(Y, Z)-g(X, Z) \operatorname{Ric}(Y, U)+g(Y, Z) \operatorname{Ric}(X, U) \\
&-g(Y, U) \operatorname{Ric}(X, Z)+g(X, J U) \operatorname{Ric}(Y, J Z)-g(X, J Z) \operatorname{Ric}(Y, J U)+g(Y, J Z) \operatorname{Ric}(X, J U) \\
&-g(Y, J U) \operatorname{Ric}(X, J Z)-2 g(X, J Y) \operatorname{Ric}(Z, J U)-2 g(Z, J U) \operatorname{Ric}(X, J Y)\} \\
&+\frac{S}{4(m+1)(m+2)}\{g(X, U) g(Y, Z)-g(X, Z) g(Y, U)\} \\
&+g(X, J U) g(Y, J Z)-g(X, J Z) g(Y, J U)-2 g(X, J Y) g(Z, J U)
\end{aligned}
$$

for all $X, Y, Z, U \in T_{p} M$ and $p \in M$, where Ric and S are the Ricci tensor and the scalar curvature of M, respectively [11]. The following lemma gives a criterion for vanishing of the Bochner curvature tensor of a Kaehlerian manifold.

Lemma 2.1. [11] A Kaehlerian manifold M of dimension $2 m \geq 6$ has a vanishing Bochner curvature tensor, if and only if for each point $p \in M$ and for all unit vectors $X, Y, Z \in T_{p} M$, which span an anti-holomorphic 3-plane

$$
R(X, J X, Y, Z)=2 R(X, Y, J X, Z)
$$

holds.
Now, we give some definitions related to submanifolds.
Let M be a C^{∞}-Riemannian manifold with metric tensor g and N be a submanifold of M. We denote by ∇ and $\hat{\nabla}$ the covariant derivatives on M and N respectively. For any vector fields X and Y tangent to N, the second fundamental form T is defined by

$$
T(X, Y)=\nabla_{X} Y-\hat{\nabla}_{X} Y
$$

where $\hat{\nabla}_{X} Y$ is tangent to N and $T(X, Y)$ is normal to N. The normal bundle-valued form T is a symmetric tensor field of type $(0,2)$. We say that N is totally umbilical submanifold in M if for all X, Y tangent to N, we have

$$
\begin{equation*}
T(X, Y)=g(X, Y) \eta \tag{2.2}
\end{equation*}
$$

where η is the mean curvature vector field of N in M. The Codazzi equation is given by

$$
\begin{equation*}
(R(X, Y) Z)^{\perp}=\left(\nabla_{X} T\right)(Y, Z)-\left(\nabla_{Y} T\right)(X, Z) \tag{2.3}
\end{equation*}
$$

for all X, Y, Z tangent to N. Where ${ }^{\perp}$ denotes the normal component and the covariant derivative of T, denoted by $\nabla_{X} T$, is defined by

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y, Z)=D_{X}(T(Y, Z))-T\left(\hat{\nabla}_{X} Y, Z\right)-T\left(Y, \hat{\nabla}_{X} Z\right) \tag{2.4}
\end{equation*}
$$

for all X, Y, Z tangent to N, where D denotes the operator of covariant derivative in the normal bundle of $N[4,6,8,19]$.

3. Main results

We now introduce the following axiom.

Definition 3.1. (Axiom of hemi-slant 3-spheres). An almost Hermitian manifold M is said to satisfy the axiom of hemi-slant 3-spheres if for each point $p \in M$ and each hemi-slant 3-plane σ in $T_{p} M$, there exists a 3-dimensional totally umbilical submanifold N such that $p \in N$ and $T_{p} N=\sigma$.

Before studying the axiom of hemi-slant 3-spheres, let us note the following.
Remark 3.1. Let M be any $2 m$-dimensional almost Hermitian manifold with $m \geq 3$ and let $\left\{X_{1}, \ldots, X_{m}, J X_{1}, \ldots, J X_{m}\right\}$ be an orthonormal J-basis of $T_{p} M$. Then we always have a hemislant 3-plane with the slant angle θ. For example, $\sigma=D^{\theta} \oplus\left\{X_{3}\right\}$ is a hemi-slant 3-plane with the slant angle θ, where $D^{\theta}=\operatorname{span}\left\{X_{1}, \cos \theta J X_{1}+\sin \theta X_{2}\right\}$.

Lemma 3.1. Let M be an almost Hermitian manifold with dimension $2 m \geq 6$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then we have

$$
\begin{equation*}
\lambda(X, Y)=K(X, Y) \tag{3.1}
\end{equation*}
$$

for all orthonormal vectors $X, Y \in T_{p} M$ with $g(X, J Y)=0$, where $\lambda(X, Y)=R(X, Y, X, Y)-$ $R(X, Y, J X, J Y)$ and K denotes anti-holomorphic sectional curvature.

Proof. Let p be an arbitrary point of M and let X, Y and Z be any orthonormal vectors in $T_{p} M$ with $g(X, J Y)=g(X, J Z)=g(Y, J Z)=0$. Consider the hemi-slant 3-plane $\sigma=D^{\theta} \oplus\{Y\}$ with slant angle $\theta \in(0, \pi / 2)$, where $D^{\theta}=\operatorname{span}\{X, \cos \theta J X+\sin \theta Z\}$. By the axiom of hemi-slant 3 -spheres, there exists a 3 -dimensional totally umbilical submanifold N such that $p \in N$ and $T_{p} N=\sigma$. Then, with the help of (2.2) and (2.4) from (2.3), we have

$$
\begin{equation*}
(R(X, Y)(\cos \theta J X+\sin \theta Z))^{\perp}=0 \tag{3.2}
\end{equation*}
$$

Since $J Y$ is normal to N, we get

$$
\begin{equation*}
R(X, Y, \cos \theta J X+\sin \theta Z, J Y)=0 \tag{3.3}
\end{equation*}
$$

Now, consider the hemi-slant 3-plane $\sigma_{2}=D_{2}^{\theta} \oplus\{Y\}$ with slant angle $\theta \in(0, \pi / 2)$, where $D_{2}^{\theta}=\operatorname{span}\{X, \cos \theta J X-\sin \theta Z\}$. By a similar method, we can obtain

$$
\begin{equation*}
R(X, Y, \cos \theta J X-\sin \theta Z, J Y)=0 \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4) we get

$$
\begin{equation*}
R(X, Y, J X, J Y)=0 \tag{3.5}
\end{equation*}
$$

From Definition 2.3, and the equation (3.5), we obtain (3.1).
Theorem 3.1. Let M be an almost Hermitian manifold with dimension $2 m \geq 6$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M has pointwise constant type if and only if M has pointwise constant anti-holomorphic sectional curvature.

Proof. Let M be an almost Hermitian manifold with dimension $2 m \geq 6$ satisfying the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$. If M has pointwise constant type; that is, for all $p \in M, M$ has constant type at p, then for all $X, Y, Z \in T_{p} M$, we have

$$
\begin{equation*}
\lambda(X, Y)=\lambda(X, Z) \tag{3.6}
\end{equation*}
$$

whenever the planes span $\{X, Y\}$ and $\operatorname{span}\{X, Z\}$ are anti-holomorphic and $g(Y, Y)=g(Z, Z)$. Here, we can assume that $g(Y, Y)=g(Z, Z)=1$. Thus, from Lemma 3.1, we get

$$
\begin{equation*}
K(X, Y)=K(X, Z) \tag{3.7}
\end{equation*}
$$

for all orthonormal vectors $X, Y, Z \in T_{p} M$ with $g(X, J Y)=g(X, J Z)=0$.
On the other hand, since the dimension of M is greater than 6 we can choose a unit vector U in $(\operatorname{span}\{X, J X\})^{\perp} \cap(\operatorname{span}\{Z, J Z\})^{\perp}$. Then, from (3.7), we have

$$
\begin{equation*}
K(X, U)=K(X, Z) \tag{3.8}
\end{equation*}
$$

This implies that the sectional curvature is the same for all anti-holomorphic sections which contain any given vector X. Hence we write

$$
\begin{equation*}
K(X, Y)=K(Y, Z)=K(Z, U) \tag{3.9}
\end{equation*}
$$

Therefore, we find

$$
\begin{equation*}
K(X, Y)=K(Z, U) \tag{3.10}
\end{equation*}
$$

for all $X, Y, Z, U \in T_{p} M$ whenever the planes $\operatorname{span}\{X, Y\}$ and $\operatorname{span}\{Z, U\}$ are anti-holomorphic. It follows that the sectional curvature is the same for all anti-holomorphic sections at $p \in M$; that is, M has pointwise constant anti-holomorphic sectional curvature.

Conversely, let M be of pointwise constant anti-holomorphic sectional curvature and let p be any point of M. Then for all orthonormal vectors $X, Y, Z \in T_{p} M$ with $g(X, J Y)=$ $g(X, J Z)=0,(\operatorname{span}\{X, Y\}$ and $\operatorname{span}\{X, Z\}$ are anti-holomorphic planes and $g(X, X)=g(Y$, $Y)=g(Z, Z)=1)$, we have

$$
\begin{equation*}
K(X, Y)=K(X, Z) \tag{3.11}
\end{equation*}
$$

From Lemma 3.1, we get

$$
\begin{equation*}
\lambda(X, Y)=\lambda(X, Z) \tag{3.12}
\end{equation*}
$$

for all orthonormal vectors $X, Y, Z \in T_{p} M$ whenever the planes span $\{X, Y\}$ and $\operatorname{span}\{X, Z\}$ are anti-holomorphic. It is not difficult to see that (3.12) also holds in the case $g(Y, Y)=$ $g(Z, Z) \neq 1$. It follows that M has constant type at p.

With the help of Lemma 3.1, from Theorem 3.1, we have the following result.
Corollary 3.1. Let M be a $2 m$-dimensional almost Hermitian manifold with $m \geq 3$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M has pointwise constant type α if and only if M has pointwise constant anti-holomorphic sectional curvature α.

We now state the main result of the present work.
Theorem 3.2. Let M be a $2 m$-dimensional (connected) $R K$-manifold with pointwise constant type α and $m \geq 3$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in$ $(0, \pi / 2)$, then M is a real space form with constant sectional curvature α and M has global constant type.

Proof. Let p be any point of M and M has constant type α at p. Then it follows from Corollary 3.1 that M has constant anti-holomorphic sectional curvature α at p. On the other hand, from Theorem 2.3, we see that M has constant holomorphic sectional curvature α at p. With the help of Theorem 2.1, from Theorem 2.2, we obtain

$$
\begin{equation*}
K(X, Y)=\alpha \tag{3.13}
\end{equation*}
$$

for all orthonormal vectors $X, Y \in T_{p}(M)$, where $K(X, Y)=R(X, Y, X, Y)$ is sectional curvature. It is not difficult to see that (3.13) is also true for all $X, Y \in T_{p}(M)$. By the well-known

Schur's theorem [20] it follows that M has constant sectional curvature α and M has global constant type.

Corollary 3.2. Let M be a $2 m$-dimensional (connected) $R K$-manifold with vanishing constant type and $m \geq 3$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M is flat.

Now, suppose that M is a Kaehlerian manifold. Then, for all $X, Y, Z \in \chi(M)$, as a result of the Kaehler identity $R(X, Y) J Z=J R(X, Y) Z$, we get $R(J X, J Y) Z=R(X, Y) Z$ [20]. In this case, we have

$$
\begin{equation*}
R(J X, J Y, J X, J Y)=R(X, Y, J X, J Y) \tag{3.14}
\end{equation*}
$$

Using (2.1) and (3.14), we can see that $\lambda(X, Y)=0$. Thus, any Kaehlerian manifold has (global) vanishing constant type. Thus, it follows from Corollary 3.2 that:

Corollary 3.3. Let M be a $2 m$-dimensional (connected) Kaehlerian or para-Kaehlerian manifold with $m \geq 3$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M is flat.

Theorem 3.3. Let M be a $2 m$-dimensional (connected) non-Kaehlerian nearly Kaehlerian manifold with constant type α and $m \geq 3$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M has constant sectional curvature $\alpha>0$ and $m=3$.
Proof. In [7], for a nearly Kaehlerian manifold M, A. Gray proved the following.

$$
\begin{equation*}
\lambda(X, Y)=R(X, Y, X, Y)-R(X, Y, J X, J Y)=\left\|\left(\nabla_{X} J\right) Y\right\|^{2}, \tag{3.15}
\end{equation*}
$$

where $X, Y \in \chi(M)$. Now, let M be a $2 m$-dimensional non-Kaehlerian nearly Kaehlerian manifold with constant type α and $m \geq 3$. Then, it follows from (3.15) that $\alpha=\lambda(X, Y)=$ $\left\|\left(\nabla_{X} J\right) Y\right\|^{2}>0$ due to M is non-Kaehlerian. On the other hand, since M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in(0, \pi / 2)$, by Theorem 3.2, we have M has constant sectional curvature α. Hence, we see that M has constant holomorphic sectional curvature α. Thus, the assertion $m=3$ follows from the following theorem.

Theorem 3.4. [15] Except for the 6-dimensional one, there does not exist a non-Kaehlerian nearly Kaehlerian manifold of constant holomorphic sectional curvature.

Now, we give a result related to the Weyl conformal curvature tensor.
Theorem 3.5. Let M be an almost Hermitian manifold with dimension $2 m \geq 8$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M is conformally flat.
Proof. Let p be an arbitrary point of M and let X, Y and Z be any orthonormal vectors of $T_{p} M$ with $g(X, J Y)=g(X, J Z)=g(Y, J Z)=0$. Consider the hemi-slant 3-plane $\sigma_{1}=D_{1}^{\theta} \oplus$ $\{Z\}$ with slant angle $\theta \in(0, \pi / 2)$, where $D_{1}^{\theta}=\operatorname{span}\{X, \cos \theta J X+\sin \theta Y\}$ and the hemislant 3-plane $\sigma_{2}=D_{2}^{\theta} \oplus\{Z\}$ with slant angle $\theta \in(0, \pi / 2)$, where $D_{2}^{\theta}=\operatorname{span}\{X, \cos \theta J X-$ $\sin \theta Y\}$. As in the proof of Lemma 3.1, by the axiom of hemi-slant 3 -spheres and by the equation (2.3), we have

$$
\begin{equation*}
(R(X, \cos \theta J X+\sin \theta Y) Z)^{\perp}=0 \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
(R(X, \cos \theta J X-\sin \theta Y) Z)^{\perp}=0 \tag{3.17}
\end{equation*}
$$

On the other hand, since the dimension of M is greater than 8 we can choose a unit vector U in $(\operatorname{span}\{X, J X\})^{\perp} \cap(\operatorname{span}\{Y, J Y\})^{\perp} \cap(\operatorname{span}\{Z, J Z\})^{\perp}$. Thus, we write

$$
\begin{equation*}
R(X, \cos \theta J X+\sin \theta Y, Z, U)=0 \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
R(X, \cos \theta J X-\sin \theta Y, Z, U)=0 \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.19), we have

$$
\begin{equation*}
R(X, J X, Z, U)=0 . \tag{3.20}
\end{equation*}
$$

On the other hand, (3.18) and (3.20) give

$$
\begin{equation*}
R(X, Y, Z, U)=0 \tag{3.21}
\end{equation*}
$$

where $X, Y, Z, U \in T_{p} M$ span an anti-holomorphic 4-plane. According to a well-known theorem of Schouten [13], the Weyl conformal curvature tensor W of M vanishes. This completes the proof.

Next, we will give a result related to the Bochner curvature tensor.
Theorem 3.6. Let M be a Kaehlerian manifold with dimension $2 m \geq 6$. If M satisfies the axiom of hemi-slant 3 -spheres for some $\theta \in(0, \pi / 2)$, then M has a vanishing Bochner curvature tensor.

Proof. Let p be any point of M and let X, Y and Z be any orthonormal vectors of $T_{p} M$ with $g(X, J Y)=g(X, J Z)=g(Y, J Z)=0$; that is, they span an anti-holomorhic 3-plane. Then the 3-plane $\sigma_{1}=D_{1}^{\theta} \oplus\{Y\}$ is a hemi-slant 3-plane with slant angle $\theta \in(0, \pi / 2)$, where $D_{1}^{\theta}=\operatorname{span}\{X, \cos \theta J X+\sin \theta J Z\}$. By the axiom of hemi-slant 3-spheres, there exists a 3dimensional totally umbilical submanifold N_{1} such that $p \in N_{1}$ and $T_{p} N_{1}=\sigma_{1}$. Then, with the help of (2.2) and (2.4) from (2.3), we have

$$
\begin{equation*}
(R(X, \cos \theta J X+\sin \theta J Z) Y)^{\perp}=0 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
(R(X, Y)(\cos \theta J X+\sin \theta J Z))^{\perp}=0 \tag{3.23}
\end{equation*}
$$

Since Z is normal to N_{1}, from (3.22) and (3.23) we get

$$
\begin{equation*}
R(X, \cos \theta J X+\sin \theta J Z, Y, Z)=0 \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
R(X, Y, \cos \theta J X+\sin \theta J Z, Z)=0 \tag{3.25}
\end{equation*}
$$

Now, consider the hemi-slant 3-plane $\sigma_{2}=D_{2}^{\theta} \oplus\{Y\}$ with slant angle $\theta \in(0, \pi / 2)$, where $D_{2}^{\theta}=\operatorname{span}\{X, \cos \theta J X-\sin \theta J Z\}$. Again by the axiom of hemi-slant 3-spheres, there exists a 3-dimensional totally umbilical submanifold N_{2} such that $p \in N_{2}$ and $T_{p} N_{2}=\sigma_{2}$. Then, with the help of (2.2) and (2.4) from (2.3), we have

$$
\begin{equation*}
(R(X, \cos \theta J X-\sin \theta J Z) Y)^{\perp}=0 \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
(R(X, Y)(\cos \theta J X-\sin \theta J Z))^{\perp}=0 \tag{3.27}
\end{equation*}
$$

Since Z is normal to N_{2}, from (3.26) and (3.27) we get

$$
\begin{equation*}
R(X, \cos \theta J X-\sin \theta J Z, Y, Z)=0 \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
R(X, Y, \cos \theta J X-\sin \theta J Z, Z)=0 \tag{3.29}
\end{equation*}
$$

From (3.24) and (3.28) we obtain

$$
\begin{equation*}
R(X, J X, Y, Z)=0 \tag{3.30}
\end{equation*}
$$

On the other hand, from (3.25) and (3.29) we obtain

$$
\begin{equation*}
R(X, Y, J X, Z)=0 \tag{3.31}
\end{equation*}
$$

Thus, our assertion follows from (3.30), (3.31) and Lemma 2.1.
Acknowledgement. The author is deeply indebted to the referee(s) for useful suggestions and valuable comments.

References

[1] F. R. Al-Solamy, M. A. Khan and S. Uddin, Totally umbilical hemi-slant submanifolds of Kaehler manifolds, Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
[2] É. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1946.
[3] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 135-147.
[4] B.-Y. Chen and K. Ogiue, Some characterizations of complex space forms, Duke Math. J. 40 (1973), 797799.
[5] B.-Y. Chen and K. Ogiue, Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225-229 (1975).
[6] S. I. Goldberg, The axiom of 2-spheres in Kaehler geometry, J. Differential Geometry 8 (1973), 177-179.
[7] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283-309.
[8] M. Harada, On Kaehler manifolds satisfying the axiom of antiholomorphic 2-spheres, Proc. Amer. Math. Soc. 43 (1974), 186-189.
[9] O. T. Kasabov, On the axiom of planes and the axiom of spheres in the almost Hermitian geometry, Serdica 8 (1982), no. 1, 109-114.
[10] O. T. Kassabov, The axiom of coholomorphic $(2 n+1)$-spheres in the almost Hermitian geometry, Serdica $\mathbf{8}$ (1982), no. 4, 391-394 (1983).
[11] O. T. Kassabov, On the axiom of spheres in Kähler geometry, C. R. Acad. Bulgare Sci. 35 (1982), no. 3, 303-305.
[12] D. S. Leung and K. Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5 (1971), 487-489.
[13] J. A. Schouten, Der Ricci-Kalkül, reprint of the 1924 original, Grundlehren der Mathematischen Wissenschaften, 10, Springer, Berlin, 1978.
[14] B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Polon. Math. 95 (2009), no. 3, 207-226.
[15] K. Takamatsu and T. Sato, A K-space of constant holomorphic sectional curvature, Kōdai Math. Sem. Rep. 27 (1976), no. 1-2, 116-127.
[16] L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Sem. Mat. Univ. e Politec. Torino 34 (1975/76), 487-498.
[17] L. Vanhecke, The axiom of coholomorphic $(2 p+1)$-spheres for some almost Hermitian manifolds, Tensor (N.S.) 30 (1976), no. 3, 275-281.
[18] S. Yamaguchi, The axiom of coholomorphic 3-spheres in an almost Tachibana manifold, Kōdai Math. Sem. Rep. 27 (1976), no. 4, 432-435.
[19] S. Yamaguchi and M. Kon, Kaehler manifolds satisfying the axiom of anti-invariant 2-spheres, Geom. Dedicata 7 (1978), no. 4, 403-406.
[20] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Sci. Publishing, Singapore, 1984.
[21] K. Yano and I. Mogi, On real representations of Kaehlerian manifolds, Ann. of Math. (2) 61 (1955), 170-189.

[^0]: Communicated by V. Ravichandran.
 Received: December 20, 2011; Revised: May 5, 2012.

