BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

The Axiom of Hemi-Slant 3-Spheres in Almost Hermitian Geometry

HAKAN METE TAŞTAN

Department of Mathematics, İstanbul University (1453), Vezneciler, 34134, İstanbul, Turkey hakmete@istanbul.edu.tr

Abstract. The axiom of hemi-slant 3-spheres is introduced. It is proved that if an almost Hermitian manifold *M* with dimension $2m \ge 6$ satisfies this axiom for some slant angle $\theta \in (0, \pi/2)$, then *M* has pointwise constant type α if and only if *M* has pointwise constant anti-holomorphic sectional curvature α , and using this result some conditions for constancy of sectional curvature of a considered almost Hermitian manifold are given.

2010 Mathematics Subject Classification: Primary 53B35, 53B25; Secondary 53C40

Keywords and phrases: Almost Hermitian manifold, Kaehler manifold, *RK*-manifold, sectional curvature, hemi-slant.

1. Introduction

In [2], Cartan defined *the axiom of n-planes*. A Riemannian manifold M of dimension $m \ge 3$ is said to satisfy *the axiom of n-planes*, where n is a fixed integer $2 \le n \le m-1$, if for each point $p \in M$ and any *n*-dimensional subspace σ of the tangent space T_pM there exists an *n*-dimensional totally geodesic submanifold N such that $p \in N$ and $T_pN = \sigma$. He gave a criterion for constancy of sectional curvature in the following theorem.

Theorem 1.1. Let *M* be a Riemannian manifold of dimension $m \ge 3$. If *M* satisfies the axiom of *n*-planes for some $n, 2 \le n \le m-1$, then *M* has constant sectional curvature.

In [21], Yano and Mogi applied Cartan's idea to Kaehlerian manifolds. A Kaehlerian manifold *M* is said to satisfy the *axiom of holomorphic planes* if for each point $p \in M$ and each holomorphic plane $\sigma \subset T_pM$, there exists a totally geodesic submanifold *N* such that $p \in N$ and $T_pN = \sigma$. They proved the following theorem.

Theorem 1.2. A Kaehlerian manifold satisfying the axiom of holomorphic planes is a complex space form.

In [12], Leung and Nomizu defined *the axiom of n-spheres* by taking totally umbilical submanifold N with parallel mean curvature vector field instead of totally geodesic submanifold N in the axiom of *n*-planes. They proved the following theorem.

Communicated by V. Ravichandran.

Received: December 20, 2011; Revised: May 5, 2012.

Theorem 1.3. If a Riemannian manifold M of dimension $m \ge 3$ satisfies the axiom of n-spheres for some $n, 2 \le n \le m-1$, then M has constant sectional curvature.

Afterwards, many studies have been made in this direction. Kaehlerian manifolds were studied in [4, 6, 8, 11, 19], the papers [17] and [19] discussed nearly Kaehlerian (almost Tachibana) manifolds, and results concerning larger classes of almost Hermitian manifolds can be found in [9, 10, 16, 17].

In this paper, we shall introduce the axiom of hemi-slant 3-spheres and as an application, we shall give an interesting relation between the notion of constant type and antiholomorphic sectional curvature for a $2m(m \ge 3)$ -dimensional almost Hermitian manifold satisfying this axiom for some slant angle $\theta \in (0, \pi/2)$. Using this fact, we shall prove some theorems related to sectional curvature for a considered almost Hermitian manifold. We shall also give some results related to the Weyl conformal curvature tensor and the Bochner curvature tensor of a certain almost Hermitian manifold satisfying the axiom of hemi-slant 3-spheres. Our work is motivated by the above-cited papers.

2. Preliminaries

A C^{∞} -manifold M is called *almost Hermitian* if its tangent bundle has an almost complex structure J and a Riemannian metric g such that g(JX, JY) = g(X, Y) for all $X, Y \in \chi(M)$, where $\chi(M)$ is the Lie algebra of C^{∞} vector fields on M. Let ∇ be the covariant derivative on M, the Riemannian curvature tensor R associated with ∇ defined by $R(X,Y) = \nabla_{[X,Y]} - [\nabla_X, \nabla_Y]$. We denote g(R(X,Y)Z,U) by R(X,Y,Z,U). The sectional curvature K of M determined by orthonormal vector fields X and Y is given by K(X,Y) = R(X,Y,X,Y). The Weyl conformal curvature tensor W is defined by

$$\begin{split} W(X,Y,Z,U) &= R(X,Y,Z,U) - \frac{1}{2m-2} \Big\{ g(X,U) Ric(Y,Z) - g(X,Z) Ric(Y,U) + g(Y,Z) Ric(X,U) \\ &- g(Y,U) Ric(X,Z) \Big\} + \frac{S}{(2m-1)(2m-2)} \Big\{ g(X,U) g(Y,Z) - g(X,Z) g(Y,U) \Big\} \end{split}$$

for all $X, Y, Z, U \in T_pM$, where *Ric* and *S* are the *Ricci tensor* and the *scalar curvature* of *M*, respectively. A 2*m*-dimensional almost Hermitian manifold with $m \ge 2$ is *conformally flat* if and only if W = 0 identically [10, 20].

By an *r*-plane we mean an *r*-dimensional linear subspace of a tangent space T_pM , $p \in M$. Motivated from [3], we have the following definition.

Definition 2.1. Let σ be a 2-plane. The angle $\theta \in [0, \pi/2]$ between σ and $J\sigma$ is defined by $\cos \theta = |g(X, JY)|$,

where $\{X,Y\}$ is an orthonormal basis of σ . If $\theta = constant$, then σ is called a slant-plane and θ is called slant angle of σ .

This is a generalization of holomorphic and anti-holomorphic planes. In fact, holomorphic and anti-holomorphic planes are slant planes with slant angle θ equal to 0 and $\pi/2$, respectively, see [4,6,8]. Now, motivated from [1] and [14] we have the following definition.

Definition 2.2. A 3-plane σ in T_pM is called hemi-slant if it contains a slant 2-plane with slant angle $\theta \in [0, \pi/2)$ and a nonzero vector $Z \in T_pM$ such that JZ is perpendicular to σ , in which case $\sigma = D^{\theta} \oplus \{Z\}$ with $JZ \perp \sigma$, where D^{θ} is the corresponding slant 2-plane.

The sectional curvature of M restricted to a holomorphic (resp. an anti-holomorphic) plane σ is called *holomorphic* (resp. *anti-holomorphic*) sectional curvature. If the holomorphic (resp. anti-holomorphic) sectional curvature at each point $p \in M$, does not depend on σ , then M is said to be *pointwise constant holomorphic* (resp. *pointwise constant antiholomorphic) sectional curvature*. A connected Riemannian (resp. Kaehlerian) manifold of (global) constant sectional curvature (resp. of constant holomorphic sectional curvature) is called a *real space form* (resp. a *complex space form*) [9, 20]. The following useful notion was defined by Gray in [7].

Definition 2.3. Let M be an almost Hermitian manifold. Then M is said to be of constant type at $p \in M$ provided that for all $X \in T_pM$, we have $\lambda(X,Y) = \lambda(X,Z)$ whenever the planes span $\{X,Y\}$ and span $\{X,Z\}$ are anti-holomorphic and g(Y,Y) = g(Z,Z), where the function λ is defined by $\lambda(X,Y) = R(X,Y,X,Y) - R(X,Y,JX,JY)$. If this holds for all $p \in M$, then we say that M has (pointwise) constant type. Finally, if for $X, Y \in \chi(M)$ with g(X,Y) = g(JX,Y) = 0, the value $\lambda(X,Y)$ is constant whenever g(X,X) = g(Y,Y) = 1, then we say that M has global constant type.

Vanhecke introduced to the notion of *RK-manifold* in [16]. An almost Hermitian manifold *M* is called an *RK*-manifold if

(2.1)
$$R(X,Y,Z,U) = R(JX,JY,JZ,JU)$$

for all $X, Y, Z, U \in \chi(M)$. He proved many theorems. Recall some of them.

Theorem 2.1. [16] *Let* M *be an* RK*-manifold. Then* M *has (pointwise) constant type if and only if there exists* $\alpha \in \mathscr{F}(M)$ *such that*

$$\lambda(X,Y) = \alpha\{g(X,X)g(Y,Y) - g^2(X,Y) - g^2(X,JY)\},\$$

for all $X, Y \in \chi(M)$. Furthermore, M has global constant type if and only if α is a constant function.

Theorem 2.2. [16] Let M be an RK-manifold. Suppose that M has constant holomorphic sectional curvature μ at a point $p \in M$, let $X, Y \in T_pM$ be any orthonormal vectors. Then we have

$$K(X,Y) = \frac{\mu}{4} \{1 + 3g^2(X,JY)\} + \frac{5}{8}\lambda(X,Y) + \frac{1}{8}\lambda(X,JY),$$

where K(X,Y) is sectional curvature determined by X and Y.

Theorem 2.3. [16] Let M be an RK-manifold with pointwise constant anti-holomorphic (resp. holomorphic) sectional curvature v (resp. μ). Then M has pointwise constant holomorphic (resp.anti-holomorphic) sectional curvature μ (resp. v) if and only if M has pointwise constant type α , in which case

$$4v = \mu + 3\alpha$$
.

The dimension of M is supposed to be ≥ 6 .

We shall call an almost Hermitian manifold M as *Kaehlerian* if $\nabla_X J = 0$ for all $X \in \chi(M)$, *nearly Kaehlerian (almost Tachibana or K-space)* if $(\nabla_X J)X = 0$ for all $X \in \chi(M)$, and *para-Kaehlerian* if R(X,Y,Z,U) = R(X,Y,JZ,JU) for all $X,Y,Z,U \in \chi(M)$. These manifolds satisfy (2.1), so they are *RK*-manifolds. It is easy to see that a para-Kaehlerian manifold has global constant type [16, 17].

H. M. Taştan

For a 2*m*-dimensional Kaehlerian manifold, the Bochner curvature tensor *B* is defined by B(X,Y,Z,U)

$$\begin{split} &= R(X,Y,Z,U) - \frac{1}{2(m+2)} \big\{ g(X,U) Ric(Y,Z) - g(X,Z) Ric(Y,U) + g(Y,Z) Ric(X,U) \\ &- g(Y,U) Ric(X,Z) + g(X,JU) Ric(Y,JZ) - g(X,JZ) Ric(Y,JU) + g(Y,JZ) Ric(X,JU) \\ &- g(Y,JU) Ric(X,JZ) - 2g(X,JY) Ric(Z,JU) - 2g(Z,JU) Ric(X,JY) \big\} \\ &+ \frac{S}{4(m+1)(m+2)} \big\{ g(X,U)g(Y,Z) - g(X,Z)g(Y,U) \big\} \\ &+ g(X,JU)g(Y,JZ) - g(X,JZ)g(Y,JU) - 2g(X,JY)g(Z,JU) \end{split}$$

for all $X, Y, Z, U \in T_pM$ and $p \in M$, where *Ric* and *S* are the *Ricci tensor* and the *scalar curvature* of *M*, respectively [11]. The following lemma gives a criterion for vanishing of the Bochner curvature tensor of a Kaehlerian manifold.

Lemma 2.1. [11] A Kaehlerian manifold M of dimension $2m \ge 6$ has a vanishing Bochner curvature tensor, if and only if for each point $p \in M$ and for all unit vectors $X, Y, Z \in T_pM$, which span an anti-holomorphic 3-plane

$$R(X,JX,Y,Z) = 2R(X,Y,JX,Z)$$

holds.

Now, we give some definitions related to submanifolds.

Let *M* be a C^{∞} -Riemannian manifold with metric tensor *g* and *N* be a submanifold of *M*. We denote by ∇ and $\hat{\nabla}$ the covariant derivatives on *M* and *N* respectively. For any vector fields *X* and *Y* tangent to *N*, the second fundamental form *T* is defined by

$$T(X,Y) = \nabla_X Y - \nabla_X Y$$

where $\hat{\nabla}_X Y$ is tangent to *N* and T(X,Y) is normal to *N*. The normal bundle-valued form *T* is a symmetric tensor field of type (0,2). We say that *N* is *totally umbilical* submanifold in *M* if for all *X*, *Y* tangent to *N*, we have

(2.2)
$$T(X,Y) = g(X,Y)\eta,$$

where η is the mean curvature vector field of N in M. The Codazzi equation is given by

(2.3)
$$(R(X,Y)Z)^{\perp} = (\nabla_X T)(Y,Z) - (\nabla_Y T)(X,Z)$$

for all *X*,*Y*,*Z* tangent to *N*. Where $^{\perp}$ denotes the normal component and the covariant derivative of *T*, denoted by $\nabla_X T$, is defined by

(2.4)
$$(\nabla_X T)(Y,Z) = D_X(T(Y,Z)) - T(\hat{\nabla}_X Y,Z) - T(Y,\hat{\nabla}_X Z)$$

for all X, Y, Z tangent to N, where D denotes the operator of covariant derivative in the normal bundle of N [4,6,8,19].

3. Main results

We now introduce the following axiom.

Definition 3.1. (*Axiom of hemi-slant 3-spheres*). An almost Hermitian manifold M is said to satisfy the axiom of hemi-slant 3-spheres if for each point $p \in M$ and each hemi-slant 3-plane σ in T_pM , there exists a 3-dimensional totally umbilical submanifold N such that $p \in N$ and $T_pN = \sigma$.

Before studying the axiom of hemi-slant 3-spheres, let us note the following.

Remark 3.1. Let *M* be any 2*m*-dimensional almost Hermitian manifold with $m \ge 3$ and let $\{X_1, ..., X_m, JX_1, ..., JX_m\}$ be an orthonormal *J*-basis of T_pM . Then we always have a hemislant 3-plane with the slant angle θ . For example, $\sigma = D^{\theta} \oplus \{X_3\}$ is a hemi-slant 3-plane with the slant angle θ , where $D^{\theta} = \text{span}\{X_1, \cos \theta JX_1 + \sin \theta X_2\}$.

Lemma 3.1. Let *M* be an almost Hermitian manifold with dimension $2m \ge 6$. If *M* satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then we have

$$\lambda(X,Y) = K(X,Y)$$

for all orthonormal vectors $X, Y \in T_pM$ with g(X,JY) = 0, where $\lambda(X,Y) = R(X,Y,X,Y) - R(X,Y,JX,JY)$ and K denotes anti-holomorphic sectional curvature.

Proof. Let *p* be an arbitrary point of *M* and let *X*, *Y* and *Z* be any orthonormal vectors in T_pM with g(X,JY) = g(X,JZ) = g(Y,JZ) = 0. Consider the hemi-slant 3-plane $\sigma = D^{\theta} \oplus \{Y\}$ with slant angle $\theta \in (0, \pi/2)$, where $D^{\theta} = \text{span}\{X, \cos \theta JX + \sin \theta Z\}$. By the axiom of hemi-slant 3-spheres, there exists a 3-dimensional totally umbilical submanifold *N* such that $p \in N$ and $T_pN = \sigma$. Then, with the help of (2.2) and (2.4) from (2.3), we have

(3.2)
$$(R(X,Y)(\cos\theta JX + \sin\theta Z))^{\perp} = 0.$$

Since JY is normal to N, we get

(3.3)
$$R(X,Y,\cos\theta JX+\sin\theta Z,JY)=0.$$

Now, consider the hemi-slant 3-plane $\sigma_2 = D_2^{\theta} \oplus \{Y\}$ with slant angle $\theta \in (0, \pi/2)$, where $D_2^{\theta} = \operatorname{span}\{X, \cos \theta J X - \sin \theta Z\}$. By a similar method, we can obtain

(3.4)
$$R(X,Y,\cos\theta JX - \sin\theta Z,JY) = 0.$$

From (3.3) and (3.4) we get

$$(3.5) R(X,Y,JX,JY) = 0$$

From Definition 2.3, and the equation (3.5), we obtain (3.1).

Theorem 3.1. Let M be an almost Hermitian manifold with dimension $2m \ge 6$. If M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then M has pointwise constant type if and only if M has pointwise constant anti-holomorphic sectional curvature.

Proof. Let *M* be an almost Hermitian manifold with dimension $2m \ge 6$ satisfying the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$. If *M* has pointwise constant type; that is, for all $p \in M$, *M* has constant type at *p*, then for all $X, Y, Z \in T_pM$, we have

(3.6)
$$\lambda(X,Y) = \lambda(X,Z),$$

whenever the planes span{X,Y} and span{X,Z} are anti-holomorphic and g(Y,Y) = g(Z,Z). Here, we can assume that g(Y,Y) = g(Z,Z) = 1. Thus, from Lemma 3.1, we get

for all orthonormal vectors $X, Y, Z \in T_p M$ with g(X, JY) = g(X, JZ) = 0. On the other hand, since the dimension of *M* is greater than 6 we can choose a unit vector *U* in $(\text{span}\{X, JX\})^{\perp} \cap (\text{span}\{Z, JZ\})^{\perp}$. Then, from (3.7), we have

$$(3.8) K(X,U) = K(X,Z).$$

This implies that the sectional curvature is the same for all anti-holomorphic sections which contain any given vector X. Hence we write

(3.9)
$$K(X,Y) = K(Y,Z) = K(Z,U).$$

Therefore, we find

$$(3.10) K(X,Y) = K(Z,U)$$

for all $X, Y, Z, U \in T_p M$ whenever the planes span $\{X, Y\}$ and span $\{Z, U\}$ are anti-holomorphic. It follows that the sectional curvature is the same for all anti-holomorphic sections at $p \in M$; that is, M has pointwise constant anti-holomorphic sectional curvature.

Conversely, let *M* be of pointwise constant anti-holomorphic sectional curvature and let *p* be any point of *M*. Then for all orthonormal vectors $X, Y, Z \in T_pM$ with g(X, JY) = g(X, JZ) = 0, (span $\{X, Y\}$ and span $\{X, Z\}$ are anti-holomorphic planes and g(X, X) = g(Y, Y) = g(Z, Z) = 1), we have

(3.11)
$$K(X,Y) = K(X,Z).$$

From Lemma 3.1, we get

(3.12)
$$\lambda(X,Y) = \lambda(X,Z)$$

for all orthonormal vectors $X, Y, Z \in T_p M$ whenever the planes span $\{X, Y\}$ and span $\{X, Z\}$ are anti-holomorphic. It is not difficult to see that (3.12) also holds in the case $g(Y, Y) = g(Z, Z) \neq 1$. It follows that *M* has constant type at *p*.

With the help of Lemma 3.1, from Theorem 3.1, we have the following result.

Corollary 3.1. Let M be a 2m-dimensional almost Hermitian manifold with $m \ge 3$. If M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then M has pointwise constant type α if and only if M has pointwise constant anti-holomorphic sectional curvature α .

We now state the main result of the present work.

Theorem 3.2. Let M be a 2m-dimensional (connected) RK-manifold with pointwise constant type α and $m \ge 3$. If M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then M is a real space form with constant sectional curvature α and M has global constant type.

Proof. Let p be any point of M and M has constant type α at p. Then it follows from Corollary 3.1 that M has constant anti-holomorphic sectional curvature α at p. On the other hand, from Theorem 2.3, we see that M has constant holomorphic sectional curvature α at p. With the help of Theorem 2.1, from Theorem 2.2, we obtain

$$(3.13) K(X,Y) = \alpha$$

for all orthonormal vectors $X, Y \in T_p(M)$, where K(X,Y) = R(X,Y,X,Y) is sectional curvature. It is not difficult to see that (3.13) is also true for all $X, Y \in T_p(M)$. By the well-known Schur's theorem [20] it follows that *M* has constant sectional curvature α and *M* has global constant type.

Corollary 3.2. Let *M* be a 2*m*-dimensional (connected) *RK*-manifold with vanishing constant type and $m \ge 3$. If *M* satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then *M* is flat.

Now, suppose that *M* is a Kaehlerian manifold. Then, for all $X, Y, Z \in \chi(M)$, as a result of the Kaehler identity R(X,Y)JZ = JR(X,Y)Z, we get R(JX,JY)Z = R(X,Y)Z [20]. In this case, we have

$$(3.14) R(JX,JY,JX,JY) = R(X,Y,JX,JY).$$

Using (2.1) and (3.14), we can see that $\lambda(X,Y) = 0$. Thus, any Kaehlerian manifold has (global) vanishing constant type. Thus, it follows from Corollary 3.2 that:

Corollary 3.3. Let *M* be a 2*m*-dimensional (connected) Kaehlerian or para-Kaehlerian manifold with $m \ge 3$. If *M* satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then *M* is flat.

Theorem 3.3. Let M be a 2m-dimensional (connected) non-Kaehlerian nearly Kaehlerian manifold with constant type α and $m \ge 3$. If M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then M has constant sectional curvature $\alpha > 0$ and m = 3.

Proof. In [7], for a nearly Kaehlerian manifold M, A. Gray proved the following.

(3.15) $\lambda(X,Y) = R(X,Y,X,Y) - R(X,Y,JX,JY) = \|(\nabla_X J)Y\|^2,$

where $X, Y \in \chi(M)$. Now, let M be a 2m-dimensional non-Kaehlerian nearly Kaehlerian manifold with constant type α and $m \ge 3$. Then, it follows from (3.15) that $\alpha = \lambda(X, Y) = \|(\nabla_X J)Y\|^2 > 0$ due to M is non-Kaehlerian. On the other hand, since M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, by Theorem 3.2, we have M has constant sectional curvature α . Hence, we see that M has constant holomorphic sectional curvature α . Thus, the assertion m = 3 follows from the following theorem.

Theorem 3.4. [15] *Except for the 6-dimensional one, there does not exist a non-Kaehlerian nearly Kaehlerian manifold of constant holomorphic sectional curvature.*

Now, we give a result related to the Weyl conformal curvature tensor.

Theorem 3.5. Let *M* be an almost Hermitian manifold with dimension $2m \ge 8$. If *M* satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then *M* is conformally flat.

Proof. Let *p* be an arbitrary point of *M* and let *X*, *Y* and *Z* be any orthonormal vectors of T_pM with g(X,JY) = g(X,JZ) = g(Y,JZ) = 0. Consider the hemi-slant 3-plane $\sigma_1 = D_1^{\theta} \oplus \{Z\}$ with slant angle $\theta \in (0, \pi/2)$, where $D_1^{\theta} = \operatorname{span}\{X, \cos \theta JX + \sin \theta Y\}$ and the hemi-slant 3-plane $\sigma_2 = D_2^{\theta} \oplus \{Z\}$ with slant angle $\theta \in (0, \pi/2)$, where $D_2^{\theta} = \operatorname{span}\{X, \cos \theta JX - \sin \theta Y\}$. As in the proof of Lemma 3.1, by the axiom of hemi-slant 3-spheres and by the equation (2.3), we have

(3.16)
$$(R(X,\cos\theta JX + \sin\theta Y)Z)^{\perp} = 0$$

and

(3.17)
$$(R(X,\cos\theta JX - \sin\theta Y)Z)^{\perp} = 0.$$

H. M. Taştan

On the other hand, since the dimension of *M* is greater than 8 we can choose a unit vector U in $(\operatorname{span}\{X, JX\})^{\perp} \cap (\operatorname{span}\{Y, JY\})^{\perp} \cap (\operatorname{span}\{Z, JZ\})^{\perp}$. Thus, we write

(3.18)
$$R(X,\cos\theta JX + \sin\theta Y, Z, U) = 0$$

and

(3.19)
$$R(X,\cos\theta JX - \sin\theta Y, Z, U) = 0.$$

From (3.18) and (3.19), we have

(3.20) R(X, JX, Z, U) = 0.

On the other hand, (3.18) and (3.20) give

(3.21)
$$R(X,Y,Z,U) = 0,$$

where $X, Y, Z, U \in T_pM$ span an anti-holomorphic 4-plane. According to a well-known theorem of Schouten [13], the Weyl conformal curvature tensor *W* of *M* vanishes. This completes the proof.

Next, we will give a result related to the Bochner curvature tensor.

Theorem 3.6. Let M be a Kaehlerian manifold with dimension $2m \ge 6$. If M satisfies the axiom of hemi-slant 3-spheres for some $\theta \in (0, \pi/2)$, then M has a vanishing Bochner curvature tensor.

Proof. Let *p* be any point of *M* and let *X*, *Y* and *Z* be any orthonormal vectors of T_pM with g(X,JY) = g(X,JZ) = g(Y,JZ) = 0; that is, they span an anti-holomorhic 3-plane. Then the 3-plane $\sigma_1 = D_1^{\theta} \oplus \{Y\}$ is a hemi-slant 3-plane with slant angle $\theta \in (0, \pi/2)$, where $D_1^{\theta} = \text{span}\{X, \cos \theta JX + \sin \theta JZ\}$. By the axiom of hemi-slant 3-spheres, there exists a 3-dimensional totally umbilical submanifold N_1 such that $p \in N_1$ and $T_pN_1 = \sigma_1$. Then, with the help of (2.2) and (2.4) from (2.3), we have

(3.22)
$$(R(X,\cos\theta JX + \sin\theta JZ)Y)^{\perp} = 0$$

and

(3.23)
$$(R(X,Y)(\cos\theta JX + \sin\theta JZ))^{\perp} = 0.$$

Since Z is normal to N_1 , from (3.22) and (3.23) we get

(3.24)
$$R(X, \cos \theta JX + \sin \theta JZ, Y, Z) = 0$$

and

(3.25)
$$R(X,Y,\cos\theta JX + \sin\theta JZ,Z) = 0.$$

Now, consider the hemi-slant 3-plane $\sigma_2 = D_2^{\theta} \oplus \{Y\}$ with slant angle $\theta \in (0, \pi/2)$, where $D_2^{\theta} = \text{span}\{X, \cos \theta JX - \sin \theta JZ\}$. Again by the axiom of hemi-slant 3-spheres, there exists a 3-dimensional totally umbilical submanifold N_2 such that $p \in N_2$ and $T_p N_2 = \sigma_2$. Then, with the help of (2.2) and (2.4) from (2.3), we have

(3.26)
$$(R(X,\cos\theta JX - \sin\theta JZ)Y)^{\perp} = 0$$

and

(3.27)
$$(R(X,Y)(\cos\theta JX - \sin\theta JZ))^{\perp} = 0.$$

Since Z is normal to N_2 , from (3.26) and (3.27) we get

(3.28) $R(X, \cos\theta JX - \sin\theta JZ, Y, Z) = 0$

and

(3.29)
$$R(X,Y,\cos\theta JX - \sin\theta JZ,Z) = 0.$$

From (3.24) and (3.28) we obtain

(3.30) R(X, JX, Y, Z) = 0.

On the other hand, from (3.25) and (3.29) we obtain

(3.31)
$$R(X,Y,JX,Z) = 0.$$

Thus, our assertion follows from (3.30), (3.31) and Lemma 2.1.

Acknowledgement. The author is deeply indebted to the referee(s) for useful suggestions and valuable comments.

References

- F. R. Al-Solamy, M. A. Khan and S. Uddin, Totally umbilical hemi-slant submanifolds of Kaehler manifolds, *Abstr. Appl. Anal.* 2011, Art. ID 987157, 9 pp.
- [2] É. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1946.
- [3] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 135–147.
- [4] B.-Y. Chen and K. Ogiue, Some characterizations of complex space forms, Duke Math. J. 40 (1973), 797– 799.
- [5] B.-Y. Chen and K. Ogiue, Two theorems on Kaehler manifolds, *Michigan Math. J.* 21 (1974), 225–229 (1975).
- [6] S. I. Goldberg, The axiom of 2-spheres in Kaehler geometry, J. Differential Geometry 8 (1973), 177–179.
- [7] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283-309.
- [8] M. Harada, On Kaehler manifolds satisfying the axiom of antiholomorphic 2-spheres, *Proc. Amer. Math. Soc.* 43 (1974), 186–189.
- [9] O. T. Kasabov, On the axiom of planes and the axiom of spheres in the almost Hermitian geometry, *Serdica* 8 (1982), no. 1, 109–114.
- [10] O. T. Kassabov, The axiom of coholomorphic (2n+1)-spheres in the almost Hermitian geometry, Serdica 8 (1982), no. 4, 391–394 (1983).
- [11] O. T. Kassabov, On the axiom of spheres in Kähler geometry, C. R. Acad. Bulgare Sci. 35 (1982), no. 3, 303–305.
- [12] D. S. Leung and K. Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5 (1971), 487–489.
- [13] J. A. Schouten, Der Ricci-Kalkül, reprint of the 1924 original, Grundlehren der Mathematischen Wissenschaften, 10, Springer, Berlin, 1978.
- [14] B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Polon. Math. 95 (2009), no. 3, 207–226.
- [15] K. Takamatsu and T. Sato, A K-space of constant holomorphic sectional curvature, Ködai Math. Sem. Rep. 27 (1976), no. 1-2, 116–127.
- [16] L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Sem. Mat. Univ. e Politec. Torino 34 (1975/76), 487–498.
- [17] L. Vanhecke, The axiom of coholomorphic (2p+1)-spheres for some almost Hermitian manifolds, *Tensor* (N.S.) 30 (1976), no. 3, 275–281.
- [18] S. Yamaguchi, The axiom of coholomorphic 3-spheres in an almost Tachibana manifold, Kōdai Math. Sem. Rep. 27 (1976), no. 4, 432–435.
- [19] S. Yamaguchi and M. Kon, Kaehler manifolds satisfying the axiom of anti-invariant 2-spheres, *Geom. Dedicata* 7 (1978), no. 4, 403–406.

H. M. Taştan

- [20] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Sci. Publishing, Singapore, 1984.
- [21] K. Yano and I. Mogi, On real representations of Kaehlerian manifolds, Ann. of Math. (2) 61 (1955), 170–189.