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Abstract. The axiom of hemi-slant 3-spheres is introduced. It is proved that if an almost
Hermitian manifold M with dimension 2m ≥ 6 satisfies this axiom for some slant angle
θ ∈ (0,π/2), then M has pointwise constant type α if and only if M has pointwise constant
anti-holomorphic sectional curvature α , and using this result some conditions for constancy
of sectional curvature of a considered almost Hermitian manifold are given.
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1. Introduction

In [2], Cartan defined the axiom of n-planes. A Riemannian manifold M of dimension m≥ 3
is said to satisfy the axiom of n-planes, where n is a fixed integer 2≤ n≤ m−1, if for each
point p ∈ M and any n-dimensional subspace σ of the tangent space TpM there exists an
n-dimensional totally geodesic submanifold N such that p ∈ N and TpN = σ . He gave a
criterion for constancy of sectional curvature in the following theorem.

Theorem 1.1. Let M be a Riemannian manifold of dimension m ≥ 3. If M satisfies the
axiom of n-planes for some n,2≤ n≤ m−1, then M has constant sectional curvature.

In [21], Yano and Mogi applied Cartan’s idea to Kaehlerian manifolds. A Kaehlerian
manifold M is said to satisfy the axiom of holomorphic planes if for each point p ∈M and
each holomorphic plane σ ⊂ TpM, there exists a totally geodesic submanifold N such that
p ∈ N and TpN = σ . They proved the following theorem.

Theorem 1.2. A Kaehlerian manifold satisfying the axiom of holomorphic planes is a com-
plex space form.

In [12], Leung and Nomizu defined the axiom of n-spheres by taking totally umbilical
submanifold N with parallel mean curvature vector field instead of totally geodesic subman-
ifold N in the axiom of n-planes. They proved the following theorem.
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Theorem 1.3. If a Riemannian manifold M of dimension m ≥ 3 satisfies the axiom of n-
spheres for some n,2≤ n≤ m−1, then M has constant sectional curvature.

Afterwards, many studies have been made in this direction. Kaehlerian manifolds were
studied in [4, 6, 8, 11, 19], the papers [17] and [19] discussed nearly Kaehlerian (almost
Tachibana) manifolds, and results concerning larger classes of almost Hermitian manifolds
can be found in [9, 10, 16, 17].

In this paper, we shall introduce the axiom of hemi-slant 3-spheres and as an applica-
tion, we shall give an interesting relation between the notion of constant type and anti-
holomorphic sectional curvature for a 2m(m ≥ 3)-dimensional almost Hermitian manifold
satisfying this axiom for some slant angle θ ∈ (0,π/2). Using this fact, we shall prove some
theorems related to sectional curvature for a considered almost Hermitian manifold. We
shall also give some results related to the Weyl conformal curvature tensor and the Bochner
curvature tensor of a certain almost Hermitian manifold satisfying the axiom of hemi-slant
3-spheres. Our work is motivated by the above-cited papers.

2. Preliminaries

A C∞-manifold M is called almost Hermitian if its tangent bundle has an almost complex
structure J and a Riemannian metric g such that g(JX ,JY ) = g(X ,Y ) for all X ,Y ∈ χ(M),
where χ(M) is the Lie algebra of C∞ vector fields on M. Let ∇ be the covariant deriv-
ative on M, the Riemannian curvature tensor R associated with ∇ defined by R(X ,Y ) =
∇[X ,Y ]− [∇X ,∇Y ]. We denote g(R(X ,Y )Z,U) by R(X ,Y,Z,U). The sectional curvature K
of M determined by orthonormal vector fields X and Y is given by K(X ,Y ) = R(X ,Y,X ,Y ).
The Weyl conformal curvature tensor W is defined by

W (X ,Y,Z,U)

= R(X ,Y,Z,U)− 1
2m−2

{
g(X ,U)Ric(Y,Z)−g(X ,Z)Ric(Y,U)+g(Y,Z)Ric(X ,U)

−g(Y,U)Ric(X ,Z)
}

+
S

(2m−1)(2m−2)
{

g(X ,U)g(Y,Z)−g(X ,Z)g(Y,U)
}

for all X ,Y,Z,U ∈ TpM, where Ric and S are the Ricci tensor and the scalar curvature of
M, respectively. A 2m-dimensional almost Hermitian manifold with m ≥ 2 is conformally
flat if and only if W = 0 identically [10, 20].

By an r-plane we mean an r-dimensional linear subspace of a tangent space TpM, p∈M.
Motivated from [3], we have the following definition.

Definition 2.1. Let σ be a 2-plane. The angle θ ∈ [0,π/2] between σ and Jσ is defined by

cosθ = |g(X ,JY )|,
where {X ,Y} is an orthonormal basis of σ . If θ = constant, then σ is called a slant-plane
and θ is called slant angle of σ .

This is a generalization of holomorphic and anti-holomorphic planes. In fact, holomor-
phic and anti-holomorphic planes are slant planes with slant angle θ equal to 0 and π/2,
respectively, see [4,6,8]. Now, motivated from [1] and [14] we have the following definition.

Definition 2.2. A 3-plane σ in TpM is called hemi-slant if it contains a slant 2-plane with
slant angle θ ∈ [0,π/2) and a nonzero vector Z ∈ TpM such that JZ is perpendicular to σ ,

in which case σ = Dθ ⊕{Z} with JZ⊥σ , where Dθ is the corresponding slant 2-plane.
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The sectional curvature of M restricted to a holomorphic (resp. an anti-holomorphic)
plane σ is called holomorphic (resp. anti-holomorphic) sectional curvature. If the holo-
morphic (resp. anti-holomorphic) sectional curvature at each point p ∈M, does not depend
on σ , then M is said to be pointwise constant holomorphic (resp. pointwise constant anti-
holomorphic) sectional curvature. A connected Riemannian (resp. Kaehlerian) manifold of
(global) constant sectional curvature (resp. of constant holomorphic sectional curvature) is
called a real space form (resp. a complex space form) [9, 20]. The following useful notion
was defined by Gray in [7].

Definition 2.3. Let M be an almost Hermitian manifold. Then M is said to be of constant
type at p ∈ M provided that for all X ∈ TpM, we have λ (X ,Y ) = λ (X ,Z) whenever the
planes span{X ,Y} and span{X ,Z} are anti-holomorphic and g(Y,Y ) = g(Z,Z), where the
function λ is defined by λ (X ,Y ) = R(X ,Y,X ,Y )− R(X ,Y,JX ,JY ). If this holds for all
p ∈M, then we say that M has (pointwise) constant type. Finally, if for X ,Y ∈ χ(M) with
g(X ,Y ) = g(JX ,Y ) = 0, the value λ (X ,Y ) is constant whenever g(X ,X) = g(Y,Y ) = 1, then
we say that M has global constant type.

Vanhecke introduced to the notion of RK-manifold in [16]. An almost Hermitian mani-
fold M is called an RK-manifold if

(2.1) R(X ,Y,Z,U) = R(JX ,JY,JZ,JU)

for all X ,Y,Z,U ∈ χ(M). He proved many theorems. Recall some of them.

Theorem 2.1. [16] Let M be an RK-manifold. Then M has (pointwise) constant type if and
only if there exists α ∈F (M) such that

λ (X ,Y ) = α{g(X ,X)g(Y,Y )−g2(X ,Y )−g2(X ,JY )},
for all X ,Y ∈ χ(M). Furthermore, M has global constant type if and only if α is a constant
function.

Theorem 2.2. [16] Let M be an RK-manifold. Suppose that M has constant holomorphic
sectional curvature µ at a point p ∈M, let X ,Y ∈ TpM be any orthonormal vectors. Then
we have

K(X ,Y ) =
µ

4
{1+3g2(X ,JY )}+ 5

8
λ (X ,Y )+

1
8

λ (X ,JY ),

where K(X ,Y ) is sectional curvature determined by X and Y.

Theorem 2.3. [16] Let M be an RK-manifold with pointwise constant anti-holomorphic
(resp. holomorphic) sectional curvature ν (resp. µ). Then M has pointwise constant holo-
morphic (resp.anti-holomorphic) sectional curvature µ (resp. ν) if and only if M has point-
wise constant type α, in which case

4ν = µ +3α.

The dimension of M is supposed to be ≥ 6.

We shall call an almost Hermitian manifold M as Kaehlerian if ∇X J = 0 for all X ∈
χ(M), nearly Kaehlerian (almost Tachibana or K-space) if (∇X J)X = 0 for all X ∈ χ(M),
and para-Kaehlerian if R(X ,Y,Z,U) = R(X ,Y,JZ,JU) for all X ,Y,Z,U ∈ χ(M). These
manifolds satisfy (2.1), so they are RK-manifolds. It is easy to see that a para-Kaehlerian
manifold has global constant type [16, 17].
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For a 2m-dimensional Kaehlerian manifold, the Bochner curvature tensor B is defined by

B(X ,Y,Z,U)

= R(X ,Y,Z,U)− 1
2(m+2)

{
g(X ,U)Ric(Y,Z)−g(X ,Z)Ric(Y,U)+g(Y,Z)Ric(X ,U)

−g(Y,U)Ric(X ,Z)+g(X ,JU)Ric(Y,JZ)−g(X ,JZ)Ric(Y,JU)+g(Y,JZ)Ric(X ,JU)

−g(Y,JU)Ric(X ,JZ)−2g(X ,JY )Ric(Z,JU)−2g(Z,JU)Ric(X ,JY )
}

+
S

4(m+1)(m+2)
{

g(X ,U)g(Y,Z)−g(X ,Z)g(Y,U)
}

+g(X ,JU)g(Y,JZ)−g(X ,JZ)g(Y,JU)−2g(X ,JY )g(Z,JU)

for all X ,Y,Z,U ∈ TpM and p ∈ M, where Ric and S are the Ricci tensor and the scalar
curvature of M, respectively [11]. The following lemma gives a criterion for vanishing of
the Bochner curvature tensor of a Kaehlerian manifold.

Lemma 2.1. [11] A Kaehlerian manifold M of dimension 2m≥ 6 has a vanishing Bochner
curvature tensor, if and only if for each point p ∈M and for all unit vectors X ,Y,Z ∈ TpM,
which span an anti-holomorphic 3-plane

R(X ,JX ,Y,Z) = 2R(X ,Y,JX ,Z)

holds.

Now, we give some definitions related to submanifolds.
Let M be a C∞-Riemannian manifold with metric tensor g and N be a submanifold of M.

We denote by ∇ and ∇̂ the covariant derivatives on M and N respectively. For any vector
fields X and Y tangent to N, the second fundamental form T is defined by

T (X ,Y ) = ∇XY − ∇̂XY

where ∇̂XY is tangent to N and T (X ,Y ) is normal to N. The normal bundle-valued form T
is a symmetric tensor field of type (0,2). We say that N is totally umbilical submanifold in
M if for all X ,Y tangent to N, we have

(2.2) T (X ,Y ) = g(X ,Y )η ,

where η is the mean curvature vector field of N in M. The Codazzi equation is given by

(2.3) (R(X ,Y )Z)⊥ = (∇X T )(Y,Z)− (∇Y T )(X ,Z)

for all X ,Y,Z tangent to N. Where ⊥ denotes the normal component and the covariant de-
rivative of T, denoted by ∇X T , is defined by

(2.4) (∇X T )(Y,Z) = DX (T (Y,Z))−T (∇̂XY,Z)−T (Y, ∇̂X Z)

for all X ,Y,Z tangent to N, where D denotes the operator of covariant derivative in the
normal bundle of N [4, 6, 8, 19].

3. Main results

We now introduce the following axiom.
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Definition 3.1. (Axiom of hemi-slant 3-spheres). An almost Hermitian manifold M is said
to satisfy the axiom of hemi-slant 3-spheres if for each point p ∈ M and each hemi-slant
3-plane σ in TpM, there exists a 3-dimensional totally umbilical submanifold N such that
p ∈ N and TpN = σ .

Before studying the axiom of hemi-slant 3-spheres, let us note the following.

Remark 3.1. Let M be any 2m-dimensional almost Hermitian manifold with m≥ 3 and let
{X1, ...,Xm,JX1, ...,JXm} be an orthonormal J-basis of TpM. Then we always have a hemi-
slant 3-plane with the slant angle θ . For example, σ = Dθ ⊕{X3} is a hemi-slant 3-plane
with the slant angle θ , where Dθ = span{X1,cosθJX1 + sinθX2}.

Lemma 3.1. Let M be an almost Hermitian manifold with dimension 2m≥ 6. If M satisfies
the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2), then we have

(3.1) λ (X ,Y ) = K(X ,Y )

for all orthonormal vectors X ,Y ∈ TpM with g(X ,JY ) = 0, where λ (X ,Y ) = R(X ,Y,X ,Y )−
R(X ,Y,JX ,JY ) and K denotes anti-holomorphic sectional curvature.

Proof. Let p be an arbitrary point of M and let X ,Y and Z be any orthonormal vectors in TpM
with g(X ,JY ) = g(X ,JZ) = g(Y,JZ) = 0. Consider the hemi-slant 3-plane σ = Dθ ⊕{Y}
with slant angle θ ∈ (0,π/2), where Dθ = span{X ,cosθJX + sinθZ}. By the axiom of
hemi-slant 3-spheres, there exists a 3-dimensional totally umbilical submanifold N such
that p ∈ N and TpN = σ . Then, with the help of (2.2) and (2.4) from (2.3), we have

(3.2) (R(X ,Y )(cosθJX + sinθZ))⊥ = 0.

Since JY is normal to N, we get

(3.3) R(X ,Y,cosθJX + sinθZ,JY ) = 0.

Now, consider the hemi-slant 3-plane σ2 = Dθ
2 ⊕{Y} with slant angle θ ∈ (0,π/2), where

Dθ
2 = span{X ,cosθJX− sinθZ}. By a similar method, we can obtain

(3.4) R(X ,Y,cosθJX− sinθZ,JY ) = 0.

From (3.3) and (3.4) we get

(3.5) R(X ,Y,JX ,JY ) = 0.

From Definition 2.3, and the equation (3.5), we obtain (3.1).

Theorem 3.1. Let M be an almost Hermitian manifold with dimension 2m≥ 6. If M satisfies
the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2), then M has pointwise constant type
if and only if M has pointwise constant anti-holomorphic sectional curvature.

Proof. Let M be an almost Hermitian manifold with dimension 2m≥ 6 satisfying the axiom
of hemi-slant 3-spheres for some θ ∈ (0,π/2). If M has pointwise constant type; that is, for
all p ∈M, M has constant type at p, then for all X ,Y,Z ∈ TpM, we have

(3.6) λ (X ,Y ) = λ (X ,Z),

whenever the planes span{X ,Y} and span{X ,Z} are anti-holomorphic and g(Y,Y )= g(Z,Z).
Here, we can assume that g(Y,Y ) = g(Z,Z) = 1. Thus, from Lemma 3.1, we get

(3.7) K(X ,Y ) = K(X ,Z)
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for all orthonormal vectors X ,Y,Z ∈ TpM with g(X ,JY ) = g(X ,JZ) = 0.
On the other hand, since the dimension of M is greater than 6 we can choose a unit vector
U in (span{X ,JX})⊥∩ (span{Z,JZ})⊥. Then, from (3.7), we have

(3.8) K(X ,U) = K(X ,Z).

This implies that the sectional curvature is the same for all anti-holomorphic sections which
contain any given vector X . Hence we write

(3.9) K(X ,Y ) = K(Y,Z) = K(Z,U).

Therefore, we find

(3.10) K(X ,Y ) = K(Z,U)

for all X ,Y,Z,U ∈ TpM whenever the planes span{X ,Y} and span{Z,U} are
anti-holomorphic. It follows that the sectional curvature is the same for all anti-holomorphic
sections at p ∈M; that is, M has pointwise constant anti-holomorphic sectional curvature.

Conversely, let M be of pointwise constant anti-holomorphic sectional curvature and let
p be any point of M. Then for all orthonormal vectors X ,Y,Z ∈ TpM with g(X ,JY ) =
g(X ,JZ) = 0, (span{X ,Y} and span{X ,Z} are anti-holomorphic planes and g(X ,X) = g(Y,
Y ) = g(Z,Z) = 1), we have

(3.11) K(X ,Y ) = K(X ,Z).

From Lemma 3.1, we get

(3.12) λ (X ,Y ) = λ (X ,Z)

for all orthonormal vectors X ,Y,Z ∈ TpM whenever the planes span{X ,Y} and span{X ,Z}
are anti-holomorphic. It is not difficult to see that (3.12) also holds in the case g(Y,Y ) =
g(Z,Z) 6= 1. It follows that M has constant type at p.

With the help of Lemma 3.1, from Theorem 3.1, we have the following result.

Corollary 3.1. Let M be a 2m-dimensional almost Hermitian manifold with m ≥ 3. If M
satisfies the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2), then M has pointwise con-
stant type α if and only if M has pointwise constant anti-holomorphic sectional curvature
α .

We now state the main result of the present work.

Theorem 3.2. Let M be a 2m-dimensional (connected) RK-manifold with pointwise con-
stant type α and m ≥ 3. If M satisfies the axiom of hemi-slant 3-spheres for some θ ∈
(0,π/2), then M is a real space form with constant sectional curvature α and M has global
constant type.

Proof. Let p be any point of M and M has constant type α at p. Then it follows from
Corollary 3.1 that M has constant anti-holomorphic sectional curvature α at p. On the other
hand, from Theorem 2.3, we see that M has constant holomorphic sectional curvature α at
p. With the help of Theorem 2.1, from Theorem 2.2, we obtain

(3.13) K(X ,Y ) = α

for all orthonormal vectors X ,Y ∈ Tp(M), where K(X ,Y ) = R(X ,Y,X ,Y ) is sectional curva-
ture. It is not difficult to see that (3.13) is also true for all X ,Y ∈ Tp(M). By the well-known
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Schur’s theorem [20] it follows that M has constant sectional curvature α and M has global
constant type.

Corollary 3.2. Let M be a 2m-dimensional (connected) RK-manifold with vanishing con-
stant type and m≥ 3. If M satisfies the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2),
then M is flat.

Now, suppose that M is a Kaehlerian manifold. Then, for all X ,Y,Z ∈ χ(M), as a result
of the Kaehler identity R(X ,Y )JZ = JR(X ,Y )Z, we get R(JX ,JY )Z = R(X ,Y )Z [20]. In
this case, we have

(3.14) R(JX ,JY,JX ,JY ) = R(X ,Y,JX ,JY ).

Using (2.1) and (3.14), we can see that λ (X ,Y ) = 0. Thus, any Kaehlerian manifold has
(global) vanishing constant type. Thus, it follows from Corollary 3.2 that:

Corollary 3.3. Let M be a 2m-dimensional (connected) Kaehlerian or para-Kaehlerian
manifold with m≥ 3. If M satisfies the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2),
then M is flat.

Theorem 3.3. Let M be a 2m-dimensional (connected) non-Kaehlerian nearly Kaehlerian
manifold with constant type α and m ≥ 3. If M satisfies the axiom of hemi-slant 3-spheres
for some θ ∈ (0,π/2), then M has constant sectional curvature α > 0 and m = 3.

Proof. In [7], for a nearly Kaehlerian manifold M, A. Gray proved the following.

(3.15) λ (X ,Y ) = R(X ,Y,X ,Y )−R(X ,Y,JX ,JY ) = ‖(∇X J)Y‖2,

where X ,Y ∈ χ(M). Now, let M be a 2m-dimensional non-Kaehlerian nearly Kaehlerian
manifold with constant type α and m≥ 3. Then, it follows from (3.15) that α = λ (X ,Y ) =
‖(∇X J)Y‖2 > 0 due to M is non-Kaehlerian. On the other hand, since M satisfies the axiom
of hemi-slant 3-spheres for some θ ∈ (0,π/2), by Theorem 3.2, we have M has constant
sectional curvature α. Hence, we see that M has constant holomorphic sectional curvature
α. Thus, the assertion m = 3 follows from the following theorem.

Theorem 3.4. [15] Except for the 6-dimensional one, there does not exist a non-Kaehlerian
nearly Kaehlerian manifold of constant holomorphic sectional curvature.

Now, we give a result related to the Weyl conformal curvature tensor.

Theorem 3.5. Let M be an almost Hermitian manifold with dimension 2m≥ 8. If M satisfies
the axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2), then M is conformally flat.

Proof. Let p be an arbitrary point of M and let X ,Y and Z be any orthonormal vectors of
TpM with g(X ,JY ) = g(X ,JZ) = g(Y,JZ) = 0. Consider the hemi-slant 3-plane σ1 = Dθ

1 ⊕
{Z} with slant angle θ ∈ (0,π/2), where Dθ

1 = span{X ,cosθJX + sinθY} and the hemi-
slant 3-plane σ2 = Dθ

2 ⊕{Z} with slant angle θ ∈ (0,π/2), where Dθ
2 = span{X ,cosθJX−

sinθY}. As in the proof of Lemma 3.1, by the axiom of hemi-slant 3-spheres and by the
equation (2.3), we have

(3.16) (R(X ,cosθJX + sinθY )Z)⊥ = 0

and

(3.17) (R(X ,cosθJX− sinθY )Z)⊥ = 0.



562 H. M. Taştan

On the other hand, since the dimension of M is greater than 8 we can choose a unit vector
U in (span{X ,JX})⊥∩ (span{Y,JY})⊥∩ (span{Z,JZ})⊥. Thus, we write

(3.18) R(X ,cosθJX + sinθY,Z,U) = 0

and

(3.19) R(X ,cosθJX− sinθY,Z,U) = 0.

From (3.18) and (3.19), we have

(3.20) R(X ,JX ,Z,U) = 0.

On the other hand, (3.18) and (3.20) give

(3.21) R(X ,Y,Z,U) = 0,

where X ,Y,Z,U ∈ TpM span an anti-holomorphic 4-plane. According to a well-known
theorem of Schouten [13], the Weyl conformal curvature tensor W of M vanishes. This
completes the proof.

Next, we will give a result related to the Bochner curvature tensor.

Theorem 3.6. Let M be a Kaehlerian manifold with dimension 2m ≥ 6. If M satisfies the
axiom of hemi-slant 3-spheres for some θ ∈ (0,π/2), then M has a vanishing Bochner
curvature tensor.

Proof. Let p be any point of M and let X ,Y and Z be any orthonormal vectors of TpM with
g(X ,JY ) = g(X ,JZ) = g(Y,JZ) = 0; that is, they span an anti-holomorhic 3-plane. Then
the 3-plane σ1 = Dθ

1 ⊕{Y} is a hemi-slant 3-plane with slant angle θ ∈ (0,π/2), where
Dθ

1 = span{X ,cosθJX + sinθJZ}. By the axiom of hemi-slant 3-spheres, there exists a 3-
dimensional totally umbilical submanifold N1 such that p ∈ N1 and TpN1 = σ1. Then, with
the help of (2.2) and (2.4) from (2.3), we have

(3.22) (R(X ,cosθJX + sinθJZ)Y )⊥ = 0

and

(3.23) (R(X ,Y )(cosθJX + sinθJZ))⊥ = 0.

Since Z is normal to N1, from (3.22) and (3.23) we get

(3.24) R(X ,cosθJX + sinθJZ,Y,Z) = 0

and

(3.25) R(X ,Y,cosθJX + sinθJZ,Z) = 0.

Now, consider the hemi-slant 3-plane σ2 = Dθ
2 ⊕{Y} with slant angle θ ∈ (0,π/2), where

Dθ
2 = span{X ,cosθJX−sinθJZ}. Again by the axiom of hemi-slant 3-spheres, there exists

a 3-dimensional totally umbilical submanifold N2 such that p ∈ N2 and TpN2 = σ2. Then,
with the help of (2.2) and (2.4) from (2.3), we have

(3.26) (R(X ,cosθJX− sinθJZ)Y )⊥ = 0

and

(3.27) (R(X ,Y )(cosθJX− sinθJZ))⊥ = 0.
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Since Z is normal to N2, from (3.26) and (3.27) we get

(3.28) R(X ,cosθJX− sinθJZ,Y,Z) = 0

and

(3.29) R(X ,Y,cosθJX− sinθJZ,Z) = 0.

From (3.24) and (3.28) we obtain

(3.30) R(X ,JX ,Y,Z) = 0.

On the other hand, from (3.25) and (3.29) we obtain

(3.31) R(X ,Y,JX ,Z) = 0.

Thus, our assertion follows from (3.30), (3.31) and Lemma 2.1.

Acknowledgement. The author is deeply indebted to the referee(s) for useful suggestions
and valuable comments.

References
[1] F. R. Al-Solamy, M. A. Khan and S. Uddin, Totally umbilical hemi-slant submanifolds of Kaehler manifolds,

Abstr. Appl. Anal. 2011, Art. ID 987157, 9 pp.
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