BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On Quasi Pseudo-GP-Injective Rings and Modules

¹Truong Cong Quynh and ²Nguyen Van Sanh

¹Department of Mathematics, Danang University, 459 Ton Duc Thang, DaNang City, Vietnam ²Department of Mathematics, Faculty of Science, Mahidol University, Center of Excellence in Mathematics, Bangkok 10400, Thailand ¹tcquynh@dce.udn.vn, ²nguyen.san@mahidol.ac.th

Abstract. In 2010, Sanh *et al.* introduced a class of pseudo-*M*-gp-injective modules, following this, a right *R*-module *N* is called pseudo-*M*-gp-injective if for any homomorphism $0 \neq \alpha \in End(M)$, there exists $n \in \mathbb{N}$ such that $\alpha^n \neq 0$ and every monomorphism from $\alpha^n(M)$ to *N* can be extended to a homomorphism from *M* to *N*. In this paper, we give more properties of pseudo-gp-injective modules.

2010 Mathematics Subject Classification: 16D40, 16D50, 16L60

Keywords and phrases: Pseudo-*M*-p-injective, quasi-pseudo-p-injective, pseudo-*M*-gp-injective, quasi-pseudo-gp-injective.

1. Introduction

Throughout the paper, *R* is an associative ring with identity $1 \neq 0$ and all modules are unitary *R*-modules. We write M_R (resp., $_RM$) to indicate that *M* is a right (resp., left) *R*-module. Let *J* (resp., Z_r , S_r) be the Jacobson radical (resp. the right singular ideal, the right socle) of *R* and $E(M_R)$ the injective hull of M_R . If *X* is a subset of *R*, the right (resp. left) annihilator of *X* in *R* is denoted by $r_R(X)$ (resp., $l_R(X)$) or simply r(X) (resp. l(X)). If *N* is a submodule of *M* (resp., proper submodule) we write $N \leq M$ (resp. N < M). Moreover, we write $N \leq^e M$, $N \ll^e M$, $N \leq^{\oplus} M$ and $N \leq^{max} M$ to indicate that *N* is an essential submodule, a small submodule, a direct summand and a maximal submodule of *M*, respectively. A module *M* is *finite dimensional* (or has *finite rank*) if E(M) is a finite direct sum of indecomposable submodules. A right *R*-module *N* is called *M*-generated if there exists an epimorphism $M^{(I)} \rightarrow N$ for some index set *I*. If the set *I* is finite, then *N* is called finitely *M*-generated. In particular, *N* is called *M*-cyclic if it is isomorphic to M/L for some submodule *L* of *M*. Hence, any *M*-cyclic submodule *X* of *M* can be considered as the image of an endomorphism of *M*.

Following Nicholson, Yousif (see [17]), a ring R is called right *P-injective* if every R-homomorphism from a principal right ideal of R to R is a left multiplication. They studied

Communicated by Jie Du.

Received: November 30, 2011; Revised: May 3, 2012.

some properties of these rings and their applications. In [18], Sanh *et al.* transferred this notion to modules. A right *R*-module *N* is called *M*-principally injective (briefly, *M*-p-injective) if every homomorphism from an *M*-cyclic submodule of *M* to *N* can be extended to one from *M* to *N*. A right *R*-module *M* is called *quasi-principally injective* (briefly, quasi p-injective) if *M* is *M*-principally injective. Quasi-p-injective modules were defined first by Wisbauer in [24] under the terminology of *semi-injective* modules, but there are no details. Following [15], a module *M* is called *principally quasi-injective* if every homomorphism from a cyclic submodule of *M* to *M* can be extended to an endomorphism of *M*. Since an *M*-cyclic submodule of *M* needs not to be cyclic, the notion of quasi-p-injective modules is different from that was defined in [15].

As a generalization of injective modules, the class of pseudo injective modules have been studied by Singh and Jain in 1967 [13], Teply in 1975 [21], Jain and Singh in 1975 [13], Wakamatsu in 1979 [23]. Recently, Hai Quang Dinh [8] introduced the notion of pseudo Minjective modules (the original terminology is M-pseudo-injective). A right R-module N is called *pseudo M-injective* if for every submodule A of M, any monomorphism $\alpha : A \to N$ can be extended to a homomorphism $M \rightarrow N$. A right *R*-module N is called *pseudo-injective* if N is pseudo-N-injective. In 2009, Sanh et al., introduced the notion of pseudo-M-p-injective modules and studied the endomorphism rings of quasi-pseudo-p-injective modules. A right *R*-module *N* is called *pseudo-M-p-injective* if every monomorphism from an *M*-cyclic submodule of M to N can be extended to a homomorphism from M to N, or equivalently, for any homomorphism $\alpha \in \text{End}(M)$, every monomorphism from $\alpha(M)$ to N can be extended to a homomorphism from M to N (see [2]). A module M is called quasi-pseudo-p-injective if M is pseudo-M-p-injective. A ring R is called right pseudo P-injective if R_R is quasipseudo-p-injective. Following [10], a right *R*-module *M* is said to be generalized princi*pally injective* (briefy gp-injective), if for any $0 \in x \in R$, there exists an $n \in \mathbb{N}$ such that $x^n \neq 0$ and any *R*-homomorphism from $x^n R$ into *M* can be extended to one from R_R to *M*. A ring R is called right GP-injective if R_R is GP-injective. The concept of GP-injective modules was introduced in [14] to study the class of von Neumann regular rings, V-rings, self-injective rings and their generalizations. In [4], Chen et al. studied some properties of GP-injective rings. In particular, they gave some characterizations of GP-injective ring with special chain conditions. In 2009, Sanh et al. introduced the notion of pseudo-Mgp-injective modules. A right *R*-module *N* is called for *pseudo-M-gp-injective* if for each homomorphism $0 \neq \alpha \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $\alpha^n \neq 0$ and every monomorphism from $\alpha^n(M)$ to N can be extended to a homomorphism from M to N [3]. A module M is called quasi-pseudo-gp-injective if M is pseudo-M-gp-injective. A ring R is called right pseudo GP-injective if R_R is quasi-pseudo-gp-injective. In this paper, we continue studying more properties of pseudo-p-injective modules, pseudo-gp-injective modules and the endomorphism rings of pseudo-p-injective modules.

2. On pseudo-M-gp-injective

Firstly, we give a new characterization of pseudo-M-gp-injective modules.

Theorem 2.1. Let M, N be right R-modules. Then following conditions are equivalent:

- (1) N is pseudo-M-gp-injective.
- (2) For each $0 \neq s \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

 $\{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s^n\} \subseteq \operatorname{Hom}(M,N)s^n.$

(3) For each
$$0 \neq s \in \text{End}(M)$$
, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s^n\} = \{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0\} s^n$$

Proof. (1) \Rightarrow (2). Suppose that $0 \neq s \in \text{End}(M)$. Since *N* is pseudo-*M*-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and every monomorphism from $s^n(M)$ to *N* can be extended to a homomorphism from *M* to *N*. Let $f \in \text{Hom}(M, N)$ such that Ker $f = \text{Ker } s^n$. We consider homomorphism

$$\varphi: s^n(M) \to N$$
 via $\varphi(s^n(m)) = f(m), \quad \forall m \in M.$

It is easy to see that φ is a monomorphism. By our assumption, there exists a homomorphism $h: M \to N$ such that $h\iota = \varphi$, where ι is the inclusion map from $s^n(M) \to M$, which implies that $f = hs^n \in \text{Hom}(M, N)s^n$.

 $(2) \Rightarrow (3)$. It is clear that

$${f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0} s^n \subseteq {f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s^n}.$$

Let $g \in \text{Hom}(M, N)$ such that Ker $g = \text{Ker } s^n$. Then by (2), there exists a homomorphism h: $M \to N$ such that $g = hs^n$. It follows that Ker $h \cap \text{Im } s^n = 0$. Hence, $g \in \{f \in \text{Hom}(M, N) | \text{Ker } f \cap \text{Im } s = 0\}s^n$.

(3)
$$\Rightarrow$$
 (1). For each $0 \neq s \in \text{End}(M)$, by (3), there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$${f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s^n} = {f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0} s^n$$

Assume that $\phi : s^n(M) \to N$ is a monomorphism. Then $\text{Ker}(\phi s^n) = \text{Ker } s^n$. Hence there is $h \in \text{Hom}(M,N)$ such that $\phi s^n = hs^n$. It gives $ht = \phi$, where t is the inclusion map, proving that N is pseudo-M-gp-injective.

From the above theorem, we get some characterizations of quasi-pseudo-gp-injective modules.

Corollary 2.1. Let M be right R-module and S = End(M). The following conditions are equivalent:

(1) *M* is quasi-pseudo-gp-injective;

(2) For each $0 \neq s \in S$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in S | \operatorname{Ker} f = \operatorname{Ker} s^n\} \subseteq Ss^n;$$

(3) For each $0 \neq s \in S$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$${f \in S | \operatorname{Ker} f = \operatorname{Ker} s^n} = {f \in S | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0} s^n.$$

Corollary 2.2. Let M, N be right R-modules. The following conditions are equivalent:

- (1) N is pseudo-M-p-injective;
- (2) For each $s \in \text{End}(M)$,

$${f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s} \subseteq \operatorname{Hom}(M,N)s;$$

(3) For each $s \in \text{End}(M)$,

$$\{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s\} = \{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f \cap \operatorname{Im} s = 0\}s.$$

Proposition 2.1. Let N be pseudo-M-p-injective. Then for any elements $s, \alpha \in \text{End}(M)$, we have:

$$\{\beta \in \operatorname{Hom}(M,N) | \operatorname{Ker} \beta \cap \operatorname{Im} s = \operatorname{Ker} \alpha \cap \operatorname{Im} s \}$$

$$= \{\gamma \in \operatorname{Hom}(M,N) | \operatorname{Ker} \gamma \cap \operatorname{Im}(\alpha s) = 0\} \alpha + \{\delta \in \operatorname{Hom}(M,N) | \delta s = 0\}$$

Proof. Let

$$\mathscr{A} = \{\beta \in \operatorname{Hom}(M, N) | \operatorname{Ker} \beta \cap \operatorname{Im} s = \operatorname{Ker} \alpha \cap \operatorname{Im} s \}$$
$$\mathscr{B} = \{\gamma \in \operatorname{Hom}(M, N) | \operatorname{Ker} \gamma \cap \operatorname{Im}(\alpha s) = 0 \}$$
$$\mathscr{C} = \{\delta \in \operatorname{Hom}(M, N) | \delta s = 0 \}$$

It is easy to see that $\mathscr{B}\alpha + \mathscr{C} \subseteq \mathscr{A}$. Conversely, let $\beta \in \text{Hom}(\mathcal{M}, N)$ such that Ker $\beta \cap$ Im $s = \text{Ker } \alpha \cap \text{Im } s \ (\beta \in \mathscr{A})$. It follows that Ker $(\alpha s) = \text{Ker}(\beta s)$. By Corollary 2.2, there exists $\gamma \in \mathscr{B}$ such that $\beta s = \gamma \alpha s$ or $(\beta - \gamma \alpha)s = 0$. It means $\beta - \gamma \alpha \in \mathscr{C}$, which implies that $\beta \in \mathscr{B}\alpha + \mathscr{C}$.

Proposition 2.2. If $M = M_1 \oplus M_2$ is quasi-pseudo-p-injective, then M_1 is M_2 -p-injective.

Proof. Let $M = M_1 \oplus M_2$ be quasi-pseudo-p-injective and $s \in \text{End}(M_2)$. Let $f : s(M_2) \to M_1$ be a homomorphism. Consider homomorphism $g : s(M_2) \to M$ defined by g(a) = f(a) + a for all $a \in s(M_2)$. Then g is a monomorphism. By [2, Proposition 1.3], M is pseudo- M_2 -p-injective, whence g extends to a homomorphism $\bar{g} : M_2 \to M$. Let $\pi : M \to M_1$ be the canonical projection. Then $\pi \bar{g} : M_2 \to M$ extends f. Thus M_1 is M_2 -p-injective, as required.

Corollary 2.3. For any integer $n \ge 2$, if M^n is quasi-pseudo-p-injective, then M is quasi-p-injective.

Proposition 2.3. Let M and N be modules and $X = M \oplus N$. The following conditions are equivalent:

- (1) N is pseudo-M-p-injective.
- (2) For each *M*-cyclic submodule *K* of *X* with $K \cap M = K \cap N = 0$, there exists $C \le X$ such that $K \le C$ and $N \oplus C = X$.

Proof. (1) \Rightarrow (2). Let *K* be a submodule of *X* which is *M*-cyclic with $K \cap M = K \cap N = 0$, and $\pi_M : M \oplus N \to M$ and $\pi_N : M \oplus N \to N$ be the canonical projections. We can check that $N \oplus K = N \oplus \pi_M(K)$ and hence $\pi_M(K) \simeq K$, proving that $\pi_M(K)$ is a *M*-cyclic submodule of *M*. Let $\varphi : \pi_M(K) \to \pi_N(K)$ be a homomorphism defined as follows: for $k = m + n \in K$ (with $m \in M, n \in N$), $\varphi(m) = n$. It is easy to see that φ is a monomorphism. Since *N* is pseudo *M*p-injective, there is a homomorphism $\overline{\varphi} : M \to N$ extending φ . Let $C = \{m + \overline{\varphi}(m) | m \in M\}$. Then $X = N \oplus C$ and $K \leq C$.

 $(2) \Rightarrow (1)$. Let $s \in End(M)$ and $\varphi : s(M) \to N$ be a monomorphism. Put $K = \{s(m) - \varphi(s(m)) | m \in M\}$. Then $K \cap M = 0$ and $N \oplus K = N \oplus \pi_M(K) = N \oplus s(M)$. It is easy to see that *K* is *M*-cyclic. By assumption, there exists a submodule *C* of *X* containing *K* with $N \oplus C = X$. Let $\pi : N \oplus C \to N$ be the natural projection. Then the restriction $\pi|_M$ extends φ , proving (1).

3. On quasi-pseudo-gp-injective rings and modules

From Corollary 2.2, we have some characterizations of quasi-pseudo-p-injective modules.

Theorem 3.1. *The following conditions are equivalent for module* M *with* S = End(M)*:*

- (1) *M* is quasi-pseudo-p-injective;
- (2) If Ker f = Ker g with $f, g \in S = \text{End}(M)$, then Sf = Sg;

324

(3) If $f \in S = \text{End}(M)$ and $\alpha, \beta : f(M) \to M$ is monomorphisms, then $\alpha = s\beta$ for some $s \in S$.

Proof. $(1) \Rightarrow (2)$. By Corollary 2.2.

(2) \Rightarrow (3). Assume that $0 \neq f \in S$ satisfies (2). Let $\alpha, \beta : f(M) \to M$ be monomorphisms. Then Ker(αf) = Ker(βf). By our assumption, there exists $s \in S$ such that $\alpha f = s\beta f$, which implies that $\alpha = s\beta$.

(3) \Rightarrow (1). Let $s \in S$ and $\varphi : s(M) \to M$ be a monomorphism. Let $\iota : s(M) \to M$ be the inclusion. By (3), there exists $\overline{\varphi} \in S$ such that $\varphi = \overline{\varphi}\iota$ showing that $\overline{\varphi}$ extends φ . Thus *M* is quasi-pseudo p-injective.

Corollary 3.1. *The following conditions are equivalent for ring R:*

- (1) *R* is right pseudo *P*-injective;
- (2) If r(x) = r(y) with $x, y \in R$, then Rx = Ry.

We have the following relations:

quasi-p-injective \Rightarrow quasi-pseudo-p-injective \Rightarrow quasi-pseudo-gp-injective.

Example 3.1.

- i) Let *F* be an algebraically closed field and *x*, *y* be indeterminates. Let R = F(y)[x] such that xf fx = df/dy, $f \in F(y)$ (see [20, Example]). Then the *R*-module M = R/(x(x+y)(x+y-1/y))R is quasi-pseudo-p-injective but not quasi-p-injective by [20, Example].
- ii) Let $K = F(y_1, y_2, ...)$ and $L = F(y_2, y_3, ...)$ with *F* a field, and $\rho : K \to L$ be an isomorphism via $\rho(y_i) = y_{i+1}$ and $\rho(c) = c$ for all $c \in F$ (see [6, Exmaple 1]. Let $K[x_1, x_2; \rho]$ be the ring of twisted left polynomials over *K* where $x_i k = \rho(k) x_i$ for all $k \in K$ and for i = 1, 2. Set $R = K[x_1, x_2; \rho]/(x_1^2, x_2^2)$. Then R_R is quasi-pseudo-gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator modules and their endomorphism rings.

Theorem 3.2. Let *M* be a right *R*-module with S = End(M). Then

- (1) If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.
- (2) If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo GPinjective ring.

Proof. (1). Let $f \in S$. Since S is right pseudo GP-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $r_S(f^n) = r_S(g)$ for some $g \in S$, then $g \in Sf^n$ by Corollary 2.1. Assume that Ker $f^n = \text{Ker } g$ with $g \in S$. Then $r_S(f^n) = r_S(g)$ and hence $g \in Sf^n$. Thus M is quasipseudo-gp-injective by Corollary 2.1.

(2). Let $0 \neq f \in S$. Since *M* is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $\text{Ker}(f^n) = \text{Ker}(g)$ with $g \in S$, then $g \in Sf^n$. Let $g \in S$ with $r_S(f^n) = r_S(g)$. Since *M* is a self-generator, we get Ker $f^n = \text{Ker } g$. By our assumption, $g \in Sf^n$ and so *S* is right pseudo GP-injective.

Corollary 3.2. Let *M* be a right *R*-module with S = End(M). Then

- (1) If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.
- (2) If M is a quasi-pseudo-p-injective module which is a self-generator, then S is a right pseudo P-injective ring.

For a right *R*-module M, S = End(M) we denote:

 $W(S) = \{s \in S | \operatorname{Ker}(s) \text{ is essential in } M\}.$

Lemma 3.1. Let M_R be a quasi-pseudo-gp-injective module which is a self-generator, S = End(M). If $a \notin W(S)$, then Ker(a) < Ker(a - ata) for some $t \in S$.

Proof. If $a \notin W(S)$, then Ker(*a*) is not an essential submodule of *M*. Hence there exists $0 \neq m \in M$ such that $mR \cap \text{Ker}(a) = 0$. Since *M* is a self-generator, there exists $\lambda \in S$ such that $0 \neq \lambda(M) \leq mR$. Hence Ker(*a*) $\cap \lambda(M) = 0$. It follows that $a\lambda \neq 0$. Since *M* is quasipseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $(a\lambda)^n \neq 0$ and if Ker $(a\lambda)^n = \text{Ker } g$ with $g \in S = \text{End}(M)$, then $g \in S(a\lambda)^n$. From Ker $(a) \cap \lambda(M) = 0$ we also have Ker $((a\lambda)^n) = \text{Ker}(\lambda(a\lambda)^{n-1})$. Hence $\lambda(a\lambda)^{n-1} \in S(a\lambda)^n$. Therefore $\lambda(a\lambda)^{n-1} = s(a\lambda)^n$ for some $s \in S$, which implies that $\text{Im}(\lambda(a\lambda)^{n-1}) \leq \text{Ker}(a - asa)$. It follows that Ker(a) < Ker(a - asa), since $\text{Im}(\lambda(a\lambda)^{n-1}) \nleq \text{Ker}(a)$ and $(a\lambda)^n \neq 0$.

Lemma 3.2. Assume that M is quasi-pseudo-gp-injective module which is a self-generator. Then J(S) = W(S).

Proof. Let $a \in J(S)$. If $a \notin W(S)$, then by the proof of Lemma 3.1, there exist a positive integer n and λ , $t \in S$ such that $(a\lambda)^n \neq 0$ and $(1 - at)(a\lambda)^n = 0$. Note that 1 - at is left invertible, so $(a\lambda)^n = 0$, a contradiction. Conversely, let $a \in W(S)$. Then, for each $t \in S$, $ta \in W(S)$ and hence $1 - ta \neq 0$. Since M is a quasi-pseudo-p-injective module, there exists $n \in \mathbb{N}$ such that $(1 - ta)^n \neq 0$ and if $\operatorname{Ker}(1 - ta)^n = \operatorname{Ker} g$ for some $g \in S = \operatorname{End}(M)$, then $g \in S(1 - ta)^n$. Put $u = (1 - ta)^n$, 1 - u = v for some $v \in W(S)$. Since $\operatorname{Ker}(v) \cap \operatorname{Ker}(1 - v) = 0$, we have $\operatorname{Ker}(1 - v) = 0$. Then $\operatorname{Ker}(u) = \operatorname{Ker}(1_S)$. It follows that Su = S and hence $(1 - ta)^n$ is left invertible, proving our lemma.

Corollary 3.3. If R is right pseudo GP-injective, then $J(R) = Z(R_R)$.

Recall that a module *M* is said to satisfy the *generalized C2-condition* (or GC2) (see [25]) if for any $N \simeq M$ with $N \leq M$, *N* is a direct summand of *M*.

Theorem 3.3. If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let S = End(M). Assume that Ker s = 0 with $s \in S$. We need to prove that S = Ss. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and Ker $s^n = \text{Ker } g$ with $g \in S$, which would imply that $g \in Ss^n$. Note that Ker $s = 0 = \text{Ker } 1_S$. It follows that $1_S \in Ss^n \leq Ss$, whence S = Ss. Thus M is GC2 by [25, Theorem 3].

Corollary 3.4. If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.1. Let M be a quasi-pseudo-p-injective module which is a self-generator and S = End(M). If every complement submodule of M is M-cycilc, then S/J(S) is von Neumann regular.

Proof. We have J(S) = W(S) by Lemma 3.2. For all $\lambda \in S$, let *L* be a complement of Ker λ . We consider the map $\phi : \lambda(L) \to M$ defined by $\phi(\lambda(x)) = x$ for all $x \in L$. Then ϕ is a monomorphism and $\lambda(L) \simeq L$ which implies $\lambda(L)$ is a *M*-cyclic submodule of *M*. Since *M* is quasi-pseudo-p-injective, there exists $\theta \in S$, which is an extension of ϕ . Then Ker $\lambda + L \leq \text{Ker}(\lambda \theta \lambda - \lambda)$, and we see that Ker $\lambda \oplus L \leq^e M$. Consequently $\lambda \theta \lambda - \lambda \in W(S) = J(S)$.

Theorem 3.4. Let *M* be a quasi-pseudo-gp-injective module which is a self-generator and S = End(M). Then the following conditions are equivalent:

- (1) S is right perfect;
- (2) For any infinite sequence $s_1, s_2, \dots \in S$, the chain

$$\operatorname{Ker}(s_1) \leq \operatorname{Ker}(s_2s_1) \leq \cdots$$

is stationary.

Proof. (1) \Rightarrow (2). Let $s_i \in S$, i = 1, 2, ... Since *S* is right perfect, *S* satisfies DCC on finitely generated left ideals. So the chain $Ss_1 \ge Ss_2s_1 \ge ...$ terminates. Thus there exists n > 0 such that $Ss_ns_{n-1}...s_1 = Ss_ks_{k-1}...s_1$ for all k > n. It follows that $Ker(s_ns_{n-1}...s_1) = Ker(s_ks_{k-1}...s_1)$ for all k > n.

 $(2) \Rightarrow (1)$. We first prove that S/W(S) is a von Neumann regular ring. Let $a_1 \notin W(S)$. Then by Lemma 3.1, there is $c_1 \in S$ such that $\text{Ker}(a_1) < \text{Ker}(a_1 - a_1c_1a_1)$. Put $a_2 = a_1 - a_1c_1a_1$. If $a_2 \in W(S)$, then we have $\bar{a}_1 = \bar{a}_1\bar{c}_1\bar{a}_1$, i.e., \bar{a}_1 is a regular element of S/W(S). If $a_2 \notin W(S)$, there exists $a_3 \in S$ such that $\text{Ker}(a_2) < \text{Ker}(a_3)$ with $a_3 = a_2 - a_2c_2a_2$ for some $c_2 \in S$ by the preceding proof. Repeating the above-mentioned process, we get a strictly ascending chain

$$\operatorname{Ker}(a_1) < \operatorname{Ker}(a_2) < \dots$$

where $a_{i+1} = a_i - a_i c_i a_i$ for some $c_i \in S$, i = 1, 2... Let

 $b_1 = a_1, \quad b_2 = 1 - a_1c_1, \quad \dots, \quad b_{i+1} = 1 - a_ic_i, \quad \dots,$

then

$$a_1 = b_1, \quad a_2 = b_2 b_1, \quad \dots, \quad a_{i+1} = b_{i+1} b_i \dots b_2 b_1, \quad \dots$$

and we have the following strictly ascending chain

$$\operatorname{Ker}(b_1) < \operatorname{Ker}(b_2b_1) < \dots,$$

which contradicts the hypothesis. Hence there exists a positive integer *m* such that $a_{m+1} \in W(S)$, i.e., $a_m - a_m c_m a_m \in W(S)$. This shows that \bar{a}_m is a regular element of S/W(S), and hence $\bar{a}_{m-1}, \bar{a}_{m-2}, ..., \bar{a}_1$ are regular elements of S/W(S), i.e., S/W(S) is von Neumann regular. We have J(S) = W(S) by Lemma 3.2, proving that S/J(S) is von Neumann regular. Thus *S* is right perfect by [7, Lemma 1.9].

Lemma 3.3. Let M be a right R-module and S = End(M). Then

- (1) $l_S(A(M)) = l_S(A)$ for all $A \subseteq S$ with $A(M) = \sum_{s \in A} s(M)$.
- (2) $l_S(r_M(l_S(A))) = l_S(A)$ for all $A \subseteq S$.

Proof. (1). Let $a \in l_S(A)$, $a \cdot A = 0$. Therefore $a \cdot s = 0$ or a(s(M)) = 0 for all $s \in A$. This implies that $a \in l_S(A(M))$. Hence $l_S(A) \leq l_S(A(M))$. Conversely, for every $a \in l_S(A(M))$, we have $a \cdot s(M) = 0$ for all $s \in A$. This implies that $a \in l_S(A)$.

(2). It is clear that $l_S(r_M(l_S(A))) \ge l_S(A)$. Conversely, for all $s \in l_S(A)$, $s \cdot A(M) = 0$. This implies that $A(M) \le r_M(l_S(A))$. Thus

$$l_S(A(M)) \ge l_S(r_M(l_S(A))).$$

By (1) we get the result.

327

Let $\emptyset \neq A \subset S = \text{End}(M)$. Put

$$\operatorname{Ker} A = \bigcap_{f \in A} \operatorname{Ker} f = \{ m \in M | f(m) = 0 \,\forall f \in A \}.$$

If $X \leq M$ and X = Ker A for some $\emptyset \neq A \subset S$, X is called an M-annihilator.

Proposition 3.2. Let M_R be a quasi-pseudo-gp-injective, self-generator module and $S = End(M_R)$. If M_R satisfies ACC on M-annihilators, then S is semiprimary.

Proof. Now we will claim that *S* satisfies ACC on right annihilators or DCC on left annihilators. Indeed, we consider the descending chain

$$l_S(A_1) \ge l_S(A_2) \ge \dots$$
 where $A_i \subseteq S$,

then

$$r_M(l_S(A_1)) \le r_M(l_S(A_2)) \le \dots$$

By our assumption, there exists $n \in \mathbb{N}$ such that $r_M(l_S(A_n)) = r_M(l_S(A_k))$ for all k > n, and so $l_Sr_M(l_S(A_n)) = l_Sr_M(l_S(A_k))$. By Lemma 3.3, $l_S(A_n) = l_S(A_k)$ for all k > n. This shows that *S* satisfies DCC on left annihilators or ACC on right annihilators. Therefore J(S) is nilpotent by [16, Lemma 3.29] and Lemma 3.2. It follows that *S* is semiprimary by Theorem 3.4.

Corollary 3.5. If R is right pseudo GP-injective and satisfies ACC on right annihilators, then R is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.5. Let M_R be a quasi-pseudo-p-injective module and $S = End(M_R)$. If M satisfies ACC on M-annihilators, then S is semiprimary.

Proof. Consider the chain $Sf_1 \ge Sf_2 \ge \cdots$ of cyclic left ideals of S. Then we have Ker $f_1 \le$ Ker $f_2 \le \cdots$. By hypothesis, there exists $n \in \mathbb{N}$ such that Ker $f_n = \text{Ker } f_{n+k}, \forall k \in \mathbb{N}$. It follows that $Sf_n = Sf_{n+k} \forall k \in \mathbb{N}$. Thus R is right perfect.

Consider the ascending chain $r_M(J(S)) \le r_M(J(S)^2) \le \cdots$. By assumption, there is $n \in \mathbb{N}$ such that $r_M(J(S)^n) = r_M(J(S)^{n+k})$ for all $k \in \mathbb{N}$. Let $B = J(S)^n$. Then we get $r_M(B) = r_M(B^2)$. Assume J(S) is not nilpotent. Then $B^2 \ne 0$ and the non-empty set

{Ker
$$g \mid g \in B$$
 and $Bg \neq 0$ }

has a maximal element Ker g_0 , $g_0 \in B$. The relation $BBg_0 = 0$ would imply that Im $g_0 \leq r_M(B^2) = r_M(B)$ and hence $Bg_0 = 0$, contradicting to the choice of g_0 . Therefore we can find an $h \in B$ with $Bhg_0 \neq 0$. However, since Ker $g_0 \leq \text{Ker}(hg_0)$, the maximality of Ker g_0 implies that Ker $g_0 = \text{Ker } hg_0$. Since M is quasi-pseudo-p-injective, this implies that $Sg_0 = Shg_0$, i.e. $g_0 = shg_0$ for some $s \in S$ or $g_0(1 - sh) = 0$. Since $sh \in B \leq J(S)$, this gives $g_0 = 0$, a contradiction. Thus J(S) must be nilpotent.

Following [16], a ring R is called *directly finite* if ab = 1 in R implies that ba = 1.

Proposition 3.3. A right pseudo P-injective ring R is directly finite if and only if all monomorphisms $R_R \rightarrow R_R$ are isomorphisms.

Proof. Assume that $\varphi : R_R \to R_R$ is a monomorphism. Let $a = \varphi(1)$. Then r(a) = 0 = r(1) and so Ra = R by Corollary 2.1. Hence ba = 1 for some $b \in R$, so ab = 1 by hypothesis, and so φ is onto. Conversely, let ab = 1 in R. Therefore the homomorphism $\alpha : R \to R$, $\alpha(r) = br$, $\forall r \in R$ is monomorphism. By hypothesis α is an epimorphism. There exists $c \in R$ such that $1 = \alpha(c) = bc$. It follows that a = c and ba = 1.

328

The series of higher left socles $\{S_{\alpha}^{l}\}$ of the ring *R* are defined inductively as follows: $S_{1}^{l} = \text{Soc}(_{R}R)$, and $S_{\alpha+1}^{l}/S_{\alpha}^{l} = \text{Soc}(_{R}R_{\alpha})$ for each ordinal $\alpha \ge 1$.

Motivated by [5, Lemma 9 (ii)], we have the following proposition.

Proposition 3.4. If R is a right pseudo GP-injective ring and satisfies ACC on essential left ideals, then

- (1) $r(J) \leq^{e} R_{R}$,
- (2) J is nilpotent,
- $(3) \ J = lr(J).$

Proof. (1) Since *R* has ACC on essential left ideals, R/S_l is a left Noetherian ring. Then, there exists k > 0 such that $S_k^l = S_{k+1}^l = \cdots$ and R/S_k^l is a right Noetherian ring. Now we will claim that $S_k^l \leq^e R_R$. In fact, assume that $xR \cap S_k^l = 0$ for some $0 \neq x \in R$. Let $\bar{R} = R/S_k^l$ and $l_{\bar{R}}(\bar{a})$ be maximal in the set $\{l_{\bar{R}}(\bar{y})| 0 \neq y \in xR\}$. Since $S_k^l = S_{k+1}^l$, we get $Soc_{(\bar{R}}\bar{R}) = 0$, and so $\bar{R}\bar{a}$ is not simple as left \bar{R} -module. Thus there exists $t \in R$ such that $0 \neq \bar{R}\bar{t}\bar{a} < \bar{R}\bar{a}$.

If $\bar{at}\bar{a} = \bar{0}$, then $ata \in aR \cap S_k^l = 0$, and so ata = 0. From this fact and pseudo GPinjectivity of R, we see that if r(ta) = r(b), $b \in R$ then Rta = Rb by Corollary 2.1. If r(a) = r(ta), then Ra = Rta, a contradiction. Thus r(a) < r(ta). Then there exists $b \in R$ such that $ab \neq 0$ and tab = 0. That means $0 \neq ab \in xR$ and $l_{\bar{R}}(\bar{a}) < l_{\bar{R}}(\bar{ab})$. This contradicts to the maximality of $l_{\bar{R}}(\bar{a_0})$.

If $\bar{a}t\bar{a} \neq \bar{0}$, then $0 \neq \bar{R}a\bar{t}a < \bar{R}a$. Since *R* is right pseudo GP-injective, there exists $m \in \mathbb{N}$ such that $(ata)^m \neq 0$ and if $r((ata)^m) = r(b)$, $b \in R$ then $b \in R(ata)^m$. It follows that $r(a) < r((ata)^m)$. Let $c \in r((ata)^m) \setminus r(a)$. Then $0 \neq ac \in xR$, $(\bar{a}t\bar{a})^{m-1}\bar{a}t \in l_{\bar{R}}(\bar{a}c) \setminus l_{\bar{R}}(\bar{a})$, a contradiction.

- Thus $S_k^l \leq e R_R$ and hence $r(J) \leq e R_R$ (since $S_k^l \leq r(J)$).
- (2). By [5, Lemma 9 (ii)].

(3). Since
$$r(J) \leq^{e} R_{R}$$
, $lr(J) \leq Z_{r} = J$.

A module M_R is called *extending (or CS)* if every submodule of M is essential in a direct summand of M. A ring R is called right CS if R_R is CS (see [9]). Following [12], a module M is called *NCS* if there are no nonzero complement submodules which is small in M. A ring R is *right NCS* if R_R is NCS. Clearly every CS module is NCS, but the converse is not true, as we can see that the \mathbb{Z} -module $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ is NCS but not CS. On the other hand, let Kbe a division ring and V be a left K-vector space of infinite dimension. Let $S = End_K(V)$. Take $R = \begin{pmatrix} S \\ S \\ S \end{pmatrix}$, then R is right NCS but not right CS.

Proposition 3.5. If *R* is a left Noetherian, right pseudo *P*-injective and right NCS ring, then *R* is left Artinian.

Proof. First, we prove that $\overline{R} = R/J$ is a regular ring. Assume that $a \notin J$. Since $J = lr(J) = Z_r$, there exists a nonzero complement right ideal I of R such that $r(a) \cap I = 0$ by Lemma 3.4. We claim that there exists $b \in I$ such that $ab \notin J$. Suppose on the contrarily that $aI \leq J$. Then aIr(J) = 0. Since $r(a) \cap I = 0, Ir(J) \leq I \cap r(a) = 0$. Thus $I \leq lr(J) = J$. It follows that I is small in R_R , a contradiction. Hence we have $b \in I$ such that $r(a) \cap bR = 0$ and $ab \notin J$. It follows that r(b) = r(ab). Hence Rb = Rab and so b = cab for some $c \in R$. This implies that $\overline{b} \in r_{\overline{R}}(\overline{a} - \overline{a}\overline{c}\overline{a})$, where $\overline{r} = r + J \in R/J$ for any $r \in R$. Since $\overline{ab} \neq \overline{0}$, we see that $r_{\overline{R}}(\overline{a}) < r_{\overline{R}}(\overline{a} - \overline{a}\overline{c}\overline{a})$. If $a - aca \in J$, then a is a regular element of R. If $a - aca \notin J$, let $a_1 = a - aca$. Then $r(a_1)$ is not essential in R_R . By the same way, we get $a_2 = a_1 - a_1c_1a_1$ for some $c_1 \in R$ and $r_{\overline{R}}(\overline{a}_1) < r_{\overline{R}}(\overline{a}_2)$. If $a_2 \in J$, then a_1 is a regular element of R. It follows

that *a* is a regular element of *R*. If $a_2 \notin J$, we have $a_3 = a_2 - a_2c_2a_2$ for some $c_2 \in R$ and $r_{\bar{R}}(\bar{a}_2) < r_{\bar{R}}(\bar{a}_3)$. Continuing this process, we get $a_k \in R$, k = 1, 2, ... Since *R* is left noetherian and $Jac(\bar{R}) = 0$, \bar{R} is a semiprime and left Goldie ring. By [11, Lemma 5.8], \bar{R} satisfies ACC on right annihilators. Hence there exists some positive integer *m* such that $a_m \in J$, and thus *a* is also a regular element of *R*. Since \bar{a} is an arbitrary nonzero element of \bar{R} , we see that \bar{R} is a regular ring. Then \bar{R} is semisimple because *R* is left noetherian. Moreover, by Lemma 3.4, *J* is nilpotent and so *R* is semiprimary. Thus *R* is left Artinian.

4. On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective modules.

Let $S = \text{End}_R(M)$ be the endomorphism ring of a right *R*-module *M*. Following [19], an element $u \in S$ is called a *right uniform element* of *S* if $u \neq 0$ and u(M) is a uniform submodule of *M*. An element $u \in R$ is called right uniform if uR is a uniform right ideal (see [16]). In this section, we generalize some results of Sanh and Shum for quasi-p-injective modules; Nicholson and Yousif for p-injective rings to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1. Let M be a quasi-pseudo-gp-injective module and S = End(M). Then for any right uniform element u of S, the set

$$A_u = \{s \in S | \text{Ker } s \cap \text{Im } u \neq 0\}$$

is the unique maximal left ideal of *S* containing $l_S(\text{Im } u)$.

Proof. Clearly, A_u is a left ideal of *S*. It is easy to see that $l_S(\operatorname{Im} u) \leq A_u$ and $A_u \neq S$ (because $1 \notin A_u$). We now claim that A_u is maximal. In fact, for any $s \in S \setminus A_u$, we have $\operatorname{Im} u \cap \operatorname{Ker} s = 0$, whence $su \neq 0$. There exists $m \in \mathbb{N}$ such that $(su)^m \neq 0$ and if $\operatorname{Ker}(su)^m = \operatorname{Ker}(g), g \in S$ then $g \in S(su)^m$. Since $\operatorname{Ker}((su)^m) = \operatorname{Ker} u$, we get $S(su)^m = Su$. Then there exists $t \in S$ such that $(1 - t(su)^{m-1}s)u = 0$. It follows from $S = l_S(u) + Ss$, that A_u is maximal in *S*. It remains to show that A_u is unique. In fact, assume that there is another maximal left ideal *L* of *S* containing $l_S(\operatorname{Im} u)$ and $L \neq A_u$. Repeating above process we also have S = L, a contradiction.

Corollary 4.1. [19, Lemma 1] Let M be a quasi-p-injective module and S = End(M). Then for any right uniform element u of S, the set

$$A_u = \{ s \in S | \text{Ker } s \cap \text{Im } u \neq 0 \}$$

is the unique maximal left ideal of S containing $l_S(\text{Im } u)$.

Corollary 4.2. Let R be right pseudo GP-injective. If $u \in R$ is a right uniform element, define

 $M_u = \{ x \in R | r(x) \cap uR \neq 0 \}.$

Then M_u is the unique maximal left ideal which contains l(u).

The following lemma is a generalization of [19, Lemma 3].

Lemma 4.2. Let M be a quasi-pseudo-p-injective module, $S = \text{End}(M_R)$ and $W = \bigoplus_{i=1}^n u_i(M)$ a direct sum of uniform submodule $u_i(M)$ of M. If $A \leq S$ is a maximal left ideal which is not of the form A_u for some right uniform element u of S, then there is $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap W$ is essential in W. *Proof.* Since $A \neq A_{u_1}$, we can take $k \in A \setminus A_{u_1}$. Then Im $u_1 \cap \text{Ker } k = 0$, whence $ku_1 \neq 0$. There exists $m \in \mathbb{N}$ such that $(ku_1)^m \neq 0$ and if $\text{Ker}(ku_1)^m = \text{Ker}(g)$, $g \in S$ then $g \in S(ku_1)^m$. It is easy to see that $\text{Ker}(ku_1)^m = \text{Ker}(u_1)$ and hence $S(ku_1)^m = Su_1$. Consequently we have $u_1 = \alpha_1(ku_1)^m$ for some $\alpha_1 \in S$. Let $\varphi_1 = \alpha_1(ku_1)^{m-1}k \in SA \subset A$. Then $(1 - \varphi_1)u_1 = 0$. This shows that $\text{Ker}(1 - \varphi_1) \cap u_1(M) = u_1(M) \neq 0$. If $\text{Ker}(1 - \varphi_1) \cap u_i(M) \neq 0$ for all $i \geq 2$, then we are done and in this case $\bigoplus_{i=1}^n (\text{Ker}(1 - \varphi_1) \cap u_i(M)) \leq^e W$. Without loss of generality, we now assume that $\text{Ker}(1 - \varphi_1) \cap u_2(M) = 0$. It follows that $(1 - \varphi_1)(u_2(M)) \simeq u_2(M)$ is uniform. Since $A \neq A_{(1 - \varphi_1)u_2}$, we can take any $h \in A \setminus A_{(1 - \varphi_1)u_2}$. By using the above argument, there exists $\alpha_2 \in S$ such that $(1 - \varphi_1)u_2 = \alpha_2h(1 - \varphi_1)u_2$. It follows that

$$(1-(\alpha_2h+\varphi_1-\alpha_2h\varphi_1))u_2=0.$$

Let $\varphi_2 = \alpha_2 h + \varphi_1 - \alpha_2 h \varphi_1$. Then $(1 - \varphi_2)u_i = 0$ for i = 1, 2. Continuing this way, we eventually obtain a $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap u_i(M) \neq 0$ for all i = 1, ..., n. In other words, we have shown that $\text{Ker}(1 - \psi) \cap W$ is essential in W as required.

The following theorem describes the properties of the endomorphism ring $S = \text{End}(M_R)$ of a quasi pseudo p-injective module M_R .

Theorem 4.1. Let M be a quasi-pseudo-gp-injective, self-generator module with finite Goldie dimension and $S = \text{End}(M_R)$.

(1) If $I \subset S$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in S$. (2) S is semilocal.

Proof. Since *M* is a self-generator which has finite Goldie dimension, there exist elements $u_1, u_2, ..., u_n$ of *S* such that $W = u_1(M) \oplus u_2(M) \oplus \cdots \oplus u_n(M)$ is essential in *M*, where each $u_i(M)$ is uniform. Moreover, *M* is a quasi-p-injective module, we have $J(S) = W(S) = \{s \in S | \text{Ker}(s) \text{ is essential in } M\}$ by Lemma 3.2.

(1). Suppose on the contrary that *I* is not of the form A_u for some right uniform element of $u \in S$. Then by Lemma 4.2, there exists a $\varphi \in I$ such that $\text{Ker}(1 - \varphi) \cap W$ is essential in *W*. It follows that $1 - \varphi \in J(S) \subset I$, a contradiction. Hence $I = A_u$ for some right uniform element $u \in S$.

(2). If $\varphi \in A_{u_1} \cap A_{u_2} \cap \cdots \cap A_{u_n}$, then $\text{Ker}(\varphi) \cap u_i(M) \neq 0$ for each *i*. Hence $\text{Ker}(\varphi)$ is essential in *M*. Therefore $\varphi \in J(S)$, i.e., $A_{u_1} \cap \cdots \cap A_{u_n} = J(S)$. This shows that S/J(S) is semisimple.

As a consequence, we immediately get the following result for the right pseudo GPinjective rings.

Corollary 4.3. Let R be a right pseudo GP-injective ring which has right finite Goldie dimension. Then

- (1) If $I \subset R$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in R$.
- (2) R is semilocal.

Acknowledgement. The author Nguyen Van Sanh is grateful to the Center of Excellence in Mathematics, The Commission on Higher Education, Thailand, Grant No. RG-1-53-13-1. The authors would like to thank the referees for giving useful suggestions for the improvement of this paper. T. C. Quynh and N. V. Sanh

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1974.
- [2] S. Baupradist, H. D. Hai and N. V. Sanh, On pseudo-p-injectivity, Southeast Asian Bull. Math. 35 (2011), no. 1, 21–27.
- [3] S. Baupradist, H. D. Hai and N. V. Sanh, A general form of pseudo-p-injectivity, *Southeast Asian Bull. Math.* 35 (2011), no. 6, 927–933.
- [4] J. Chen and N. Ding, On general principally injective rings, Comm. Algebra 27 (1999), no. 5, 2097–2116.
- [5] J. Chen, L. Shen and Y. Zhou, Characterizations of QF rings, Comm. Algebra 35 (2007), no. 1, 281–288.
- [6] J. Chen, Y. Zhou and Z. Zhu, GP-injective rings need not be P-injective, Comm. Algebra 33 (2005), no. 7, 2395–2402.
- [7] N. Ding, M. F. Yousif and Y. Zhou, Modules with annihilator conditions, *Comm. Algebra* 30 (2002), no. 5, 2309–2320.
- [8] H. Q. Dinh, A note on pseudo-injective modules, Comm. Algebra 33 (2005), no. 2, 361–369.
- [9] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending Modules*, Pitman 1996.
- [10] N. K. Kim, S. B. Nam and J. Y. Kim, On simple singular GP-injective modules, *Comm. Algebra* 27 (1999), no. 5, 2087–2096.
- [11] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge Univ. Press, Cambridge, 1989.
- [12] D. V. Huynh, Rings in which no nonzero complement is small, Preprint.
- [13] S. K. Jain and S. Singh, Quasi-injective and pseudo-injective modules, *Canad. Math. Bull.* 18 (1975), no. 3, 359–366.
- [14] R. Y. C. Ming, On regular rings and Artinian rings. II, Riv. Mat. Univ. Parma (4) 11 (1985), 101-109.
- [15] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, *Comm. Algebra* 27 (1999), no. 4, 1683–1693.
- [16] W. K. Nicholson and M. F. Yousif, *Quasi-Frobenius Rings*, Cambridge Tracts in Mathematics, 158, Cambridge Univ. Press, Cambridge, 2003.
- [17] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra 174 (1995), no. 1, 77–93.
- [18] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, *Algebra Collog.* 6 (1999), no. 3, 269–276.
- [19] N. V. Sanh and K. P. Shum, Endomorphism rings of quasi-principally injective modules, *Comm. Algebra* 29 (2001), no. 4, 1437–1443.
- [20] S. Singh and S. K. Jain, On pseudo injective modules and self pseudo injective rings, J. Math. Sci. 2 (1967), 23–31.
- [21] M. L. Teply, Pseudo-injective modules which are not quasi-injective, Proc. Amer. Math. Soc. 49 (1975), 305–310.
- [22] L. V. Thuyet and T. C. Quynh, Some Results on a Gp-Injective Ring, a Noetherian Ring and a Qf-Ring, Submitted.
- [23] T. Wakamatsu, Pseudo-projectives and pseudo-injectives in abelian categories, Math. Rep. Toyama Univ. 2 (1979), 133–142.
- [24] R. Wisbauer, Foundations of Module and Ring Theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach, Philadelphia, PA, 1991.
- [25] Z. Zhu and J. Yu, On GC₂ modules and their endomorphism rings, *Linear Multilinear Algebra* 56 (2008), no. 5, 511–515.