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1. Introduction

Throughout the paper, R is an associative ring with identity 1 6= 0 and all modules are unitary
R-modules. We write MR (resp., RM) to indicate that M is a right (resp., left) R-module. Let
J (resp., Zr, Sr) be the Jacobson radical (resp. the right singular ideal, the right socle) of R
and E(MR) the injective hull of MR. If X is a subset of R, the right (resp. left) annihilator of
X in R is denoted by rR(X) (resp., lR(X)) or simply r(X) (resp. l(X)). If N is a submodule
of M (resp., proper submodule) we write N ≤ M (resp. N < M). Moreover, we write
N ≤e M, N � M, N ≤⊕ M and N ≤max M to indicate that N is an essential submodule,
a small submodule, a direct summand and a maximal submodule of M, respectively. A
module M is called uniform if M 6= 0 and every non-zero submodule of M is essential in
M. A module M is finite dimensional (or has finite rank) if E(M) is a finite direct sum
of indecomposable submodules. A right R-module N is called M-generated if there exists
an epimorphism M(I) → N for some index set I. If the set I is finite, then N is called
finitely M-generated. In particular, N is called M-cyclic if it is isomorphic to M/L for some
submodule L of M. Hence, any M-cyclic submodule X of M can be considered as the image
of an endomorphism of M.

Following Nicholson, Yousif (see [17]), a ring R is called right P-injective if every R-
homomorphism from a principal right ideal of R to R is a left multiplication. They studied
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some properties of these rings and their applications. In [18], Sanh et al. transferred this
notion to modules. A right R-module N is called M-principally injective (briefly, M-p-
injective) if every homomorphism from an M-cyclic submodule of M to N can be extended
to one from M to N. A right R-module M is called quasi-principally injective (briefly, quasi
p-injective) if M is M-principally injective. Quasi-p-injective modules were defined first by
Wisbauer in [24] under the terminology of semi-injective modules, but there are no details.
Following [15], a module M is called principally quasi-injective if every homomorphism
from a cyclic submodule of M to M can be extended to an endomorphism of M. Since an
M-cyclic submodule of M needs not to be cyclic, the notion of quasi-p-injective modules is
different from that was defined in [15].

As a generalization of injective modules, the class of pseudo injective modules have been
studied by Singh and Jain in 1967 [13], Teply in 1975 [21], Jain and Singh in 1975 [13],
Wakamatsu in 1979 [23]. Recently, Hai Quang Dinh [8] introduced the notion of pseudo M-
injective modules (the original terminology is M-pseudo-injective). A right R-module N is
called pseudo M-injective if for every submodule A of M, any monomorphism α : A→N can
be extended to a homomorphism M→ N. A right R-module N is called pseudo-injective if
N is pseudo-N-injective. In 2009, Sanh et al., introduced the notion of pseudo-M-p-injective
modules and studied the endomorphism rings of quasi-pseudo-p-injective modules. A right
R-module N is called pseudo-M-p-injective if every monomorphism from an M-cyclic sub-
module of M to N can be extended to a homomorphism from M to N, or equivalently, for
any homomorphism α ∈ End(M), every monomorphism from α(M) to N can be extended
to a homomorphism from M to N (see [2]). A module M is called quasi-pseudo-p-injective
if M is pseudo-M-p-injective. A ring R is called right pseudo P-injective if RR is quasi-
pseudo-p-injective. Following [10], a right R-module M is said to be generalized princi-
pally injective (briefy gp-injective), if for any 0 ∈ x ∈ R, there exists an n ∈ N such that
xn 6= 0 and any R-homomorphism from xnR into M can be extended to one from RR to M.
A ring R is called right GP-injective if RR is GP-injective. The concept of GP-injective
modules was introduced in [14] to study the class of von Neumann regular rings, V-rings,
self-injective rings and their generalizations. In [4], Chen et al. studied some properties
of GP-injective rings. In particular, they gave some characterizations of GP-injective ring
with special chain conditions. In 2009, Sanh et al. introduced the notion of pseudo-M-
gp-injective modules. A right R-module N is called for pseudo-M-gp-injective if for each
homomorphism 0 6= α ∈ End(M), there exists n ∈ N such that αn 6= 0 and every monomor-
phism from αn(M) to N can be extended to a homomorphism from M to N [3]. A module
M is called quasi-pseudo-gp-injective if M is pseudo-M-gp-injective. A ring R is called
right pseudo GP-injective if RR is quasi-pseudo-gp-injective. In this paper, we continue
studying more properties of pseudo-p-injective modules, pseudo-gp-injective modules and
the endomorphism rings of pseudo-p-injective modules.

2. On pseudo-M-gp-injective

Firstly, we give a new characterization of pseudo-M-gp-injective modules.

Theorem 2.1. Let M, N be right R-modules. Then following conditions are equivalent:
(1) N is pseudo-M-gp-injective.
(2) For each 0 6= s ∈ End(M), there exists n ∈ N such that sn 6= 0 and

{ f ∈ Hom(M,N)| Ker f = Ker sn} ⊆ Hom(M,N)sn.
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(3) For each 0 6= s ∈ End(M), there exists n ∈ N such that sn 6= 0 and

{ f ∈ Hom(M,N)| Ker f = Ker sn}= { f ∈ Hom(M,N)| Ker f ∩ Im sn = 0}sn.

Proof. (1)⇒ (2). Suppose that 0 6= s ∈ End(M). Since N is pseudo-M-gp-injective, there
exists n ∈N such that sn 6= 0 and every monomorphism from sn(M) to N can be extended to
a homomorphism from M to N. Let f ∈Hom(M,N) such that Ker f = Ker sn. We consider
homomorphism

ϕ : sn(M)→ N via ϕ(sn(m)) = f (m), ∀ m ∈M.

It is easy to see that ϕ is a monomorphism. By our assumption, there exists a homomor-
phism h : M→ N such that hι = ϕ, where ι is the inclusion map from sn(M)→M, which
implies that f = hsn ∈ Hom(M,N)sn.

(2)⇒ (3). It is clear that

{ f ∈ Hom(M,N)| Ker f ∩ Im sn = 0}sn ⊆ { f ∈ Hom(M,N)| Ker f = Ker sn}.
Let g∈Hom(M,N) such that Ker g = Ker sn. Then by (2), there exists a homomorphism h :
M→N such that g = hsn. It follows that Ker h∩Im sn = 0. Hence, g∈{ f ∈Hom(M,N)|Ker
f ∩ Im s = 0}sn.

(3)⇒ (1). For each 0 6= s ∈ End(M), by (3), there exists n ∈ N such that sn 6= 0 and

{ f ∈ Hom(M,N)| Ker f = Ker sn}= { f ∈ Hom(M,N)| Ker f ∩ Im sn = 0}sn.

Assume that φ : sn(M)→ N is a monomorphism. Then Ker(φsn) = Ker sn. Hence there is
h ∈ Hom(M,N) such that φsn = hsn. It gives hι = φ , where ι is the inclusion map, proving
that N is pseudo-M-gp-injective.

From the above theorem, we get some characterizations of quasi-pseudo-gp-injective
modules.

Corollary 2.1. Let M be right R-module and S = End(M). The following conditions are
equivalent:

(1) M is quasi-pseudo-gp-injective;
(2) For each 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and

{ f ∈ S| Ker f = Ker sn} ⊆ Ssn;

(3) For each 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and

{ f ∈ S| Ker f = Ker sn}= { f ∈ S| Ker f ∩ Im sn = 0}sn.

Corollary 2.2. Let M, N be right R-modules. The following conditions are equivalent:
(1) N is pseudo-M-p-injective;
(2) For each s ∈ End(M),

{ f ∈ Hom(M,N)| Ker f = Ker s} ⊆ Hom(M,N)s;

(3) For each s ∈ End(M),

{ f ∈ Hom(M,N)| Ker f = Ker s}= { f ∈ Hom(M,N)| Ker f ∩ Im s = 0}s.

Proposition 2.1. Let N be pseudo-M-p-injective. Then for any elements s,α ∈ End(M), we
have:

{β ∈ Hom(M,N)|Ker β ∩ Im s = Ker α ∩ Im s}
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= {γ ∈ Hom(M,N)|Ker γ ∩ Im(αs) = 0}α +{δ ∈ Hom(M,N)|δ s = 0}.

Proof. Let

A = {β ∈ Hom(M,N)|Ker β ∩ Im s = Ker α ∩ Im s}
B = {γ ∈ Hom(M,N)|Ker γ ∩ Im(αs) = 0}
C = {δ ∈ Hom(M,N)|δ s = 0}

It is easy to see that Bα +C ⊆ A . Conversely, let β ∈ Hom(M,N) such that Ker β ∩
Im s = Ker α ∩ Im s (β ∈A ). It follows that Ker(αs) = Ker(β s). By Corollary 2.2, there
exists γ ∈B such that β s = γαs or (β − γα)s = 0. It means β − γα ∈ C , which implies
that β ∈Bα +C .

Proposition 2.2. If M = M1⊕M2 is quasi-pseudo-p-injective, then M1 is M2-p-injective.

Proof. Let M = M1⊕M2 be quasi-pseudo-p-injective and s∈ End(M2). Let f : s(M2)→M1
be a homomorphism. Consider homomorphism g : s(M2)→M defined by g(a) = f (a)+a
for all a ∈ s(M2). Then g is a monomorphism. By [2, Proposition 1.3], M is pseudo-
M2-p-injective, whence g extends to a homomorphism ḡ : M2 → M. Let π : M → M1 be
the canonical projection. Then π ḡ : M2 → M extends f . Thus M1 is M2-p-injective, as
required.

Corollary 2.3. For any integer n≥ 2, if Mn is quasi-pseudo-p-injective, then M is quasi-p-
injective.

Proposition 2.3. Let M and N be modules and X = M⊕N. The following conditions are
equivalent:

(1) N is pseudo-M-p-injective.
(2) For each M-cyclic submodule K of X with K ∩M = K ∩N = 0, there exists C ≤ X

such that K ≤C and N⊕C = X.

Proof. (1)⇒ (2). Let K be a submodule of X which is M-cyclic with K∩M = K∩N = 0,
and πM : M⊕N→M and πN : M⊕N→ N be the canonical projections. We can check that
N⊕K = N⊕πM(K) and hence πM(K)'K, proving that πM(K) is a M-cyclic submodule of
M. Let ϕ : πM(K)→ πN(K) be a homomorphism defined as follows: for k = m+n∈K (with
m∈M,n∈N), ϕ(m) = n. It is easy to see that ϕ is a monomorphism. Since N is pseudo M-
p-injective, there is a homomorphism ϕ̄ : M→N extending ϕ . Let C = {m+ ϕ̄(m)|m∈M}.
Then X = N⊕C and K ≤C.

(2)⇒ (1). Let s ∈ End(M) and ϕ : s(M)→ N be a monomorphism. Put K = {s(m)−
ϕ(s(m))| m ∈ M}. Then K ∩M = 0 and N⊕K = N⊕ πM(K) = N⊕ s(M). It is easy to
see that K is M-cyclic. By assumption, there exists a submodule C of X containing K with
N⊕C = X . Let π : N⊕C→ N be the natural projection. Then the restriction π|M extends
ϕ , proving (1).

3. On quasi-pseudo-gp-injective rings and modules

From Corollary 2.2, we have some characterizations of quasi-pseudo-p-injective modules.

Theorem 3.1. The following conditions are equivalent for module M with S = End(M):
(1) M is quasi-pseudo-p-injective;
(2) If Ker f = Ker g with f ,g ∈ S = End(M), then S f = Sg;
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(3) If f ∈ S = End(M) and α,β : f (M)→M is monomorphisms, then α = sβ for some
s ∈ S.

Proof. (1)⇒ (2). By Corollary 2.2.
(2)⇒ (3). Assume that 0 6= f ∈ S satisfies (2). Let α,β : f (M)→M be monomorphisms.

Then Ker(α f ) = Ker(β f ). By our assumption, there exists s∈ S such that α f = sβ f , which
implies that α = sβ .

(3)⇒ (1). Let s ∈ S and ϕ : s(M)→M be a monomorphism. Let ι : s(M)→M be the
inclusion. By (3), there exists ϕ̄ ∈ S such that ϕ = ϕ̄ι showing that ϕ̄ extends ϕ . Thus M is
quasi-pseudo p-injective.

Corollary 3.1. The following conditions are equivalent for ring R:
(1) R is right pseudo P-injective;
(2) If r(x) = r(y) with x,y ∈ R, then Rx = Ry.

We have the following relations:

quasi-p-injective ⇒ quasi-pseudo-p-injective ⇒ quasi-pseudo-gp-injective.

Example 3.1.
i) Let F be an algebraically closed field and x,y be indeterminates. Let R = F(y)[x]

such that x f − f x = d f /dy, f ∈ F(y) (see [20, Example]). Then the R-module M =
R/(x(x+y)(x+y−1/y))R is quasi-pseudo-p-injective but not quasi-p-injective by
[20, Example].

ii) Let K = F(y1,y2, ...) and L = F(y2,y3, ...) with F a field, and ρ : K → L be an
isomorphism via ρ(yi) = yi+1 and ρ(c) = c for all c ∈ F (see [6, Exmaple 1]. Let
K[x1,x2;ρ] be the ring of twisted left polynomials over K where xik = ρ(k)xi for
all k ∈ K and for i = 1,2. Set R = K[x1,x2;ρ]/

(
x2

1,x
2
2
)
. Then RR is quasi-pseudo-

gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator modules and
their endomorphism rings.

Theorem 3.2. Let M be a right R-module with S = End(M). Then
(1) If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.
(2) If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo GP-

injective ring.

Proof. (1). Let f ∈ S. Since S is right pseudo GP-injective, there exists n ∈ N such that
f n 6= 0 and if rS( f n) = rS(g) for some g ∈ S, then g ∈ S f n by Corollary 2.1. Assume that
Ker f n = Ker g with g ∈ S. Then rS( f n) = rS(g) and hence g ∈ S f n. Thus M is quasi-
pseudo-gp-injective by Corollary 2.1.

(2). Let 0 6= f ∈ S. Since M is quasi-pseudo-gp-injective, there exists n ∈ N such that
f n 6= 0 and if Ker( f n) = Ker(g) with g ∈ S, then g ∈ S f n. Let g ∈ S with rS( f n) = rS(g).
Since M is a self-generator, we get Ker f n = Ker g. By our assumption, g ∈ S f n and so S is
right pseudo GP-injective.

Corollary 3.2. Let M be a right R-module with S = End(M). Then
(1) If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.
(2) If M is a quasi-pseudo-p-injective module which is a self-generator, then S is a right

pseudo P-injective ring.
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For a right R-module M, S = End(M) we denote:

W (S) = {s ∈ S| Ker(s) is essential in M}.

Lemma 3.1. Let MR be a quasi-pseudo-gp-injective module which is a self-generator, S =
End(M). If a 6∈W (S), then Ker(a) < Ker(a−ata) for some t ∈ S.

Proof. If a 6∈W (S), then Ker(a) is not an essential submodule of M. Hence there exists
0 6= m ∈M such that mR∩Ker(a) = 0. Since M is a self-generator, there exists λ ∈ S such
that 0 6= λ (M)≤ mR. Hence Ker(a)∩λ (M) = 0. It follows that aλ 6= 0. Since M is quasi-
pseudo-gp-injective, there exists n ∈ N such that (aλ )n 6= 0 and if Ker(aλ )n = Ker g with
g ∈ S = End(M), then g ∈ S(aλ )n. From Ker(a)∩λ (M) = 0 we also have Ker((aλ )n) =
Ker(λ (aλ )n−1). Hence λ (aλ )n−1 ∈ S(aλ )n. Therefore λ (aλ )n−1 = s(aλ )n for some s ∈ S,
which implies that Im(λ (aλ )n−1) ≤ Ker(a− asa). It follows that Ker(a) < Ker(a− asa),
since Im(λ (aλ )n−1) 6≤ Ker(a) and (aλ )n 6= 0.

Lemma 3.2. Assume that M is quasi-pseudo-gp-injective module which is a self-generator.
Then J(S) = W (S).

Proof. Let a ∈ J(S). If a 6∈W (S), then by the proof of Lemma 3.1, there exist a positive
integer n and λ , t ∈ S such that (aλ )n 6= 0 and (1− at)(aλ )n = 0. Note that 1− at is
left invertible, so (aλ )n = 0, a contradiction. Conversely, let a ∈W (S). Then, for each
t ∈ S, ta ∈W (S) and hence 1− ta 6= 0. Since M is a quasi-pseudo-p-injective module,
there exists n ∈ N such that (1− ta)n 6= 0 and if Ker(1− ta)n = Ker g for some g ∈ S =
End(M), then g ∈ S(1− ta)n. Put u = (1− ta)n, 1− u = v for some v ∈W (S). Since
Ker(v)∩Ker(1− v) = 0, we have Ker(1− v) = 0. Then Ker(u) = Ker(1S). It follows that
Su = S and hence (1− ta)n is left invertible, proving our lemma.

Corollary 3.3. If R is right pseudo GP-injective, then J(R) = Z(RR).

Recall that a module M is said to satisfy the generalized C2-condition (or GC2) (see [25])
if for any N 'M with N ≤M, N is a direct summand of M.

Theorem 3.3. If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let S = End(M). Assume that Ker s = 0 with s ∈ S. We need to prove that S = Ss.
Since M is quasi-pseudo-gp-injective, there exists n∈N such that sn 6= 0 and Ker sn = Ker g
with g ∈ S, which would imply that g ∈ Ssn. Note that Ker s = 0 = Ker 1S. It follows that
1S ∈ Ssn ≤ Ss, whence S = Ss. Thus M is GC2 by [25, Theorem 3].

Corollary 3.4. If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.1. Let M be a quasi-pseudo-p-injective module which is a self-generator and
S = End(M). If every complement submodule of M is M-cycilc, then S/J(S) is von Neumann
regular.

Proof. We have J(S) = W (S) by Lemma 3.2. For all λ ∈ S, let L be a complement of
Ker λ . We consider the map φ : λ (L)→ M defined by φ(λ (x)) = x for all x ∈ L. Then
φ is a monomorphism and λ (L) ' L which implies λ (L) is a M-cyclic submodule of M.
Since M is quasi-pseudo-p-injective, there exists θ ∈ S, which is an extension of φ . Then
Ker λ + L ≤ Ker(λθλ −λ ), and we see that Ker λ ⊕L ≤e M. Consequently λθλ −λ ∈
W (S) = J(S).



On Quasi Pseudo-GP-Injective Rings and Modules 327

Theorem 3.4. Let M be a quasi-pseudo-gp-injective module which is a self-generator and
S = End(M). Then the following conditions are equivalent:

(1) S is right perfect;
(2) For any infinite sequence s1,s2, · · · ∈ S, the chain

Ker(s1)≤ Ker(s2s1)≤ ·· ·

is stationary.

Proof. (1) ⇒ (2). Let si ∈ S, i = 1,2.... Since S is right perfect, S satisfies DCC on
finitely generated left ideals. So the chain Ss1 ≥ Ss2s1 ≥ ... terminates. Thus there exists
n > 0 such that Ssnsn−1...s1 = Ssksk−1...s1 for all k > n. It follows that Ker(snsn−1...s1) =
Ker(sksk−1...s1) for all k > n.

(2)⇒ (1). We first prove that S/W (S) is a von Neumann regular ring. Let a1 6∈W (S).
Then by Lemma 3.1, there is c1 ∈ S such that Ker(a1) < Ker(a1− a1c1a1). Put a2 = a1−
a1c1a1. If a2 ∈W (S), then we have ā1 = ā1c̄1ā1, i.e., ā1 is a regular element of S/W (S). If
a2 6∈W (S), there exists a3 ∈ S such that Ker(a2) < Ker(a3) with a3 = a2−a2c2a2 for some
c2 ∈ S by the preceding proof. Repeating the above-mentioned process, we get a strictly
ascending chain

Ker(a1) < Ker(a2) < ...,

where ai+1 = ai−aiciai for some ci ∈ S, i = 1,2.... Let

b1 = a1, b2 = 1−a1c1, ..., bi+1 = 1−aici, ...,

then
a1 = b1, a2 = b2b1, ..., ai+1 = bi+1bi...b2b1, ....

and we have the following strictly ascending chain

Ker(b1) < Ker(b2b1) < ...,

which contradicts the hypothesis. Hence there exists a positive integer m such that am+1 ∈
W (S), i.e., am− amcmam ∈W (S). This shows that ām is a regular element of S/W (S), and
hence ām−1, ām−2, ..., ā1 are regular elements of S/W (S), i.e., S/W (S) is von Neumann reg-
ular. We have J(S) = W (S) by Lemma 3.2, proving that S/J(S) is von Neumann regular.
Thus S is right perfect by [7, Lemma 1.9].

Lemma 3.3. Let M be a right R-module and S = End(M). Then

(1) lS(A(M)) = lS(A) for all A⊆ S with A(M) = ∑s∈A s(M).
(2) lS(rM(lS(A))) = lS(A) for all A⊆ S.

Proof. (1). Let a ∈ lS(A), a ·A = 0. Therefore a · s = 0 or a(s(M)) = 0 for all s ∈ A. This
implies that a ∈ lS(A(M)). Hence lS(A) ≤ lS(A(M)). Conversely, for every a ∈ lS(A(M)),
we have a.s(M) = 0 for all s ∈ A. This implies that a ∈ lS(A).

(2). It is clear that lS(rM(lS(A)))≥ lS(A). Conversely, for all s ∈ lS(A), s.A(M) = 0. This
implies that A(M)≤ rM(lS(A)). Thus

lS(A(M))≥ lS(rM(lS(A))).

By (1) we get the result.
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Let /0 6= A⊂ S = End(M). Put

Ker A =
⋂
f∈A

Ker f = {m ∈M| f (m) = 0 ∀ f ∈ A}.

If X ≤M and X = Ker A for some /0 6= A⊂ S, X is called an M-annihilator.

Proposition 3.2. Let MR be a quasi-pseudo-gp-injective, self-generator module and S =
End(MR). If MR satisfies ACC on M-annihilators, then S is semiprimary.

Proof. Now we will claim that S satisfies ACC on right annihilators or DCC on left annihi-
lators. Indeed, we consider the descending chain

lS(A1)≥ lS(A2)≥ ... where Ai ⊆ S,

then
rM(lS(A1))≤ rM(lS(A2))≤ ....

By our assumption, there exists n∈N such that rM(lS(An)) = rM(lS(Ak)) for all k > n, and so
lSrM(lS(An)) = lSrM(lS(Ak)). By Lemma 3.3, lS(An) = lS(Ak) for all k > n. This shows that
S satisfies DCC on left annihilators or ACC on right annihilators. Therefore J(S) is nilpotent
by [16, Lemma 3.29] and Lemma 3.2. It follows that S is semiprimary by Theorem 3.4.

Corollary 3.5. If R is right pseudo GP-injective and satisfies ACC on right annihilators,
then R is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.5. Let MR be a quasi-pseudo-p-injective module and S = End(MR). If M satis-
fies ACC on M-annihilators, then S is semiprimary.

Proof. Consider the chain S f1 ≥ S f2 ≥ ·· · of cyclic left ideals of S. Then we have Ker f1 ≤
Ker f2 ≤ ·· · . By hypothesis, there exists n ∈ N such that Ker fn = Ker fn+k, ∀ k ∈ N. It
follows that S fn = S fn+k ∀ k ∈ N. Thus R is right perfect.

Consider the ascending chain rM(J(S))≤ rM(J(S)2)≤ ·· · . By assumption, there is n∈N
such that rM(J(S)n) = rM(J(S)n+k) for all k ∈ N. Let B = J(S)n. Then we get rM(B) =
rM(B2). Assume J(S) is not nilpotent. Then B2 6= 0 and the non-empty set

{Ker g| g ∈ B and Bg 6= 0}
has a maximal element Ker g0, g0 ∈ B. The relation BBg0 = 0 would imply that Im g0 ≤
rM(B2) = rM(B) and hence Bg0 = 0, contradicting to the choice of g0. Therefore we can
find an h ∈ B with Bhg0 6= 0. However, since Ker g0 ≤ Ker(hg0), the maximality of Ker g0
implies that Ker g0 = Ker hg0. Since M is quasi-pseudo-p-injective, this implies that Sg0 =
Shg0, i.e. g0 = shg0 for some s∈ S or g0(1−sh) = 0. Since sh∈ B≤ J(S), this gives g0 = 0,
a contradiction. Thus J(S) must be nilpotent.

Following [16], a ring R is called directly finite if ab = 1 in R implies that ba = 1.

Proposition 3.3. A right pseudo P-injective ring R is directly finite if and only if all monomor-
phisms RR→ RR are isomorphisms.

Proof. Assume that ϕ : RR→ RR is a monomorphism. Let a = ϕ(1). Then r(a) = 0 = r(1)
and so Ra = R by Corollary 2.1. Hence ba = 1 for some b∈ R, so ab = 1 by hypothesis, and
so ϕ is onto. Conversely, let ab = 1 in R. Therefore the homomorphism α : R→ R, α(r) =
br, ∀ r ∈ R is monomorphism. By hypothesis α is an epimorphism. There exists c ∈ R such
that 1 = α(c) = bc. It follows that a = c and ba = 1.
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The series of higher left socles {Sl
α} of the ring R are defined inductively as follows:

Sl
1 = Soc(RR), and Sl

α+1/Sl
α = Soc(R/Sl

α) for each ordinal α ≥ 1.
Motivated by [5, Lemma 9 (ii)], we have the following proposition.

Proposition 3.4. If R is a right pseudo GP-injective ring and satisfies ACC on essential left
ideals, then

(1) r(J)≤e RR,
(2) J is nilpotent,
(3) J = lr(J).

Proof. (1) Since R has ACC on essential left ideals, R/Sl is a left Noetherian ring. Then,
there exists k > 0 such that Sl

k = Sl
k+1 = · · · and R/Sl

k is a right Noetherian ring. Now we
will claim that Sl

k ≤e RR. In fact, assume that xR∩Sl
k = 0 for some 0 6= x ∈ R. Let R̄ = R/Sl

k
and lR̄(ā) be maximal in the set {lR̄(ȳ)| 0 6= y ∈ xR}. Since Sl

k = Sl
k+1, we get Soc(R̄R̄) = 0,

and so R̄ā is not simple as left R̄-module. Thus there exists t ∈ R such that 0 6= R̄t̄ā < R̄ā.
If āt̄ ā = 0̄, then ata ∈ aR∩ Sl

k = 0, and so ata = 0. From this fact and pseudo GP-
injectivity of R, we see that if r(ta) = r(b), b ∈ R then Rta = Rb by Corollary 2.1. If
r(a) = r(ta), then Ra = Rta, a contradiction. Thus r(a) < r(ta). Then there exixts b ∈ R
such that ab 6= 0 and tab = 0. That means 0 6= ab ∈ xR and lR̄(ā) < lR̄(ab). This contradicts
to the maximality of lR̄(ā0).

If āt̄ ā 6= 0̄, then 0 6= R̄āt̄ā < R̄ā. Since R is right pseudo GP-injective, there exists m ∈
N such that (ata)m 6= 0 and if r((ata)m) = r(b), b ∈ R then b ∈ R(ata)m. It follows that
r(a) < r((ata)m). Let c ∈ r((ata)m)\ r(a). Then 0 6= ac ∈ xR, (āt̄ ā)m−1āt̄ ∈ lR̄(ac)\ lR̄(ā),
a contradiction.

Thus Sl
k ≤e RR and hence r(J)≤e RR (since Sl

k ≤ r(J)).
(2). By [5, Lemma 9 (ii)].
(3). Since r(J)≤e RR, lr(J)≤ Zr = J.
A module MR is called extending (or CS) if every submodule of M is essential in a direct

summand of M. A ring R is called right CS if RR is CS (see [9]). Following [12], a module
M is called NCS if there are no nonzero complement submodules which is small in M. A
ring R is right NCS if RR is NCS. Clearly every CS module is NCS, but the converse is not
true, as we can see that the Z-module Z2⊕Z8 is NCS but not CS. On the other hand, let K
be a division ring and V be a left K-vector space of infinite dimension. Let S = EndK(V ).
Take R =

(
S S
S S

)
, then R is right NCS but not right CS.

Proposition 3.5. If R is a left Noetherian, right pseudo P-injective and right NCS ring, then
R is left Artinian.

Proof. First, we prove that R̄ = R/J is a regular ring. Assume that a 6∈ J. Since J = lr(J) =
Zr, there exists a nonzero complement right ideal I of R such that r(a)∩ I = 0 by Lemma
3.4. We claim that there exists b ∈ I such that ab 6∈ J. Suppose on the contrarily that aI ≤ J.
Then aIr(J) = 0. Since r(a)∩ I = 0, Ir(J) ≤ I ∩ r(a) = 0. Thus I ≤ lr(J) = J. It follows
that I is small in RR, a contradiction. Hence we have b ∈ I such that r(a)∩ bR = 0 and
ab 6∈ J. It follows that r(b) = r(ab). Hence Rb = Rab and so b = cab for some c ∈ R. This
implies that b̄ ∈ rR̄(ā− āc̄ā), where r̄ = r + J ∈ R/J for any r ∈ R. Since ab 6= 0̄, we see
that rR̄(ā) < rR̄(ā− āc̄ā). If a−aca ∈ J, then a is a regular element of R. If a−aca /∈ J, let
a1 = a−aca. Then r(a1) is not essential in RR. By the same way, we get a2 = a1−a1c1a1
for some c1 ∈ R and rR̄(ā1) < rR̄(ā2). If a2 ∈ J, then a1 is a regular element of R. It follows
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that a is a regular element of R. If a2 6∈ J, we have a3 = a2 − a2c2a2 for some c2 ∈ R
and rR̄(ā2) < rR̄(ā3). Continuing this process, we get ak ∈ R, k = 1,2, .... Since R is left
noetherian and Jac(R̄) = 0, R̄ is a semiprime and left Goldie ring. By [11, Lemma 5.8], R̄
satisfies ACC on right annihilators. Hence there exists some positive integer m such that
am ∈ J, and thus a is also a regular element of R. Since ā is an arbitrary nonzero element
of R̄, we see that R̄ is a regular ring. Then R̄ is semisimple because R is left noetherian.
Moreover, by Lemma 3.4, J is nilpotent and so R is semiprimary. Thus R is left Artinian.

4. On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective modules.
Let S = EndR(M) be the endomorphism ring of a right R-module M. Following [19],

an element u ∈ S is called a right uniform element of S if u 6= 0 and u(M) is a uniform
submodule of M. An element u∈ R is called right uniform if uR is a uniform right ideal (see
[16]). In this section, we generalize some results of Sanh and Shum for quasi-p-injective
modules; Nicholson and Yousif for p-injective rings to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1. Let M be a quasi-pseudo-gp-injective module and S = End(M). Then for any
right uniform element u of S, the set

Au = {s ∈ S|Ker s∩ Im u 6= 0}
is the unique maximal left ideal of S containing lS(Im u).

Proof. Clearly, Au is a left ideal of S. It is easy to see that lS(Im u)≤Au and Au 6= S (because
1 /∈Au). We now claim that Au is maximal. In fact, for any s∈ S\Au, we have Im u∩Ker s =
0, whence su 6= 0. There exists m ∈ N such that (su)m 6= 0 and if Ker(su)m = Ker(g), g ∈ S
then g ∈ S(su)m. Since Ker((su)m) = Ker u, we get S(su)m = Su. Then there exists t ∈ S
such that (1− t(su)m−1s)u = 0. It follows from S = lS(u)+ Ss, that Au is maximal in S. It
remains to show that Au is unique. In fact, assume that there is another maximal left ideal
L of S containing lS(Im u) and L 6= Au. Repeating above process we also have S = L, a
contradiction.

Corollary 4.1. [19, Lemma 1] Let M be a quasi-p-injective module and S = End(M). Then
for any right uniform element u of S, the set

Au = {s ∈ S|Ker s∩ Im u 6= 0}
is the unique maximal left ideal of S containing lS(Im u).

Corollary 4.2. Let R be right pseudo GP-injective. If u ∈ R is a right uniform element,
define

Mu = {x ∈ R|r(x)∩uR 6= 0}.
Then Mu is the unique maximal left ideal which contains l(u).

The following lemma is a generalization of [19, Lemma 3].

Lemma 4.2. Let M be a quasi-pseudo-p-injective module, S = End(MR) and W =⊕n
i=1ui(M)

a direct sum of uniform submodule ui(M) of M. If A ≤ S is a maximal left ideal which is
not of the form Au for some right uniform element u of S, then there is ψ ∈ A such that
Ker(1−ψ)∩W is essential in W.
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Proof. Since A 6= Au1 , we can take k ∈ A \Au1 . Then Im u1 ∩Ker k = 0, whence ku1 6= 0.
There exists m∈N such that (ku1)m 6= 0 and if Ker(ku1)m = Ker(g), g∈ S then g∈ S(ku1)m.
It is easy to see that Ker(ku1)m = Ker(u1) and hence S(ku1)m = Su1. Consequently we have
u1 = α1(ku1)m for some α1 ∈ S. Let ϕ1 = α1(ku1)m−1k∈ SA⊂A. Then (1−ϕ1)u1 = 0. This
shows that Ker(1−ϕ1)∩u1(M) = u1(M) 6= 0. If Ker(1−ϕ1)∩ui(M) 6= 0 for all i≥ 2, then
we are done and in this case ⊕n

i=1(Ker(1−ϕ1)∩ui(M)) ≤e W . Without loss of generality,
we now assume that Ker(1−ϕ1)∩ u2(M) = 0. It follows that (1−ϕ1)(u2(M)) ' u2(M)
is uniform. Since A 6= A(1−ϕ1)u2 , we can take any h ∈ A \A(1−ϕ1)u2 . By using the above
argument, there exists α2 ∈ S such that (1−ϕ1)u2 = α2h(1−ϕ1)u2. It follows that

(1− (α2h+ϕ1−α2hϕ1))u2 = 0.

Let ϕ2 = α2h + ϕ1 −α2hϕ1. Then (1− ϕ2)ui = 0 for i = 1,2. Continuing this way, we
eventually obtain a ψ ∈ A such that Ker(1−ψ)∩ ui(M) 6= 0 for all i = 1, . . . ,n. In other
words, we have shown that Ker(1−ψ)∩W is essential in W as required.

The following theorem describes the properties of the endomorphism ring S = End(MR)
of a quasi pseudo p-injective module MR.

Theorem 4.1. Let M be a quasi-pseudo-gp-injective, self-generator module with finite
Goldie dimension and S = End(MR).

(1) If I ⊂ S is a maximal left ideal, then I = Au for some right uniform element u ∈ S.
(2) S is semilocal.

Proof. Since M is a self-generator which has finite Goldie dimension, there exist elements
u1,u2, ...,un of S such that W = u1(M)⊕u2(M)⊕·· ·⊕un(M) is essential in M, where each
ui(M) is uniform. Moreover, M is a quasi-p-injective module, we have J(S) = W (S) = {s ∈
S| Ker(s) is essential in M} by Lemma 3.2.

(1). Suppose on the contrary that I is not of the form Au for some right uniform element
of u ∈ S. Then by Lemma 4.2, there exists a ϕ ∈ I such that Ker(1−ϕ)∩W is essential in
W. It follows that 1−ϕ ∈ J(S) ⊂ I, a contradiction. Hence I = Au for some right uniform
element u ∈ S.

(2). If ϕ ∈ Au1 ∩Au2 ∩ ·· · ∩Aun , then Ker(ϕ)∩ ui(M) 6= 0 for each i. Hence Ker(ϕ) is
essential in M. Therefore ϕ ∈ J(S), i.e., Au1 ∩ ·· · ∩Aun = J(S). This shows that S/J(S) is
semisimple.

As a consequence, we immediately get the following result for the right pseudo GP-
injective rings.

Corollary 4.3. Let R be a right pseudo GP-injective ring which has right finite Goldie
dimension. Then

(1) If I ⊂ R is a maximal left ideal, then I = Au for some right uniform element u ∈ R.
(2) R is semilocal.
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