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1. Introduction and preliminaries

Fuzzy set theory, compared to other mathematical theories, is perhaps the most easily adapt-
able theory to practice. The main reason is that a fuzzy set has the property of relativity,
variability and inexactness in the definition of its elements. Instead of defining an entity
in calculus by assuming that its role is exactly known, we can use fuzzy sets to define the
same entity by allowing possible deviations and inexactness in its role. This representation
suits well the uncertainties encountered in practical life, which make fuzzy sets a valuable
mathematical tool.

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [37]
and subsequently several authors have discussed various aspects of the theory and applica-
tions of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy orderings,
fuzzy measures of fuzzy events, fuzzy mathematical programming. Matloka [17] introduced
bounded and convergent sequences of fuzzy numbers and studied some of their properties.
For more details about sequence spaces of fuzzy numbers see [2,7,16,21,22,33] and refer-
ences therein.

The initial works on double sequences is found in Bromwich [5]. Later on, it was stud-
ied by Hardy [11], Moricz [18], Moricz and Rhoades [19], Tripathy [34,35], Başarır and
Sonalcan [3] and many others. Hardy [11] introduced the notion of regular convergence
for double sequences. Quite recently, Zeltser [38] in her Ph.D thesis has essentially stud-
ied both the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely [23] have recently introduced the statistical
convergence and Cauchy convergence for double sequences and given the relation between
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statistical convergent and strongly Cesaro summable double sequences. Nextly, Mursaleen
[20] and Mursaleen and Edely [24] have defined the almost strong regularity of matrices for
double sequences and applied these matrices to establish a core theorem and introduced the
M-core for double sequences and determined those four dimensional matrices transforming
every bounded double sequences x = (xm,n) into one whose core is a subset of the M-core
of x. More recently, Altay and Başar [1] have defined the spaces BS , BS (t), C Sp,
C Sbp, C Sr and BV of double sequences consisting of all double series whose sequence
of partial sums are in the spaces Mu, Mu(t), Cp, Cbp, Cr and Lu, respectively and also ex-
amined some properties of these sequence spaces and determined the α-duals of the spaces
BS , BV , C Sbp and the β (v)-duals of the spaces C Sbp and C Sr of double series. Now,
recently Başar and Sever [4] have introduced the Banach space Lq of double sequences
corresponding to the well known space `q of single sequences and examined some proper-
ties of the space Lq. By the convergence of a double sequence we mean the convergence
in the Pringsheim sense i.e. a double sequence x = (xk,l) has Pringsheim limit L (denoted
by P-limx = L) provided that given ε > 0 there exists n ∈ N such that |xk,l −L| < ε when-
ever k, l > n see [27]. We shall write more briefly as P-convergent. The double sequence
x = (xk,l) is bounded if there exists a positive number M such that |xk,l |< M for all k and l.

An Orlicz function M : [0,∞)→ [0,∞) is a continuous, non-decreasing and convex func-
tion such that M(0) = 0, M(x) > 0 for x > 0 and M(x)−→ ∞ as x−→ ∞.

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to define the following
sequence space,

`M =

{
x ∈ w :

∞

∑
k=1

M
(
|xk|
ρ

)
< ∞

}
which is called as an Orlicz sequence space. Also `M is a Banach space with the norm

||x||= inf

{
ρ > 0 :

∞

∑
k=1

M
(
|xk|
ρ

)
≤ 1

}
.

Also, it was shown in [13] that every Orlicz sequence space `M contains a subspace iso-
morphic to `p(p ≥ 1). The ∆2- condition is equivalent to M(Lx) ≤ LM(x), for all L with
0 < L < 1. An Orlicz function M can always be represented in the following integral form

M(x) =
∫ x

0
η(t)dt

where η is known as the kernel of M, is right differentiable for t ≥ 0,η(0) = 0,η(t) > 0, η

is non-decreasing and η(t)→ ∞ as t→ ∞.
A fuzzy number is a fuzzy set on the real axis, i.e., a mapping X : Rn → [0,1] which

satisfies the following four conditions:
(1) X is normal, i.e., there exist an x0 ∈ Rn such that X(x0) = 1;
(2) X is fuzzy convex, i.e., for x,y ∈ Rn and 0≤ λ ≤ 1,X(λx+(1−λ )y)≥min[X(x),

X(y)];
(3) X is upper semi-continuous;
(4) the closure of {x ∈ Rn : X(x) > 0}, denoted by [X ]0, is compact.

Let C(Rn) = {A⊂Rn : A is compact and convex }. The spaces C(Rn) has a linear struc-
ture induced by the operations

A+B = {a+b, a ∈ A, b ∈ B} and λA = {λa : a ∈ A}
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for A,B ∈C(Rn) and λ ∈ R. The Hausdorff distance between A and B of C(Rn) is defined
as

δ∞(A,B) = max
{

sup
a∈A

inf
b∈B
‖a−b‖, sup

b∈B
inf
a∈A
‖a−b‖

}
where ‖.‖ denotes the usual Euclidean norm in Rn. It is well known that (C(Rn),δ∞) is a
complete (non separable) metric space.

For 0 < α ≤ 1, the α-level set

Xα = {x ∈ Rn : X(x)≥ α}

is a nonempty compact convex, subset of Rn, as is the support X0. Let L(Rn) denote the
set of all fuzzy numbers. The linear structure of L(Rn) induces addition X +Y and scalar
multiplication λX ,λ ∈ R, in terms of α-level sets, by

[X +Y ]α = [X ]α +[Y ]α and [λX ]α = λ [X ]α

for each 0≤ α ≤ 1. Define for each 1≤ q < ∞

dq(X ,Y ) =
{∫ 1

0
δ∞(Xα ,Y α)qdα

}1/q

and d∞(X ,Y ) = sup
0≤α≤1

δ∞(Xα ,Y α). Clearly d∞(X ,Y ) = lim
q→∞

dq(X ,Y ) with dq ≤ dr if q ≤ r.

Moreover (L(Rn),d∞) is a complete, separable and locally compact metric space. Let w
denote the set of all fuzzy complex sequences x = (xk)∞

k=1, and M be an Orlicz function, or
a modulus function. Consider

ΓM =

{
x ∈ w : lim

k→∞

(
M

(
|xk|1/k

ρ

))
= 0 for some ρ > 0

}
and

ΛM =

{
x ∈ w : sup

k

(
M

(
|xk|1/k

ρ

))
< ∞ for some ρ > 0

}
.

The spaces ΓM and ΛM are metric spaces with the metric

d(x,y) = inf

{
ρ > 0 : sup

k

(
M

(
|xk− yk|1/k

ρ

))
≤ 1

}
for all x = (xk) and y = (yk) in ΓM.

In this paper we define Orlicz space of double entire sequence of fuzzy numbers by using
regular matrix A = (amnkl)(m,n,k, l = 1,2,3, ...). By the regularity of A we mean that the
matrix which transform convergent sequence into a convergent sequence leaving the limit
for detail see [12]; we prove that these spaces are complete paranormed spaces. If E is a
linear space over the complex field C, then a paranorm on E is a function p : E→ R which
satisfies the following axioms, for x,y ∈ E,

(1) p(x)≥ 0, for all x ∈ X ;
(2) p(−x) = p(x), for all x ∈ X ;
(3) p(x+ y)≤ p(x)+ p(y), for all x,y ∈ X ;
(4) if (σn) is a sequence of scalars with σn → σ as n→ ∞ and (xn) is a sequence of

vectors with p(xn− x)→ 0 as n→ ∞, then p(σnxn−σx)→ 0 as n→ ∞.
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A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X , p)
is called a total paranormed space. It is well known that the metric of any linear metric
space is given by some total paranorm (see [36, Theorem 10.4.2, p.183]). For more details
about sequence spaces (see [14,15,25,28,29,30,33]) and references therein.

The notion of difference sequence spaces was introduced by Kızmaz [12], who studied
the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further generalized
by Et and Çolak [8] by introducing the spaces l∞(∆m),c(∆m) and c0(∆m).

Let r be non-negative integers. Then for Z = l∞, c, c0, we have sequence spaces

Z(∆r) = {x = (xk) ∈ w : (∆rxk) ∈ Z},

where ∆rxk = (∆r−1xk−∆r−1xk+1) and ∆0xk = xk for all k ∈ N, which is equivalent to the
following binomial representation

∆
rxk =

r

∑
v=0

(−1)v
(

r
v

)
xk+v.

A sequence X = (Xk) of fuzzy numbers is a function X from the set N of natural numbers
into L(Rn). The fuzzy number Xn denotes the value of the function n ∈ N and is called nth

term of the sequence.
Let X = (Xk) be a sequence of fuzzy numbers. Then the Orlicz space of entire sequences

of fuzzy numbers convergent to zero, written as
(
M
(
(|Xk|1/k)/ρ

))
→ 0 as k→ ∞, for some

arbitrarily fixed ρ > 0 and is defined by[
d̄

(
M

(
|xk|1/k

ρ

))
→ 0 as k→ ∞

]
is denoted by ΓM(F), with M being a Orlicz function.

Let X = (Xk) be a sequence of fuzzy numbers. Then the space consisting of all those
fuzzy sequence X = (Xk) such that sup

(
M
(
(|Xk|1/k)/ρ

))
< ∞ for some arbitrary ρ > 0 is

denoted by ΛM(F) and is known as Orlicz space of analytic sequences.
A fuzzy double sequence is a double infinite array of fuzzy numbers. We denote a fuzzy

double sequence by (Xm,n), where Xm,n’s are fuzzy numbers for each m,n ∈N. By s′′(F) we
denote the set of all double sequences of fuzzy numbers.

A double sequence X = (Xk,l) of fuzzy numbers is said to be convergent in the Pring-
sheim’s sense or P-convergent to a fuzzy number X0, if for every ε > 0 there exists N ∈ N
such that

d̄(Xk,l ,X0) < ε for k, l > N,

where N is the set of natural numbers, and we denote by P− limX = X0. The number X0
is called the Pringsheim limit of Xk,l . More exactly we say that a double sequence (Xk,l)
converges to a finite number X0 if Xk,l tend to X0 as both k and l tends to ∞ independently
of one another.

The following inequality will be used throughout the paper. Let p = (pk,l) be a double
sequence of positive real numbers with 0 < pk,l ≤ supk,l pk,l = H and let D = max{1,2H−1}.
Then for the factorable sequences {ak,l} and {bk,l} in the complex plane, we have

(1.1) |ak,l +bk,l |pk,l ≤ D(|ak,l |pk,l + |bk,l |pk,l ).
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Let M = (Mk,l) be a sequence of Orlicz functions and A = (amnkl) be a regular matrix. Then
we define the following classes of sequences in the present paper:

Γ
2
M [F,A, p,∆r]

=

{
X = (Xk,l) ∈ s′′(F) : lim

m,n→∞

m,n

∑
k,l=1

amnkl

mn

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

= 0

}
,

and

Λ
2
M [F,A, p,∆r]

=

{
X = (Xk,l) ∈ s′′(F) : sup

m,n

m,n

∑
k,l=1

amnkl

mn

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

< ∞

}
and call them respectively the spaces of double sequences of fuzzy numbers which are
strongly entire and strongly analytic.

If we take amnkl = 1 for all m,n,k, l ∈ N then Γ2
M [F,A, p,∆r] and Λ2

M [F,A, p,∆r] are
reduced to Γ2

M [F, p,∆r] and Λ2
M [F, p,∆r], respectively, defined as

Γ
2
M [F, p,∆r] =

{
X = (Xk,l) ∈ s′′(F) : lim

m,n→∞

1
mn

m,n

∑
k,l=1

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

= 0

}
,

and

Λ
2
M [F, p,∆r] =

{
X = (Xk,l) ∈ s′′(F) : sup

m,n

1
mn

m,n

∑
k,l=1

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

< ∞

}
.

A metric d̄ on L(Rn) is said to be translation invariant if d̄(X + Z,Y + Z) = d̄(X ,Y ) for
X ,Y,Z ∈ L(Rn).

The main purpose of this paper is to introduce some double entire difference sequence
spaces of fuzzy numbers defined by a sequence of Orlicz functions. We also make an ef-
fort to study some topological properties and inclusion relations between the above defined
sequence spaces.

2. Main results

Proposition 2.1. If d̄ is a translation invariant metric on L(Rn), then

(i) d̄(∆rX +∆rY, 0̄)≤ d̄(∆rX , 0̄)+ d̄(∆rY, 0̄),
(ii) d̄(λ∆rX , 0̄)≤ |λ |d̄(∆rX , 0̄), |λ |> 1.

Proof. It is easy to prove so we omit the details.

Theorem 2.1. Γ2
M [F, p,∆r] is a complete metric space with the metric is given by

ρ(X ,Y ) = sup
mn

[
1

mn

(
Mk,l

(
d̄(∆r(Xmn +Ymn), 0̄)1/m+n

ρ

))]p

,

where X = (∆rXmn) and Y = (∆rYmn) are the double difference sequences of fuzzy numbers.
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Proof. It is easy to show that this is a metric space. We will show that it is complete. Let
{X (i)} be a Cauchy sequence in Γ2

M [F, p,∆r]. Then(
Mk,l

(
d̄(∆rX (i)

mn, 0̄)1/m+n

ρ

))
will be a Cauchy sequence in Γ2

M [F, p,∆r]. Therefore for each m and n, we have(
Mk,l

(
d̄(∆rX (i)

mn, 0̄)1/m+n

ρ

))
is a Cauchy sequence in L(Rn). Since L(Rn) is complete, thus(

1
mn

(
Mk,l

(
d̄(∆rX (i)

mn, 0̄)1/m+n

ρ

)))
→ 0 as i→ ∞.

Put ∆rX = (∆rXmn), since (
Mk,l

(
d̄(∆rX (i)

mn, 0̄)1/m+n

ρ

))
is a Cauchy sequence in Γ2

M [F, p,∆r], there exists n0 ∈ N such that for all i.(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX ( j)
mn ), 0̄)1/m+n

ρ

)))p

→ 0 as m,n→ ∞.

Let j→ ∞, we get(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rXmn), 0̄)1/m+n

ρ

)))p

→ 0 as m,n→ ∞.

Therefore
(
Mk,l

(
(d̄(∆rX (i)

mn, 0̄)1/m+n)/ρ
))
→ 0 as i→ ∞.

Now we have to show that X ∈ Γ2
M [F, p,∆r]. Since ∆rX (i) ∈ Γ2

M [F, p,∆r], there exists
∆rX (i)

0 ∈ L(Rn) such that(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX (i)
0 ), 0̄)1/m+n

ρ

)))p

→ 0 as m,n→ ∞.

Hence (
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX ( j)
0 ), 0̄)1/m+n

ρ

)))p

≤

(
1

mn
d̄

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX ( j)
0 ), 0̄)1/m+n

ρ

)))p

+

(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX (i)
0 ), 0̄)1/m+n

ρ

)))p

+

(
1

mn

(
Mk,l

(
d̄((∆rX i

mn−∆rX ( j)
0 ), 0̄)1/m+n

ρ

)))p
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→ 0 as m,n→ ∞. Thus
(
Mk,l

(
(d̄(∆rX (i)

mn, 0̄)1/m+n)/ρ
))

is a Cauchy sequence in L(Rn).
Since L(Rn) is complete, there exists ∆rX0 ∈ L(Rn) such that(

1
mn

(
Mk,l

(
d̄((∆rX (i)

0 −∆rX0), 0̄)1/m+n

ρ

)))p

→ 0 as m,n→ ∞.

Therefore (
1

mn

(
Mk,l

(
d̄((∆rXmn−∆rX0), 0̄)1/m+n

ρ

)))p

≤

(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rXmn), 0̄)1/m+n

ρ

)))p

+

(
1

mn

(
Mk,l

(
d̄((∆rX (i)

mn−∆rX (i)
0 ), 0̄)1/m+n

ρ

)))p

+

(
1

mn

(
Mk,l

(
d̄((∆rX (i)

0 −∆rX0), 0̄)1/m+n

ρ

)))p

→ 0 as m,n→ ∞. This implies that X = (Xk,l) ∈ Γ2
M [F, p,∆r]. This completes the proof of

the theorem.

Theorem 2.2. Γ2
M [F,A, p,∆r] and Λ2

M [F,A, p,∆r](inf pk > 0) are complete with respect to
the topology generated by the paranorm h is defined by

h(X) = sup
m,n

(
m,n

∑
k,l=1

amnkl

mn

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l
)

,

∣∣∣∣∣ m,n

∑
k,l=1

amnkl

mn

∣∣∣∣∣
pk,l

→ 0

as k, l→ ∞,

(2.1)

where d̄ is a translation invariant and X = (Xk,l) be a double sequence of fuzzy numbers.

Proof. Let (X (s)) be a Cauchy sequence in Γ2
M [F,A, p,∆r]. Then[

Mk,l

(
d̄(∆r(X (s)−X (t)), 0̄)1/k+l

ρ

)]pk,l

→ 0 as s, t→ ∞,

that is

(2.2) lim
s,t→∞

m,n

∑
k,l=1

amnkl

mn

Mk,l

 d̄(∆r(X (s)
k,l −X (t)

k,l ), 0̄)1/k+l

ρ

pk,l

= 0 for all m,n.

Hence Mk,l

 d̄(∆r(X (s)
k,l −X (t)

k,l ), 0̄)1/k+l

ρ

pk,l

→ 0 as s, t→ ∞ for all k, l,

which implies that
[
Mk,l

(
(d̄(∆rX (s)

k,l , 0̄)1/k+l)/ρ
)]pk,l is a Cauchy sequence in R for each k, l

and so there exists Y = (∆rYk,l) such that
[
Mk,l

(
(d̄(∆rX (s)

k,l , 0̄)1/k+l)/ρ
)]pk,l → (∆rYk,l) as
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s→ ∞ for each k, l. Now, from (2.2) we have, for ε > 0, there exists natural number N such
that

(2.3)

 m,n

∑
k,l=1

amnkl

mn

Mk,l

 d̄(∆r(X (s)
k,l −X (t)

k,l ), 0̄)1/k+l

ρ

pk,l
< ε

for s, t > N and for all m,n. Hence, for any natural number g, we have from (2.3)

(2.4)

 ∑
k,l≤g

amnkl

mn

Mk,l

 d̄(∆r(X (s)
k,l −Y (t)

k,l ), 0̄)1/k+l

ρ

pk,l
< ε for s, t > N for all n.

Now fix s > N and let t→ ∞. Then from (2.3), we have ∑
k,l≤g

amnkl

mn

Mk,l

 d̄(∆r(X (s)
k,l −Yk,l), 0̄)1/k+l

ρ

pk,l
< ε for s > N for all n.

Since this is valid for any natural number g, we have ∑
k,l≤g

amnkl

mn

Mk,l

 d̄(∆r(X (s)
k,l −Yk,l), 0̄)1/k+l

ρ

pk,l
< ε for s > N for all m,n,

that is, [
Mk,l

(
d̄(∆r(X (s)−Y ), 0̄)1/k+l

ρ

)]pk,l

→ 0 as s→ ∞,

and thus
[
Mk,l

(
(d̄(∆rX (s), 0̄)1/k+l)/ρ

)]pk,l → (∆rY ) as s→ ∞, and therefore[
Mk,l

(
d̄(∆r(X (s)−Y ), 0̄)1/k+l

ρ

)]pk,l

∈ Γ
2
M [F,A, p,∆r].

Hence Γ2
M [F,A, p,∆r] is complete. Similarly we can prove the completeness of Λ2

M [F,A, p,
∆r].

Theorem 2.3. Let X = (Xk,l) be a double sequence of fuzzy numbers and d̄ be a translation
invariant. Let A = (amnkl),(m,n,k, l = 1,2,3, ...) be an infinite matrix. Then Γ2

M [F,A, p]⊂
Γ2

M [F,A, p,∆r] if and only if given ε > 0, there exists N = N(ε) > 0 such that

|∆r−1amnkl−∆
r−1am+1,n+1,k,l |< ε

m,nNk,l (m,n,k, l = 1,2,3, ...).

Proof. Let X = (Xk,l) ∈ Γ2
M [F,A, p] and let

Ym,n =

(
∞,∞

∑
k,l=1

amnkl

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l
)

(m,n = 1,2,3, ...),

so that ∆rYm,n =
(

∑
∞,∞
k,l=1(∆

r−1amnkl − ∆r−1am+1,n+1,k,l)
[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]pk,l
)
.

Then (∆rYm,n) ∈ Γ2
M [F,A, p] if and only if given any ε > 0 there exists N = N(ε) > 0 such

that |∆r−1am,n,k,l −∆r−1am+1,n+1,k,l | < εm,nNk,l . Now (∆rYm,n ∈ Γ2
M [F,A, p]) if and only if

(Ym,n) ∈ Γ2
M [F,A, p,∆r]. Thus Γ2

M [F,A, p] ⊂ Γ2
M [F,A, p,∆r] if and only if the condition

holds. This completes the proof.
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Theorem 2.4. Let X = (Xk,l) be a double sequence of fuzzy numbers and d̄ be a translation
invariant. If A =(amnkl) transform Γ2

M [F,A, p] into Γ2
M [F,A, p,∆r]. Then lim

n→∞
(∆r−1amnkl−

∆
r−1am+1,n+1,k,l)qm,n = 0 for all integers q > 0 and each fixed k, l = 1,2,3, . . . .

Proof. Let Ym,n =
(

∑
∞,∞
k,l=1 amnkl

[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]pk,l
)
(m,n = 1,2,3, ...) formally.

Let (Xk,l) ∈ Γ2
M [F,A, p] and (Ym,n) ∈ Γ2

M [F,A, p,∆r]. But then (∆rYm,n) ∈ Γ2
M [F,A, p],

∆
rYm,n =

(
∞,∞

∑
k,l=1

(∆r−1am,n,k,l−∆
r−1am+1,n+1,k,l)

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l
)

,

(m,n = 1,2,3, ...). Take (Xk,l) = δ k,l = (0,0,0, . . . ,1,0,0, . . .),1 in the kth place and zero’s
elsewhere. Then (Xk,l) ∈ Γ2

M [F,A, p]. We have ∆rYm,n = ∆r−1am,n,k,l − ∆r−1am+1,n+1,k,l .

But (∆rYm,n) ∈ Γ2
M [F,A, p]. Hence ∑

∞,∞
k,l=1(∆

r−1am,n,k,l −∆r−1am+1,n+1,k,l)qm,n < ∞ for all
integers q and each fixed k, l = 1,2,3, .... This completes the proof.

Theorem 2.5. Let X = (Xk,l) be a double sequence of fuzzy numbers and d̄ be a translation
invariant. If A = (amnkl) transform Γ2

M [F,A, p,∆r] into Γ2
M [F,A, p]. Then lim

m,n→∞
amnklqm,n

= 0 for all integers q.

Proof. Let

tm,n =

(
∞,∞

∑
k,l=1

am,n,k,l

mn

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]p)
with (Xk,l) ∈ Γ2

M [F,A, p,∆r],(tm,n) ∈ Γ2
M [F,A, p] and

sm,n =

(
∞,∞

∑
k,l=1

am,n,k,l

mn

[
Mk,l

(
d̄(∆rXk+1,l+1, 0̄)1/k+l

ρ

)]p)
,

(sm,n) ∈ Γ2
M [F,A, p]. Then

Ym,n = (tm,n− sm,n) =

(
∞,∞

∑
k,l=1

am,n,k,l

mn

[
Mk,l

(
d̄((∆rXk,l−∆rXk+1,l+1), 0̄)1/k+l

ρ

)]p)

=

(
∞,∞

∑
k,l=1

am,n,k,l

mn

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]p)
and ∆rXk,l ∈ Γ2

M [F,A, p] and (Ym,n) ∈ Γ2
M [F,A, p]. Hence (am,n,k,l)qm,n→ 0 as n→ ∞ for

all k, l. This completes the proof of the theorem.

Theorem 2.6. Let X = (Xk,l) be a double sequence of fuzzy numbers and d̄ be a translation
invariant. If A = (amnkl) transforms Γ2

M [F,A, p,∆r] into Γ2
M [F,A, p,∆r], then (amnkl)qm,n→

0 and (am+1,n+1,k,l)qm,n→ 0 as m,n→ ∞.

Proof. From Theorems 2.3 and 2.4 we have amnklqm,n→ 0 and

(∆r−1am,n,k,l−∆
r−1am+1,n+1,k,l)qm,n→ 0 as m,n→ ∞

for all positive integers q and for all k, l.

⇒ (amnkl)qm,n→ 0 and (∆r−1amnkl−∆
r−1am+1,n+1,k,l)qm,n→ 0

⇒ (am+1,n+1,k,l)qm,n→ 0 and (amnkl)qm,n→ 0 as m,n→ ∞ for all k, l.
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This completes the proof.

3. ∆r-statistical convergence

The idea of statistical convergence of a sequence was introduced by Fast [9]. Statistical
convergence was generalized by Buck [6] and studied by many other authors, using a regular
nonnegative summability matrix A in place of Cesaro matrix. The existing literature on
statistical convergence have been restricted to real or complex analysis, but at the first time
Nuray and Savaş [26] extended the idea to apply the sequences of fuzzy numbers. For more
details on fuzzy sequence spaces and statistical convergence see [10,31,32] and references
therein. The generalized de la Valee-Pousin mean is defined by tn(X) = (1/λn)∑k∈In Xk,
where λ = (λn) is non-decreasing sequence of positive numbers such that λn+1 ≤ λn +
1,λ1 = 1,λn→ ∞ as n→ ∞ and In = [n−λn +1,n].

The double sequence λ2 = (λm,n) of positive real numbers tending to infinity such that

λm+1,n ≤ λm,n +1, λm,n+1 ≤ λm,n +1,

λm,n−λm+1,n ≤ λm,n+1−λm+1,n+1, λ1,1 = 1,

and
Im,n = {(k, l) : m−λm,n +1≤ k ≤ m, n−λm,n +1≤ l ≤ n}.

The generalized double de la Vallee-Poussin mean is defined by

tm,n = tm,n(xk,l) =
1

λm,n
∑

(k,l)∈Im,n

xk,l .

A sequence X = (Xk) of fuzzy numbers is said to be ∆r-statistical convergent to fuzzy
number zero if

lim
m,n→∞

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣= 0,

i.e.,
[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]
< ε. In this case we write

St(∆r)− lim
k,l→∞

[
Mk,l

(
(Xk,l , 0̄)1/k+l

ρ

)]
= 0.

Let X = (Xk,l) be a sequence of fuzzy numbers and p = (pk,l) be a sequence of strictly
positive real numbers. Then the sequence X = (Xk,l) is said to be strongly ∆r-convergent if
there is a fuzzy number zero such that

lim
m,n→∞

1
mn ∑

k≤n

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

= 0.

Let X = (Xk,l) be a sequence of fuzzy numbers. Then the space consisting of all those
fuzzy sequences X = (Xk,l)such that sup(Mk,l((Xk,l , 0̄)/ρ)) < ∞ for some arbitrary ρ > 0 is
denoted by ΛM(∆r) and is known as ∆r-Orlicz space of analytic sequences of fuzzy numbers.

Theorem 3.1. If (Xk,l),(Yk,l) ∈ St(∆r) and c ∈ L(Rn), then

(i) St(∆r)− lim
(

c
[

Mk,l

(
(∆rXk,l ,0̄)1/k+l

ρ

)])
= cSt(∆r)− lim

[
Mk,l

(
(∆rXk,l ,0̄)1/k+l

ρ

)]
,
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(ii) St(∆r)− lim
[

Mk,l

(
(∆rXk,l ,0̄)1/k+l

ρ

)]
= St(∆r)− lim

[
Mk,l

(
(∆rXk,l ,0̄)1/k+l

ρ

)]
+St(∆r)− lim

[
Mk,l

(
(∆rXk,l ,0̄)1/k+l

ρ

)]
,

where d̄ is a translation invariant.

Proof. (i) Let St(∆r)− lim
[
Mk,l

(
((∆rXk,l , 0̄)1/k+l)/ρ

)]
c ∈ L(R) and ε > 0 be given. Then

the proof follows from the following inequality

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(c∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
≤ 1

mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

|c|

}∣∣∣∣∣ .
(ii) Suppose that

St(∆r)− lim

[
Mk,l

(
(∆rXk,l , 0̄)1/k+l

ρ

)]
= 0

and

St(∆r)− lim

[
Mk,l

(
d̄(∆rYk,l , 0̄)1/k+l

ρ

)]
= 0.

By Minkowski’s inequality we get[
Mk,l

(
d̄((∆rXk,l +∆rYk,l), 0̄)1/k+l

ρ

)]

=

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
+

[
Mk,l

(
d̄(∆rYk,l , 0̄)1/k+l

ρ

)]
.

Therefore given ε > 0 we have

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄((∆rXk,l +∆rYk,l), 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
≤ 1

mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

2

}∣∣∣∣∣
+

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rYk,l , 0̄)1/k+l

ρ

)]
≥ ε

2

}∣∣∣∣∣ .
Hence St(∆r)− lim

[
Mk,l((((∆rXk,l +∆rYk,l), 0̄)1/k+l)/ρ)

]
= 0. This completes the proof.

Theorem 3.2. If a sequence X = (Xk,l) is ∆r-statistically convergent to the fuzzy number
zero and liminfmn(λmn/mn) > 0, then it is ∆r-statistically convergent to zero.

Proof. Given ε > 0 we have

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
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⊃ 1
mn

∣∣∣∣∣
{

k, l ≤ Im,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
Therefore,

1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
≥ 1

mn

∣∣∣∣∣
{

k, l ≤ Im,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣
≥ λmn

mn
1

λmn

∣∣∣∣∣
{

k, l ≤ Im,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]
≥ ε

}∣∣∣∣∣ .
Taking limit as m,n→ ∞ and using liminfmn(λmn/mn) > 0, we get X is ∆r-statistically
convergent to zero. This completes the proof.

Theorem 3.3. Let 0 ≤ pk,l ≤ qk,l and let {qk,l/pk,l} be bounded. Then Γ2
M [F,q,∆r] ⊂

Γ2
M [F, p,∆r].

Proof. Let

(3.1) X ∈ Γ
2
M [F,q,∆r] and given ε > 0, we have

(3.2)
1

mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l

≥ ε

}∣∣∣∣∣→ 0 as m,n→ ∞.

Let tk,l =
[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]qk,l and λk,l = pk,l/qk,l . Since pk,l ≤ qk,l , we have
0 ≤ λk,l ≤ 1. Take 0 < λ < λk,l . Define uk,l = tk,l(tk,l ≥ 1);uk,l = 0(tk,l < 1) and vk,l =

0(tk,l ≥ 1);vk,l = tk,l(tk,l < 1), tk,l = uk,l + vk,l , i.e., t
λk,l
k,l = u

λk,l
k,l + v

λk,l
k,l . Now it follows that

(3.3) u
λk,l
k,l ≤ uk,l ≤ tk,l and v

λk,l
k,l ≤ vλ

k,l .

Since t
λk,l
k,l = u

λk,l
k,l + v

λk,l
k,l , then t

λk,l
k,l ≤ tk,l + vλ

k,l ,

1
mn

∣∣∣∣∣∣
k, l ≤ m,n :

([
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l
)λk,l

≥ ε


∣∣∣∣∣∣

≤ 1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l

≥ ε

}∣∣∣∣∣
⇒ 1

mn

∣∣∣∣∣∣
k, l ≤ m,n :

([
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l
)pk,l/qk,l

≥ ε


∣∣∣∣∣∣

≤ 1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l

≥ ε

}∣∣∣∣∣
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⇒ 1
mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]pk,l

≥ ε

}∣∣∣∣∣
≤ 1

mn

∣∣∣∣∣
{

k, l ≤ m,n :

[
Mk,l

(
d̄(∆rXk,l , 0̄)1/k+l

ρ

)]qk,l

≥ ε

}∣∣∣∣∣ .
But 1/(mn)

∣∣{k, l ≤m,n :
[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]qk,l ≥ ε
}∣∣→ 0 as m,n→∞ by (3.2).

Therefore 1/(mn)
∣∣{k, l ≤ m,n :

[
Mk,l

(
(d̄(∆rXk,l , 0̄)1/k+l)/ρ

)]pk,l ≥ ε
}∣∣→ 0 as m,n→ ∞.

Hence

(3.4) X ∈ Γ
2
M [F, p,∆r].

From (3.1) and (3.4) we get Γ2
M [F,q,∆r] ⊂ Γ2

M [F, p,∆r]. This completes the proof of the
theorem.
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[1] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (2005), no. 1, 70–90.
[2] H. Altınok and M. Mursaleen, Delta-statistically boundedness for sequences of fuzzy numbers, Taiwanese J.

Math. 15 (2011), no. 5, 2081–2093.
[3] M. Basarir and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math. 21 (1999), no. 2,

193–200.
[4] F. Başar and Y. Sever, The space rLq of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157.
[5] T. J. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan and co. Ltd., New York, 1965.
[6] R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335–346.
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