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Abstract. Two new analytical closed formulae expressing explicitly third and fourth kinds
Chebyshev coefficients of an expansion for an infinitely differentiable function that has been
integrated an arbitrary number of times in terms of the original expansion coefficients of the
function are stated and proved. Hence, two new formulae expressing explicitly the integrals
of third and fourth kinds Chebyshev polynomials of any degree that has been integrated an
arbitrary number of times in terms of third and fourth kinds Chebyshev polynomials them-
selves are also given. New reduction formulae for summing some terminating hypergeo-
metric functions of unit argument are deduced. As an application of how to use Chebyshev
polynomials of third and fourth kinds and their shifted polynomials for solving high-order
boundary value problems, two numerical solutions of sixth-order boundary value problem
are presented and implemented based on applying spectral Galerkin method. Also, two nu-
merical examples are presented, aiming to demonstrate the accuracy and the efficiency of
the formulae we have obtained.
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1. Introduction

The Chebyshev polynomials have become increasingly important in numerical analysis,
from both theoretical and practical points of view. There are four kinds of Chebyshev poly-
nomials. The majority of books and research papers dealing with Chebyshev polynomials,
contain mainly results of Chebyshev polynomials of the first and second kinds Tn(x) and
Un(x) and their numerous uses in different applications, (see for example, [3,19,24]). How-
ever, there is only a very limited body of literature on Chebyshev polynomials of third and
fourth kinds Vn(x) and Wn(x), either from theoretical or practical points of view and their
uses in various applications (see, for instance Eslahchi et al. [18]). The interested reader in
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Chebyshev polynomials of third and fourth kinds is referred to the excellent book of Mason
and Handscomb [26].

If we were asked for ”a pecking order” of these four Chebyshev polynomials Tn(x),
Un(x), Vn(x) and Wn(x), then we would say that Tn(x) is the most important and versatile.
Moreover Tn(x) generally leads to the simplest formulae, whereas results for the other poly-
nomials may involve slight complications. However, all the four kinds of Chebyshev poly-
nomials have their role. For example, Un(x) is useful in numerical integration (see [25]),
while Vn(x) and Wn(x) can be useful in situations in which singularities occur at one end
point (+1 or -1) but not at the other (see [26]).

Classical orthogonal polynomials are used successfully and extensively for the numerical
solution of linear and nonlinear differential equations (see for instance [2, 4, 11–13, 15–17,
20]).

For spectral and pseudospectral methods; explicit formulae for the expansion coefficients
of the derivatives (integrals) in terms of the original expansion coefficients of the function
are needed. Formulae for the expansion coefficients of a general order derivative of an infin-
itely differentiable function in terms of those of the function are available for expansions in
Chebyshev [21], Legendre [27], ultraspherical [5,22], Jacobi [7], Laguerre [9], Hermite [10]
and Bessel [14] polynomials.

As an alternative approach to differentiating solution expansions is to integrate the differ-
ential equation q times, where q is the order of the equation. An advantage of this approach
is that the general equation in the algebraic system contains a finite number of terms. Phillips
and Karageorghis [28] have followed this approach to obtain a formula for the coefficients
of an expansion of ultraspherical polynomials that has been integrated an arbitrary number
of times in terms of the coefficients of the original expansion. Doha [6] proved the same
formula but in a simpler way than the formula suggested by Phillips and Karageorghis [28].
Also Doha proved a more general formula for Jacobi polynomials in [8], in which the q
times repeated integrals for Jacobi polynomials are given in terms of hypergeometric series
of type 3F2(1) which can not be summed in closed form except for certain special values of
its parameters. In [15], Doha and Bhrawy used the expressions for the q repeated integrals
of Jacobi polynomials, for solving the integrated forms of fourth-order differential equations
by using the Galerkin method, and they showed that the resulted systems are cheaper than
those obtained from applying the Galerkin method to solve the differentiated ones. This mo-
tivates our interest in deriving the qth repeated integration for like Chebyshev polynomials
of third and fourth kinds.

Up to now, and to the best of our knowledge, no closed analytical formulae for the
coefficients of integrated expansions and integrals of Chebyshev polynomials of third and
fourth kinds are known yet and are traceless in the literature. This also motivates our interest
in such polynomials.

The structure of the paper is as follows. In Section 2, we give some relevant properties of
Chebyshev polynomials of third and fourth kinds and their shifted polynomials. In Section
3, we state and prove two theorems, in the first one, third kind Chebyshev coefficients of an
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expansion for an infinitely differentiable function that has been integrated an arbitrary num-
ber of times is given in terms of third kind Chebyshev coefficients of the original expansion
of the function, and in the second, we give explicitly the q repeated integration of Cheby-
shev polynomial of third kind of any degree in terms of the Chebyshev polynomials of third
kind themselves. The corresponding formulae to those obtained in Section 3, for Chebyshev
polynomials of the fourth kind are presented in Section 4. Two new reduction formulae for
summing some terminating hypergeometric functions of the type 3F2(1) are given in Section
5. In Section 6, we present and implement two numerical spectral solutions of sixth-order
two point boundary value problems using shifted Chebyshev third kind-Galerkin method
(SC3GM) and shifted Chebyshev fourth kind-Galerkin method (SC4GM). In Section 7, two
numerical examples are presented to show the accuracy and the efficiency of the two pro-
posed algorithms of Section 6. Some concluding remarks are given in Section 8.

2. Some properties of Chebyshev polynomials of third and fourth kinds

The Chebyshev polynomials Vn(x) and Wn(x) of third and fourth kinds are polynomials in x
defined respectively by [26]

Vn(x) =
cos(n+ 1

2 )θ

cos θ

2

and Wn(x) =
sin(n+ 1

2 )θ

sin θ

2

,

where x = cosθ . The polynomials Vn(x) and Wn(x) are, in fact, rescalings of two particular
Jacobi polynomials P(α,β )

n (x) for the two nonsymmetric special cases β = −α = ±1/2.
These are given explicitly by

(2.1) Vn(x) =
22n(2n

n

) P
(− 1

2 , 1
2 )

n (x)

and

(2.2) Wn(x) =
22n(2n

n

) P
( 1

2 ,− 1
2 )

n (x).

It is readily seen that
Wn(x) = (−1)n Vn(−x)

and therefore, it is sufficient to establish properties for Vn(x), and hence deduce analogous
properties for Wn(x)(replacing x by −x).

The polynomials Vn(x) and Wn(x) are orthogonal on (−1,1) with respect to the weight
functions

√
(1+ x)/(1− x) and

√
(1− x)/(1+ x), respectively, i.e.,∫ 1

−1

√
1+ x
1− x

Vm(x)Vn(x)dx =
∫ 1

−1

√
1− x
1+ x

Wm(x)Wn(x)dx =

{
0, m 6= n,

π, m = n,

and they are may be generated by using the two recurrence relations

Vn(x) = 2xVn−1(x)−Vn−2(x), n = 2,3, . . . , with V0(x) = 1, V1(x) = 2x−1,
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and

Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2,3, . . . , with W0(x) = 1, W1(x) = 2x+1.

The following two structure formulae are useful in the sequel,

(2.3) Vn(x) =
1

2n(n+1)
[nDVn+1(x)−DVn(x)− (n+1)DVn−1(x)] , n≥ 1,

Wn(x) =
1

2n(n+1)
[nDWn+1(x)+DWn(x)− (n+1)DWn−1(x)] , n≥ 1,

with D≡ d/(dx).

2.1. Shifted Chebyshev polynomials of third and fourth kinds

The shifted Chebyshev polynomials of third and fourth kinds are defined on [a,b], respec-
tively as

V ∗n (x) = Vn

(
2x−a−b

b−a

)
, W ∗n (x) = Wn

(
2x−a−b

b−a

)
.

All properties of Chebyshev polynomials of third and fourth kinds, can be easily trans-
formed to give the corresponding properties for their shifted polynomials.

The orthogonality relations of V ∗k (x) and W ∗k (x) on [a,b] with respect to the weight func-
tions

√
(x−a)/(b− x) and

√
(b− x)/(x−a), are given by

∫ b

a

√
x−a
b− x

V ∗k (x)V ∗j (x)dx =
∫ b

a

√
b− x
x−a

W ∗k (x)W ∗j (x)dx =

(b−a)
π

2
, k = j,

0, k 6= j.

3. The coefficients of integrated expansion and integrals of Chebyshev polynomials of
third kind

3.1. The coefficients of integrated expansion of Vn(x)

Following Phillips and Karageorghis [28] and Doha [6], and let b(q)
n , q ≥ 1, denotes the

third kind Chebyshev expansion coefficients of f (x), x ∈ [−1,1], i.e.,

(3.1) f (x) =
∞

∑
n=0

b(q)
n Vn(x),

and let f (x) be an infinitely differentiable function, then we may express the `th derivative
of f (x) in the form

(3.2) f (`)(x) =
∞

∑
n=0

b(q−`)
n Vn(x), `≥ 0,

and in particular

(3.3) f (q)(x) =
∞

∑
n=0

bnVn(x), bn = b(0)
n .
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It is clear from Equations (3.1) and (3.2) that

(3.4)
∞

∑
n=0

b(q)
n

dVn(x)
dx

=
∞

∑
n=0

b(q−1)
n Vn(x),

then, if we substitute the identity (2.3) into Equation (3.4), we get the following difference
equation

(3.5) b(q)
n =

1
2n

b(q−1)
n−1 −

1
2n(n+1)

b(q−1)
n − 1

2(n+1)
b(q−1)

n+1 , ∀ n≥ 1, q≥ 1.

Now, we prove the following theorem.

Theorem 3.1. Let f (x) be an infinitely differentiable function defined on [−1,1]. Then the
third kind Chebyshev coefficients b(q)

n of f (x) are related to third kind Chebyshev coefficients
bn of the qth derivative of f (x) by

(3.6) b(q)
n =

q

∑
m=0

Am,n,q b2m+n−q +
q

∑
m=1

Bm,n,q b2m+n−q−1,

where

Am,n,q =
(−1)m q!(m+n−q)!
2q m!(m+n)!(q−m)!

and Bm,n,q =
(−1)m q!(m+n−q−1)!

2q (m−1)!(m+n)!(q−m)!
.

Proof. We proceed by induction on q. For q = 1, the application of formula (3.5) yields the
required result. Assuming that the theorem is valid for q, we have to show that it is true for
q+1, i.e.,

(3.7) b(q+1)
n =

q+1

∑
m=0

Am,n,q+1 b2m+n−q−1 +
q+1

∑
m=1

Bm,n,q+1 b2m+n−q−2.

Replacing q by q+1 in (3.5) leads to

(3.8) b(q+1)
n =

1
2n

b(q)
n−1−

1
2n(n+1)

b(q)
n −

1
2(n+1)

b(q)
n+1, n = 1,2, . . . .

Thus after the application of the induction hypothesis, the right hand side of (3.8) becomes

b(q+1)
n =

1
2n

{
q

∑
m=0

Am,n−1,q b2m+n−q−1 +
q

∑
m=1

Bm,n−1,q b2m+n−q−2

}

− 1
2n(n+1)

{
q

∑
m=0

Am,n,q b2m+n−q +
q

∑
m=1

Bm,n,q b2m+n−q−1

}

− 1
2(n+1)

{
q

∑
m=0

Am,n+1,q b2m+n−q+1 +
q

∑
m=1

Bm,n+1,q b2m+n−q

}
.

The last equation can be written in the form

b(q+1)
n = ∑

1
+∑

2
,
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where

∑
1

=
1

2n
A0,n−1,q bn−q−1−

1
2(n+1)

Aq,n+1,q bn+q+1

+
q

∑
m=1

{
1

2n
Am,n−1,q−

1
2n(n+1)

Bm,n,q−
1

2(n+1)
Am−1,n+1,q

}
b2m+n−q−1,

and

∑
2

=
{

1
2n

B1,n−1,q−
1

2n(n+1)
A0,n,q

}
bn−q

−
{

1
2n(n+1)

Aq,n,q +
1

2(n+1)
Bq,n+1,q

}
bn+q

+
q

∑
m=2

{
1

2n
Bm,n−1,q−

1
2n(n+1)

Am−1,n,q−
1

2(n+1)
Bm−1,n+1,q

}
b2m+n−q−2.

It is not difficult to see that

A0,n,q+1 =
1

2n
A0,n−1,q, Aq+1,n,q+1 =

−1
2(n+1)

Aq,n+1,q,

Am,n,q+1 =
1

2n
Am,n−1,q−

1
2n(n+1)

Bm,n,q−
1

2(n+1)
Am−1,n+1,q,

and

B1,n,q+1 =
1

2n
B1,n−1,q−

1
2n(n+1)

A0,n,q,

Bq+1,n,q =−
{

1
2n(n+1)

Aq,n,q +
1

2(n+1)
Bq,n+1,q

}
,

Bm,n,q+1 =
1

2n
Bm,n−1,q−

1
2n(n+1)

Am−1,n,q−
1

2(n+1)
Bm−1,n+1,q.

Therefore, we have

∑
1

=
q+1

∑
m=0

Am,n,q+1 b2m+n−q−1, ∑
2

=
q+1

∑
m=1

Bm,n,q+1 b2m+n−q−2,

and then

b(q+1)
n =

q+1

∑
m=0

Am,n,q+1 b2m+n−q−1 +
q+1

∑
m=1

Bm,n,q+1 b2m+n−q−2.

This proves relation (3.7), and hence completes the proof of the Theorem.

Remark 3.1. It is to be noted here that relation (3.6) may be written in the alternative
equivalent form

(3.9) b(q)
n =

2q

∑
j=0

G j,n,q b j+n−q,



Integrated Expansions and Integrals of Chebyshev Polynomials 389

where

(3.10) G j,n,q =
q!
2q



(−1)
j
2

(
n−q+ j

2

)
!(

j
2

)
!
(

n+ j
2

)
!
(

q− j
2

)
!
, j even,

(−1)
j+1
2

(
n−q+ j−1

2

)
!(

j−1
2

)
!
(

n+ j+1
2

)
!
(

q−
(

j+1
2

))
!
, j odd.

3.2. Computation of q times repeated integration of Vn(x)

Theorem 3.2. If we define q times repeated integration of Vn(x) by

I(q)
n (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

Vn(x)

q times︷ ︸︸ ︷
dxdx · · ·dx,

then

(3.11) I(q)
n (x) =

n+q

∑
k=q

Ek,n,q Vk(x)+πq−1(x), n≥ q≥ 1,

where

(3.12) Ek,n,q =
q!
2q



(−1)
n−k+q

2

(
n+k−q

2

)
!(

k−n+q
2

)
!
(

n−k+q
2

)
!
(

k+n+q
2

)
!
, (n+k+q) even,

(−1)
n−k+q+1

2

(
n+k−q−1

2

)
!(

k−n+q−1
2

)
!
(

n−k+q−1
2

)
!
(

k+n+q+1
2

)
!
, (n+k+q) odd,

and πq−1(x) is a polynomial of degree at most (q−1).

Proof. If we integrate Equation (3.3) q times with respect to x, we get

(3.13) f (x) =
∞

∑
n=0

bn I(q)
n (x)+ π̄q−1(x),

where π̄q−1(x) is a polynomial of degree at most (q−1). Making use of formula (3.9) and
substitution into (3.1), gives

(3.14) f (x) =
∞

∑
n=0

{
2q

∑
j=0

G j,n,q bn+ j−q

}
Vn(x).

Expanding (3.14) and collecting similar terms, enables one to put Equation (3.14) in the
form

f (x) =
∞

∑
n=0

{
n+q

∑
k=0

Gn−k+q,k,q Vk

}
bn,

then comparison with Equation (3.13) yields

(3.15) I(q)
n (x) =

n+q

∑
k=q

Gk,n−k+q,q Vk(x)+πq−1(x),
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where πq−1(x) is a polynomial of degree at most (q−1). Equation (3.15) may be written as

I(q)
n (x) =

n+q

∑
k=q

Ek,n,q Vk(x)+πq−1(x),

where Ek,n,q is given by (3.12). This completes the proof of Theorem 3.2.

As an immediate consequence of Theorem 3.2, the q times repeated integration of the shifted
Chebyshev third kind V ∗n (x) can be easily obtained. This result is given in the following
corollary.

Corollary 3.1. If we define the q times repeated integration of V ∗n (x) by

Ī(q)
n (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

V ∗n (x)

q times︷ ︸︸ ︷
dxdx · · ·dx,

then

Ī(q)
n (x) =

(
b−a

2

)q n+q

∑
k=q

Ek,n,q V ∗k (x)+σq−1(x),

where Ek,n,q is as given in (3.12), and σq−1(x) a polynomial of degree at most (q−1).

4. The coefficients of integrated expansions and integrals of Wn(x)

Let c(q)
n , q≥ 1, denote the fourth kind Chebyshev expansion coefficients of f (x), x∈ [−1,1],

i.e.,

f (x) =
∞

∑
n=0

c(q)
n Wn(x),

and let f (x) be an infinitely differentiable function, then we may express the qth derivative
of f (x) in the form

f (q)(x) =
∞

∑
n=0

cnWn(x), cn = c(0)
n .

Following a similar procedure to that followed in Section 3.1, we get the following differ-
ence equation

c(q)
n =

1
2n

c(q−1)
n−1 +

1
2n(n+1)

c(q−1)
n − 1

2(n+1)
c(q−1)

n , ∀n≥ 1, q≥ 1.

Now, we give without proof the corresponding results to those given in Section 3.

Theorem 4.1. Let f (x) be an infinitely differentiable function defined on [−1,1]. The fourth
kind Chebyshev coefficients c(q)

n of f (x) are related to fourth kind Chebyshev coefficients cn

of the qth derivative of f (x) by

c(q)
n =

2q

∑
j=0

M j,n,q c j+n−q, where Mn, j,q = (−1) j G j,n,q,

and G j,n,q is as defined in (3.10).
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Theorem 4.2. If we define q times repeated integration of Wn(x) by

J(q)
n (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

Wn(x)

q times︷ ︸︸ ︷
dxdx · · ·dx,

then

(4.1) J(q)
n (x) =

n+q

∑
k=q

Sk,n,q Wk(x)+ρq−1(x),

where

(4.2) Sk,n,q = (−1)n+k+q Ek,n,q.

and ρq−1(x) is a polynomial of degree at most (q−1) and Ek,n,q is as defined in (3.12).

Corollary 4.1. If we define the q times repeated integration of W ∗n (x) by

J̄(q)
n (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

W ∗k (x)

q times︷ ︸︸ ︷
dxdx · · ·dx,

then

J̄(q)
n (x) =

(
b−a

2

)q n+q

∑
k=q

Sk,n,q W ∗k (x)+δq−1(x),

where Sk,n,q is as given in (4.2), and δq−1(x) a polynomial of degree at most (q−1).

5. Reduction formulae for terminating hypergeometric functions of the type 3F2(1)

In [7], a formula expressing explicitly the integrals of Jacobi polynomials of any degree and
for any order in terms of the Jacobi polynomials themselves is given. This result is stated in
the following theorem.

Theorem 5.1. If we define the q times repeated integration of the classical Jacobi polyno-
mial P(α,β )

n (x) by

I(q,α,β )
n (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

P(α,β )
n (x)

q times︷ ︸︸ ︷
dxdx · · ·dx,

then

I(q,α,β )
n (x) =

2q

(n−q+α +β +1)q

n+q

∑
k=q

Cn+q,k(α−q,β −q,α,β )P(α,β )
k (x)+πq−1(x),

q≥ 0, n≥ q+1 for α = β =−1
2

; q≥ 0, n≥ q for α 6=−1
2

or β 6=−1
2
, and

Cn+q,k(α−q,β −q,α,β ) =
(n−q+α +β +1)k (k−q+α +1)n−k+q Γ(k +α +β +1)

(n− k +q)! Γ(2k +α +β +1)

×3 F2

(
k−n−q, k +n−q+α +β +1, k +α +1
k−q+α +1, 2k +α +β +2

∣∣∣∣1) .

(5.1)
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Remark 5.1. It is to be noted here that although the 3F2(1) in (5.1) is terminated, it can
not be summed in closed form except for certain special values of its parameters. For the
special case correspond to β = α , this 3F2(1) can be summed in a closed form with the
aid of Watson’s identity (see [8]). The two formulae (3.11) and (4.1) enable one to deduce
two new closed forms for the 3F2(1) in (5.1) for the two nonsymmetric cases correspond to
β =−α =±1/2. These two reduction formulae are given in the following corollary.

Corollary 5.1. For all k,n,q ∈ Z≥0 and k ≤ n+q, we have

3F2

(
k−n−q, k +n−q+1, k + 1

2
k−q+ 1

2 , 2k +2

∣∣∣∣1)=
(2k +1)!q!Γ(k−q+ 1

2 )
22k+1 Γ(k + 3

2 )
×

(−1)
n−k+q

2 Γ

(
n−k+q+1

2

)
Γ

(
n+k−q+1

2

)
Γ

(
k−n+q+2

2

)
Γ

(
k+n+q+2

2

) , (k+n+q) even,

(−1)
n−k+q+1

2 Γ

(
n−k+q+2

2

)
Γ

(
n+k−q+2

2

)
Γ

(
k−n+q+1

2

)
Γ

(
k+n+q+3

2

) , (k+n+q) odd,

(5.2)

and

3F2

(
k−n−q, k +n−q+1, k + 3

2
k−q+ 3

2 , 2k +2

∣∣∣∣1)=
(−1)n+k+q (2k +1)!q!Γ(k−q+ 3

2 )
22k (2n+1)Γ(k + 3

2 )
×

(−1)
n−k+q

2 Γ

(
n−k+q+1

2

)
Γ

(
n+k−q+1

2

)
Γ

(
k−n+q+2

2

)
Γ

(
k+n+q+2

2

) , (k+n+q) even,

(−1)
n−k+q+1

2 Γ

(
n−k+q+2

2

)
Γ

(
n+k−q+2

2

)
Γ

(
k−n+q+1

2

)
Γ

(
k+n+q+3

2

) , (k+n+q) odd.

(5.3)

Proof. Substituting by the two identities (2.1) and (2.2) in the two formulae (3.11) and (4.1),
and comparing the results with those obtained from Theorem 5.1 for the two special cases
correspond to α =−β =−1/2 and α =−β = 1/2 respectively, the two reduction formulae
(5.2) and (5.3) can be immediately deduced.

Remark 5.2. From the two identities (5.2) and (5.3), the following transformation formula
holds for all k,n,q ∈ Z≥0 and k ≤ n+q,

3F2

(
k−n−q, k +n−q+1, k + 3

2
k−q+ 3

2 , 2k +2

∣∣∣∣1)
=

(−1)n+k+q (2k−2q+1)
2n+1 3F2

(
k−n−q, k +n−q+1, k + 1

2
k−q+ 1

2 , 2k +2

∣∣∣∣1) .
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6. Solution of the integrated forms of sixth-order two point boundary value problem

Even order boundary value problems of higher order have been investigated by a large num-
ber of authors because of both their mathematical importance and their potential for applica-
tions in hydrodynamic and hydromagnetic stability. Sixth-order boundary-value problems
(BVPs) are known to arise in astrophysics; the narrow convecting layers bounded by stable
layers, which are believed to surround A-type stars, may be modeled by sixth-order BVPs
(see, for instance, [1, 23]).

In this section, we are interested in using SC3GM and SC4GM to solve the following
sixth-order two point boundary value problem:

(6.1) −u(6)(x)+
5

∑
i=0

ci u(i)(x) = f (x), a < x < b,

subject to the nonhomogeneous boundary conditions

(6.2) u( j)(a) = α j, u( j)(b) = β j, j = 0,1,2.

In such case and with the aid of a suitable transformation, namely

U(x) = u(x)+
5

∑
i=0

γi xi,

where γi, i = 0,1, . . . ,5, are coefficients should be determined such that U(x) satisfies the
homogeneous boundary conditions, namely

(6.3) U ( j)(a) = U ( j)(b) = 0, j = 0,1,2.

It can be easily shown that problem (6.1) subject to the nonhomogeneous boundary condi-
tions (6.2) is equivalent to a modified problem of the form

(6.4) −U (6)(x)+
5

∑
i=0

ci U (i)(x) = g(x), a < x < b,

subject to the homogeneous boundary conditions (6.3),where

g(x) = f (x)+
5

∑
i=0

di xi,

and di, 0≤ i≤ 5 are some constants that should be determined as part of the solution.
Now, we consider the integrated form for Equation (6.4) subject to the homogeneous bound-
ary conditions (6.3), namely,

(6.5)

−U(x)+
5

∑
i=0

ci

∫ (6−i)
U(x)(dx)6−i = h(x)+

5

∑
i=0

ei xi, x ∈ (a,b),

U ( j)(a) = U ( j)(b) = 0, j = 0,1,2, h(x) =
∫ (6)

g(x)(dx)6,
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where

∫ (q)
U(x)(dx)q =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

U(x)

q times︷ ︸︸ ︷
dxdx · · ·dx .

Now, define the following spaces

SN = span{V ∗0 (x),V ∗1 (x),V ∗2 (x), . . . ,V ∗N(x)},
S̄N = span{W ∗0 (x),W ∗1 (x),W ∗2 (x), . . . ,W ∗N(x)},

YN = {y(x) ∈ SN : D j y(±1) = 0, j = 0,1,2},

ȲN = {ȳ(x) ∈ S̄N : D j ȳ(±1) = 0, j = 0,1,2},

then, the shifted Chebyshev third kind-Galerkin and shifted Chebyshev fourth kind-Galerkin
procedures for solving (6.5) are to find UN(x) ∈ YN and ŪN(x) ∈ ȲN such that

−
(
UN(x),y(x)

)
w1

+
5

∑
i=0

ci

(∫ 6−i
UN(x)(dx)6−i,y(x)

)
w1

=

(
h(x)+

5

∑
i=0

ri V ∗i (x),y(x)

)
w1

, ∀ y(x) ∈ YN ,

(6.6)

and

−
(
ŪN(x), ȳ(x)

)
w2

+
5

∑
i=0

ci

(∫ (6−i)
ŪN(x)(dx)6−i, ȳ(x)

)
w2

=

(
h(x)+

5

∑
i=0

r̄i W ∗i (x), ȳ(x)

)
w2

, ∀ ȳ(x) ∈ ȲN ,

(6.7)

where (u,v)w =
b∫

a

wuvdx, is the scalar inner product in the weighted space L2
w(a,b), w1 =√

(x−a)/(b− x) and w2 =
√

(b− x)/(x−a).
Now, we choose the following two bases functions φk(x) ∈ YN and ψk(x) ∈ ȲN to be of the
forms

φk(x) =
6

∑
m=0

dm,k V ∗k+m(x), ψk(x) =
6

∑
m=0

d̄m,k W ∗k+m(x), k = 0,1, . . . ,N−6,

where

dm,k = (k +1)(k +2)(k +3)



(−1)
m
2
( 3

m
2

)
(k + m

2 )!

(k + m
2 +3)!

, m even,

(−1)
m+1

2 (m+1
2 )
( 3

m+1
2

)
(k + m−1

2 )!

(k + m+7
2 )!

, m odd,

and
d̄m,k = (−1)m dm,k.
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Now, the two variational formulations (6.6) and (6.7), are respectively equivalent to

−
(
UN(x),φk(x)

)
w1

+
5

∑
i=0

ci

(∫ (6−i)
UN(x)(dx)6−i,φk(x)

)
w1

=

(
h(x)+

5

∑
i=0

ri V ∗i (x),φk(x)

)
w1

, k = 0,1, . . . ,N−6,

(6.8)

and

−
(
ŪN(x),ψk(x)

)
w2

+
5

∑
i=0

ci

(∫ (6−i)
ŪN(x)(dx)6−i,ψk(x)

)
w2

=

(
h(x)+

5

∑
i=0

r̄i W ∗i (x),ψk(x)

)
w2

, k = 0,1, . . . ,N−6.

(6.9)

It is worthy noting that the constants ri and r̄i, 0≤ i≤ 5, would not appear if we take k ≥ 6
in (6.8) and (6.9), and accordingly we have
(6.10)(
−UN(x),φk(x)

)
w1

+
5

∑
i=0

ci

(∫ (6−i)
UN(x)(dx)6−i,φk(x)

)
w1

=(h(x),φk(x))w1
, 6≤ k≤N,

and
(6.11)(
−ŪN(x),ψk(x)

)
w2

+
5

∑
i=0

ci

(∫ (6−i)
ŪN(x)(dx)6−i,ψk(x)

)
w2

=(h(x),ψk(x))w2
, 6≤ k≤N.

Let us denote

hk = (h(x),φk(x))w1 , h = (h6,h7, . . . ,hN)T , h̄k = (h(x),ψk(x))w2 , h̄ = (h̄6, h̄7, . . . , h̄N)T ,

UN(x) =
N−6

∑
k=0

pk φk(x), p = (p0, p1, . . . , pN−6)T ,

ŪN(x) =
N−6

∑
k=0

p̄k ψk(x), p̄ = (p̄0, p̄1, . . . , p̄N−6)T ,

A = (ak j)6≤k, j≤N =−
(
φ j−6(x),φk(x)

)
w1

, Z = (zk j)6≤k, j≤N =−
(
ψ j−6(x),ψk(x)

)
w2

,

B6−i = (b6−i
k j )6≤k, j≤N =

(∫ (6−i)
φ j−6(x)(dx)6−i,φk(x)

)
w1

, 0≤ i≤ 5,

E6−i = (e6−i
k j )6≤k, j≤N =

(∫ (6−i)
ψ j−6(x)(dx)6−i,ψk(x)

)
w2

, 0≤ i≤ 5,

then the two relations (6.10) and (6.11) are equivalent to the following two matrix systems(
A+

5

∑
i=0

ci B6−i

)
p = h,
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and (
Z +

5

∑
i=0

ci E6−i

)
p̄ = h̄,

where the nonzero elements of the matrices A, Z, B6−i, E6−i, 0 ≤ i ≤ 5 can be obtained
explicitly with the aid of the two Corollaries 3.1 and 4.1.

7. Numerical results

For the sake of comparison of our two methods with some other techniques discussed by
some other authors, we consider the following two examples.

Example 7.1. Consider the following BVP (see [1, 23]):

y(6)(x)+ y(x) = 6(2x cos(x)+5 sin(x)), x ∈ [−1,1],

y(−1) = y(1) = 0, y(1)(−1) = y(1)(1) = 2 sin(1),

y(2)(−1) =−y(2)(1) =−4 cos(1)−2 sin(1).

The analytic solution of this problem is

y(x) = (x2−1) sin(x).

Table 1 lists the maximum pointwise error E of u− uN using SC3GM and SC4GM for
various values of N. In Table 2, we introduce a comparison between the best errors obtained
by our two methods (SC3GM and SC4GM), the spline based technique developed in [1] and
Spline collocation method (SCM) developed in [23]. This table shows that our two methods
are more accurate if compared with the method developed in [1] and [23].

Table 1. Maximum pointwise errors for N = 12,16,20,24.

N C3GM C4GM
12 1.866×10−8 1.883×10−8

16 2.384×10−13 2.394×10−13

20 2.797×10−16 2.797×10−16

24 2.71×10−16 3.674×10−16

Table 2. Comparison between different methods for Example 7.1

Error SC3GM SC4GM method in [1] (SCM) developed in [23]
E 2.71×10−16 3.674×10−16 3.81×10−8 3.1311×10−8

Example 7.2. Consider the following BVP (see [23]):

y(6)(x)+ y(3)(x)+ y(2)(x)− y(x) = (−15x2 +78x−114)e−x, x ∈ [0,1],

y(0) = 0, y′(0) = 0, y′′(0) = 0, y(1) =
1
e
, y′(1) =

2
e
, y′′(1) =

1
e
,

which has the exact solution y(x) = x3e−x.
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Table 3 lists the maximum pointwise error E of u− uN using SC3GM and SC4GM for
various values of N. In Table 4, we give a comparison between the best errors obtained by
our two methods (SC3GM and SC4GM) and Spline collocation method (SCM) developed
in [23]. This table shows that our two methods are more accurate if compared with the
method developed in [23].

Table 3. Maximum pointwise errors for N = 12,16,20,24

N SC3GM SC4GM
12 1.4125×10−11 1.30372×10−11

16 1.54634×10−16 1.01725×10−16

20 1.38778×10−16 9.06122×10−17

24 1.2078×10−16 1.52266×10−16

Table 4. Comparison between different methods for Example 7.2 using different methods

Error SC3GM SC4GM SCM in [23]
E 1.2078×10−16 1.52266×10−16 8.8478×10−9

8. Concluding remarks

This paper deals with formulae relating the coefficients in the integrated expansions of
Chebyshev polynomials of third and fourth kinds to those of the original expansion that
has been integrated any number of times. It also develops formulae associated with the q
times integration of Chebyshev polynomials of third and fourth kinds. In this article, and
as an important application, we describe how to use these formulae to solve sixth-order two
point boundary value problems. To the best of our knowledge, all the presented theoretical
formulae are completely new and we do believe that these formulae may be used to solve
some other kinds of high even-order and high-odd order boundary value problems.

Acknowledgement. The authors would like to thank the referees for their comments and
suggestions which improved the manuscript in its present form.
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