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Abstract. Bayes and frequentist estimators are obtained for the two-parameter Weibull
failure time distribution with uncensored observations as well as the survival/reliability and
hazard function. The Weibull distribution is used extensively in life testing and reliabil-
ity/survival analysis. The Bayes approach is obtained using Lindleys approximation tech-
nique with standard non-informative (vague) prior and a proposed generalisation of the non-
informative prior. A simulation study is carried out to compare the performances of the
methods. It is observed from the study that the unknown parameters, the reliability and haz-
ard functions are best estimated by Bayes using linear exponential loss with the proposed
prior followed by general entropy loss function.
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1. Introduction

As a result of the adaptability in fitting time-to-failure of a very widespread multiplicity to
multifaceted mechanisms, the Weibull distribution has assumed the centre stage especially
in the field of life-testing and reliability/survival analysis. It has shown to be very useful
for modeling and analysing life time data in medical, biological and engineering sciences,
Lawless [11]. Much of the popularity of the Weibull distribution is due to the wide variety
of shapes it can assume by varying its parameters. We have considered here a situation
where all the units under investigation either failed before or at the end of the study. In a
situation of this sort, one has at his/her disposal exact values of the observed units. In other
words uncensored observations.
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Maximum likelihood estimator (MLE) is quite efficient and very popular both in
literature and practise. The Bayesian approach has also recently being employed for
estimating parameters. Research have been done to compare MLE and that of the Bayesian
approach in estimating the Weibull parameters. Al Omari and Ibrahim [4] conducted a
study on Bayesian survival estimator for Weibull distribution with censored data. Pandey
et al. [13], compared Bayesian and maximum likelihood estimation of the scale parameter
of Weibull with known shape parameter under LINEX and Syuan-Rong and Shuo-Jye [10]
considered Bayesian estimation and prediction for Weibull model with progressive censor-
ing. Similar work can be seen in [2, 3, 18].

The aim of this paper is two fold. The maximum likelihood estimator of the reliability
function and the hazard rate is considered. In other to obtain the estimates of the reliability
function and the hazard rate, the MLE of the Weibull two parameters are obtained. It is
observed that the MLEs cannot be obtained in closed form, we therefore propose to use the
Newton-Raphson numerical approximation method to compute the MLEs via the Taylor
series, and the proposed method works quite well.

The second aim of this paper is to consider the Bayesian inference also for the unknown
parameters, the reliability function and the hazard rate. It is remarkable that most of the
Bayesian inference procedures have been developed with the usual squared error loss func-
tion, which is symmetrical and associates equal importance to the losses due to overestima-
tion and underestimation of equal magnitude Vasile et al. [14]. However, such a restriction
may be impractical in most situations of practical importance. For example, in the estima-
tion of the hazard rate function, an overestimation is usually much more serious than an
underestimation. In this case, the use of a symmetric loss function might be inappropriate
as also emphasised by Basu and Ebrahimi [5]. In this paper, the Bayes estimates are ob-
tained under the linear exponential (LINEX) loss, general entropy and squared error loss
function using Lindley’s approximation technique with standard non-informative prior and
a proposed generalised non-informative prior.

The rest of the paper is arranged as follows: Section 2 contains the derivative of the pa-
rameters based on which the reliability function and the hazard rate are determined under
maximum likelihood estimator, Section 3 is the Bayesian estimator with non-informative
and generalised non-informative priors. Section 4 is the linear exponential (LINEX) loss
function followed by Lindley approximation in Section 5 and then general entropy loss
function in Section 6. Section 7 depicts the symmetric loss function next to it is the simula-
tion study in Section 8. Results and discussion are in Section 9 and conclusion can be found
in Section 10.

2. Maximum likelihood estimation

Suppose T = t1, . . . , tn, is an uncensored observation from a sample of n units or individuals
under examination. Also assume that the uncensored observations (data) follow the Weibull
model. Where the two-parameter Weibull failure time distribution of α and β has a proba-
bility density function (pdf) and a cumulative distribution function (cdf) given respectively
by

f (t) =
β

α

( t
α

)β−1
exp
[
−
( t

α

)β
]
,(2.1)
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F(t) = 1− exp
[
−
( t

α

)β
]
.

The reliability function R(t), and the hazard rate H(t) also known as the instantaneous
failure rate are given as

R(t) = exp
[
−
( t

α

)β
]
,

H(t) =
(

β

α

)( t
α

)β−1
.

The likelihood function of the pdf from Equation (2.1) is given as

L(ti,α,β ) =
n

∏
i=1

{(
β

α

)( ti
α

)β−1
exp
[
−
( ti

α

)β
]}

.(2.2)

where β represents the shape parameter and α the scale parameter. The log-likelihood
function may be written as

` = n ln(β )−nβ ln(α)+(β −1)
n

∑
i=1

ln(ti)−
n

∑
i=1

( ti
α

)β

.(2.3)

From Equation (2.3), differentiating the log-likelihood equation for the parameters α and β

we have
∂`

∂α
=−n

(
β

α

)
+
(

β

α

) n

∑
i=1

( ti
α

)
= 0,(2.4)

∂`

∂β
=

n
β

+
n

∑
i=1

ln
( ti

α

)
−

n

∑
i=1

( ti
α

)β

ln
( ti

α

)
= 0.(2.5)

From Equation (2.4) α̂ is obtained in-terms of β̂ in the form

α̂ =

[
1
n

n

∑
i=1

(ti)β̂

]1/β̂

.

From Equation (2.5) β̂ is obtained by making use of Newton-Raphson method.
The corresponding maximum likelihood estimators of the reliability function and the

hazard rate are respectively

ŜML(t) = exp

[
−
(

t
α̂ML

)β̂ML
]

,

F̂ML(t) =
β̂ML

α̂ML

(
t

α̂ML

)β̂ML−1

.

3. Bayesian estimation

Bayesian estimation approach has received a lot of attention for analysing failure time data.
It makes use of ones prior knowledge about the parameters and also takes into consideration
the data available. If one’s prior knowledge about the parameter is available, it is suitable
to make use of an informative prior but in a situation where one does not have any prior
knowledge about the parameter and cannot obtain vital information from experts to this
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regard, then a non-informative prior will be a suitable alternative to use, Guure et al. [7]. In
this study a non-informative prior approach to the parameters is employed. Given a sample
T = (t1, t2, . . . , tn), the likelihood (L) function follows Equation (2.2).

The Bayes estimates of the unknown parameters, the reliability function and the hazard
rate are considered with different loss functions given respectively as

Linex loss : L(θ̂ −θ) ∝ exp(cθ̂)Eθ [exp(−cθ)]− c(θ̂ −Eθ (θ))−1,(3.1)

Generalised entropy loss : L(θ̂ −θ) ∝

(
θ̂

θ

)k

− k ln

(
θ̂

θ

)
−1,(3.2)

Squared error loss : L(θ̂ −θ) = (θ̂ −θ)2.(3.3)

3.1. Non-informative prior

Consider a likelihood function to be of the form L(θ), with its Fisher Information I(θ) =
−E
(
∂ 2 logL(θ)/∂θ 2

)
. The Fisher Information measures the sensitivity of an estimator.

Jeffreys (1961) suggested that π(θ) ∝ det(I(θ))1/2 be considered as a prior for the like-
lihood function L(θ). The Jeffreys prior is justified on the grounds of its invariance under
parametrization according to Sinha [16].

Under the two-parameter Weibull distribution the non-informative (vague) prior
according to Sinha and Sloan [15] is given as

v(α,β ) ∝

(
1

αβ

)
.

Both Jeffreys prior and reference prior are special cases of the vague prior, when β = 1, we
have a standard Jeffreys prior for the Weibull distribution given in Equation (2.1).

Let the likelihood equation which is L(ti|α,β ) be the same as (2.2). The joint posterior
of (α,β ) is given by

(3.4) π(α,β |t) ∝ L(t|α,β )v(α,β ).

The marginal distribution function is the double integral of Equation (3.4).
Therefore, the posterior probability density function of α and β given the data (t1, t2, . . . , tn)

is obtained by dividing the joint posterior density function over the marginal distribution
function as

(3.5) π
∗(α,β |t) =

L(t|α,β )v(α,β )∫
∞

0
∫

∞

0 L(t|α,β )v(α,β )dαdβ
.

3.2. Generalised non-informative prior

We propose a generalised non-informative prior such that,

v1(θ) ∝ [π(θ)]a, a 6= 1,> 0.

This is a generalisation of the non-informative prior, when a = 1, we have the standard
non-informative prior and undefined when a = 0. Since our knowledge on the parameters
is limited as a result of which a non-informative prior approach is employed on both pa-
rameters, it is important that one ensures the prior does not significantly influence the final
result. If our limited or lack of knowledge influences the results, one may end-up giving
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wrong interpretation which could affect whatever it is we seek to address. It is as a result of
this that the generalised prior is considered.

When

v1(θ) ∝

(
1
θ

)a

, then,

v1(α,β ) ∝

(
1

αβ

)a

.

The likelihood function from Equation (2.2) is

L(ti|α,β ) =
n

∏
i=1

[(
β

α

)( ti
α

)β−1
exp
[
−
( ti

α

)β
]}

.

With Bayes theorem the joint posterior distribution of the parameters α and β is

π
∗(α,β |t) =

(
k

αβ

)a n

∏
i=1

{(
β

α

)( ti
α

)β−1
exp
[
−
( ti

α

)β
]}

and the marginal distribution is

=
∫

∞

0

∫
∞

0

(
k

αβ

)a n

∏
i=1

{(
β

α

)( ti
α

)β−1
exp
[
−
( ti

α

)β
]}

dαdβ .

where k is the normalizing constant that makes π∗ a proper pdf.
The posterior density function is obtained by using Equation (3.5).

4. Linear exponential loss function

This loss function according to Soliman et al. [17] rises approximately exponentially on
one side of zero and approximately linearly on the other side. The sign and magnitude of
the shape parameter c represents the direction and degree of symmetry respectively. There
is overestimation if c > 0 and underestimation if c < 0 but when c u 0, the LINEX loss
function is approximately the squared error loss function.

The Bayes Estimator of θ , which is denoted by θ̂BL under LINEX loss function that
minimizes Equation (3.1) is given as

θ̂BL =−1
c

ln{Eθ [exp(−cθ)]} ,

provided that Eθ (.) exist and is finite.
The posterior density of the unknown parameters, the reliability function and the hazard

rate under this loss function are given respectively as

E
[
e−cα ,e−cβ |t

]
=

∞∫
0

∞∫
0

(
1

αβ

)
[exp(−cα),exp(−cβ )]

n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

,

R(t)BL = E
{

exp
{
−cexp

[
−
( t

α

)β
]}
|t
}

=

∞∫
0

∞∫
0

(
1

αβ

)
exp
{
−cexp

[
−
( t

α

)β
]} n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

[(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]]

dαdβ

,
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H(t)BL = E
{

exp
[(

β

α

)( t
α

)β−1
]
|t
}

=

∞∫
0

∞∫
0

(
1

αβ

)
exp
[
−c
(

β

α

)( t
α

)β−1
] n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

.

It can be observed that the above equations contain ratio of integrals which cannot be
obtained analytically and as a result we make use of Lindley approximation procedure to
evaluate the integrals involved.

5. Lindley approximation

According to Abdel-Wahid [1], Lindley proposed a ratio of integral of the form∫
ω(θ)exp{L(θ)}dθ∫
v(θ)exp{L(θ)}dθ

where L(θ) is the log-likelihood and ω(θ),v(θ) are arbitrary functions of θ . In applying
this procedure, it is assumed that v(θ) is the prior distribution for θ and ω(θ) = u(θ).v(θ)
with u(θ) being some function of interest. The posterior expectation of the Lindley approx-
imation can be obtained from Sinha [16] and Guure and Ibrahim [8].

Taking the two parameters into consideration the following equation can be applied

(5.1) θ̂ = u+
1
2
[(u11σ11)+(u22σ22)]+u1ρ1σ11 +u2ρ2σ22 +

1
2
[(L30u1σ

2
11)+(L03u2σ

2
22)]

where L is the log-likelihood equation in (2.3). To estimate the unknown parameters, the
following are considered and substituted into Equation (5.1).

ρ(α,β ) =− ln(α)− ln(β )

ρ1 =
∂ρ

∂α
=−

(
1
α

)
ρ2 =

∂ρ

∂β
=−

(
1
β

)
L20 = n

(
β

α2

)
−
(

β 2

α2

) n

∑
i=1

( ti
α

)β

−
(

β

α2

) n

∑
i=1

( ti
α

)β

σ11 = (−L20)−1

L30 =−2n
(

β

α3

)
+2
(

β 2

α3

) n

∑
i=1

( ti
α

)β

+
(

β 3

α3

) n

∑
i=1

( ti
α

)β

+2
(

β

α3

) n

∑
i=1

( ti
α

)β

+
(

β 2

α3

) n

∑
i=1

( ti
α

)β

L02 =−
(

n
β 2

)
−

n

∑
i=1

( ti
α

)β

ln2
( ti

α

)
σ22 = (−L02)−1
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L03 = 2
(

n
β 3

)
−

n

∑
i=1

( ti
α

)β

ln3
( ti

α

)
u(α) = exp(−cα), u1 =

∂u
∂α

=−cexp(−cα)

u11 =
∂ 2u
∂α2 = c2 exp(−cα), u2 = u22 = 0

u(β ) = exp(−cβ ), u2 =
∂u
∂β

=−cexp(−cβ )

u22 =
∂ 2u
∂β 2 = c2 exp(−cβ ), u1 = u11 = 0.

The reliability function is estimated by obtaining the following derivatives and replacing
them with that of the unknown parameters

u = exp
{
−cexp

[
−
( t

α̂

)β
]}

, q = exp
[
−
( t

α̂

)β
]

u1 =
∂u
∂α

= c
(

β

α

)(
−t
α

)β

qu

u11 =
∂ 2u
∂α2 =−c

(
β 2

α2

)[
−
( t

α

)β
]

qu− c
(

β

α2

)[
−
( t

α

)β
]

qu

− c
(

β 2

α2

)[
−
( t

α

)β
]2

qu+ c2
(

β 2

α2

)[
−
( t

α

)β
]2

q2u.

In a similar approach u2 = ∂u/∂β and u22 = ∂ 2u/∂β 2 can be obtained.
For the Hazard Rate

u = exp
[
−c
(

β

α

)( t
α

)β−1
]
, p =

(
β

α

)( t
α

)β−1

u2 =
∂u
∂β

=
[
−cp ln

( t
α

)
−
( c

α

)( t
α

)β−1
]

u

u22 =
∂ 2u
∂β 2 =

[
−cp ln2

( t
α

)
−2
( c

α

)( t
α

)β−1
ln
( t

α

)]
u

+
[
−cp ln

( t
α

)
−
( c

α

)( t
α

)β−1
]2

u

u1 = ∂u/∂α and u11 = ∂ 2u/∂α2 follow in like manner.

6. General entropy loss function

This is another useful asymmetric loss function that is used to determine whether there is
overestimation or underestimation. It is a generalization of the entropy loss.

The Bayes estimator of θ , denoted by θ̂BG is the value of θ̂ which minimizes (3.2) and
given as

θ̂BG =
[
Eθ (θ)−k

]−1/k

provided Eθ (.) exist and is finite.
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The posterior density function of the unknown parameters, the reliability function and
the hazard rate under general entropy loss are given respectively as

E
{

u
[
(α)−k,(β )−k

]
|t
}

=

∞∫
0

∞∫
0

(
1

αβ

)
u
[
(α)−k,(β )−k] n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

,

R(t)BG = E

{{
exp
[
−
( t

α

)β
]}−k

|t

}

=

∞∫
0

∞∫
0

(
1

αβ

){
exp
[
−
( t

α

)β
]}−k n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

,

H(t)BG = E
{[(

β

α

)( t
α

)β−1
]
|t
}

=

∞∫
0

∞∫
0

(
1

αβ

)[(
β

α

)( t
α

)β−1
]−k n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

.

By making use of Lindley procedure as in (5.1), where u1, u11, and u2, u22 represent
the first and second derivatives of the unknown parameters, the reliability function and the
hazard rate, the following equations are obtained.

u = (α)−k, u1 =
∂u
∂α

=−k(α)−k−1

u11 =
∂ 2u

∂ (α)2 =−(−k2− k)(α)−k−2, u2 = u22 = 0

u = (β )−k, u2 =
∂u
∂β

=−k(β )−k−1

u22 =
∂ 2u

∂ (β )2 =−(−k2− k)(β )−k−2, u1 = u11 = 0

The following derivatives are to be considered in estimating the reliability function under
this loss function.

u =
{

exp
[
−
( t

α

)β
]}−k

, e =
[
−
( t

α

)β
]

u1 =
∂u
∂α

= uk
(

β

α

)
e

u11 =
∂ 2u
∂α2 = uk2

(
β 2

α2

)
e2− k

(
β 2

α2

)
eu− k

(
β

α2

)
eu.

Hence u2 = ∂u/∂β and u22 = ∂ 2u/∂β 2 follows.
For the hazard rate

u =
[(

β

α

)( t
α

)β−1
]−k

, r =
( t

α

)β−1
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u1 =
∂u
∂α

=−
uk
[
−
(

β

α2

)
r− (β −1)

(
β

α2

)
r
]

α

β r

u11 =
∂ 2u
∂α2 =

uk2
[
−
(

β

α2

)
r− (β −1)

(
β

α2

)
r
]2

α2

β 2r2

−
uk
[
2
(

β

α3

)
r +3

(
β

α3

)
(β −1)r +

(
β

α3

)
r(β −1)2

]
α

β r

−
uk
[
−
(

β

α2

)
r− (β −1)

(
β

α2

)
r
]

β r

−
uk
[
−
(

β

α2

)
r− (β −1)

(
β

α2

)
r
]
(β −1)

β r
.

With the same approach as given above u22 = ∂u/∂β and u22 = ∂ 2u/∂β 2 are obtained.

7. Symmetric loss function

The squared error loss denotes the punishment in using θ̂ to estimate θ and is given by
L(θ̂ −θ) = (θ̂ −θ)2. This loss function is symmetric in nature i.e. it gives equal weight-
age to both over and under estimation. In real life, we encounter many situations where
over-estimation may be more serious than under-estimation or vice versa.

The posterior density function of the unknown parameters, the Reliability function and
the Hazard rate under the symmetric loss function are given as

E [u(α,β )|t] =

∞∫
0

∞∫
0

(
1

αβ

)
u(α,β )

n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

,

R(t)BS = E
{

exp
[
−
( t

α

)β
]
|t
}

=

∞∫
0

∞∫
0

(
1

αβ

){
exp
[
−
( t

α

)β
]} n

∏
i=1

{(
β

α

)( t
α

)β−1 exp
[
−
( t

α

)β
]}

dαdβ

∞∫
0

∞∫
0

(
1

αβ

) n
∏
i=1

{(
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Applying the same Lindley approach here as in (5.1) with u1, u11 and u2, u22 being the
first and second derivatives for the unknown parameters, the R(t)BS and H(t)BS. For the
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unknown parameters

u = α, u1 =
∂u
∂α

= 1

u11 = u2 = u22 = 0

u = β , u2 = 1
u22 = u1 = u11 = 0.

For the reliability function and the hazard rate we have respectively

u = exp
[
−
( t

α

)β
]

u1 =
∂u
∂α

=−
(

β

α

)
eu

u11 =
∂ 2u
∂α2 =

(
β

α2

)
eu+

(
β 2

α2

)
eu+

(
β 2

α2

)
e2u.

In a similar approach u2 = ∂u/∂β and u22 = ∂ 2u/∂β 2 can be obtained.
And

u =
(

β

α

)( t
α

)β−1
, d = ln

( t
α

)
u2 =

∂u
∂β

=
(

1
α

)
r +ud

u22 =
∂ 2u
∂β 2 =

(
2
α

)
rd2 +ud.

u1 = ∂u/∂α and u11 = ∂ 2u/∂α2 follow in like manner.
With respect to the generalised non-informative prior, the same procedures as above are

also employed but ρ = log [v(α,β )] is substituted by ρ = log [v1(α,β )].

8. Simulation study

In this section, we perform a numerical study to compare the proposed estimates of α , β ,
R(t) and H(t). Comparison among the different estimators is made with their mean squared
errors and absolute error values. The Bayesian estimates of the unknown parameters, the
reliability function and the hazard rate are derived with respect to three loss functions, which
are LINEX, general entropy and squared error loss functions. A sample of size n = 25, 50
and 100 were considered to represent relatively small, medium and large data set. The
reliability function and the hazard rate and that of the parameters were determined with
Bayes using non-informative prior approach. The values of the parameters chosen were α

= 0.5 and 1.5, and β = 0.8 and 1.2. The values for the loss parameters were c = k = ± 0.7
and ± 1.6. The loss parameters are chosen by taken into consideration the facts that they
must either be below or above zero in order to determine whether the estimates obtained
are under or above the actual parameters values. Also, the loss parameters of both LINEX
and general entropy are chosen such that they do not respectively equal to zero (0) and
negative one (−1), if they do, both loss functions turn to be approximately the squared error
loss, Guure et al. [9]. We have considered the generalised non-informative prior to be a
= 0.9, and 1.8 without loss of generality. The choice of the constant for the generalised
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non-informative prior is subjective since it is used to consider the proportion in which one
will prefer the prior to influence the posterior density function. These were iterated 1000
times. See Calabria and Pulcini [6] for further details on how to chose the loss parameter
values. Simulation results with respect to the mean squared errors and absolute errors are
presented in the form of tables only for the reliability and hazard functions and that of the
absolute errors for the parameters but we have summarised the observations made about
the MSEs on the unknown parameters in the results and discussion section. The average
mean squared errors and average absolute error values are determined and presented for the
purpose of comparison.

9. Results and discussion

It has been observed from the results that Bayes estimator with linear exponential loss func-
tion under the proposed generalised non-informative prior provides the smallest values in
most cases for the scale parameter especially when the loss parameter is less than zero (0)
that is, c = k =−1.6 indicating that underestimation is more serious than overestimation but
as the sample size increases both the maximum likelihood estimator and Bayes estimator
under all the loss functions have a corresponding decrease in average MSEs. The average
abolute errors are presented in Table 9.

For the shape parameter, the Bayesian estimator with LINEX and GELF again with the
generalised non-informative prior give a better or smaller average mean squared error and
the average absolute errors presented in Table 10, as compared to the others but this happens
when the loss parameter c = k = 1.6, implying overestimation since the loss parameter is
greater than zero (0). It is observed again that as the sample size increases the average mean
squared errors of the general entropy loss function decreases to smaller values than any of
the others but it must be stated that the other loss functions also have their average MSEs
decreasing with increasing sample size.

Similarly, it has also been observed that the estimator that gives the smallest average
absolute error over all the other estimators in majority of the cases is Bayes estimator under
the generalised prior with LINEX loss function. This is followed by the general entropy
loss function.

We present in Table 1, the average mean squared errors of the reliability function with
the vague prior while Table 3, are average mean squared errors of the generalised non-
informative prior. The average absolute errors of the reliability function are presented in
Tables 5 and 7, for both the vague and generalised non-informative priors. It has been
observed that Bayes estimator with LINEX loss function has the smallest average mean
squared errors and that of the average absolute errors as compared to maximum likelihood
estimator and Bayes with squared error and general entropy loss function. The smallest
average MSEs and average absolute errors for the LINEX loss function occur at all cases
with the proposed generalised non-informative prior. This is followed by general entropy
loss function also with the generalised non-informative prior. As the sample size increases,
it is observed that all the estimators average MSEs almost converged to one another.

With regards to the average mean squared errors for the hazard rate which are illustrated
in Table 2, with the vague prior and Table 4, for the generalised non-informative prior,
Bayes estimator under LINEX loss function is a better estimate of the hazard rate also
known as the instantaneous failure rate. However, LINEX loss function overestimates the
hazard rate, this is because most of the smallest average MSEs occur at where the lost
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parameter is greater than zero. This largely happened with the generalised non-informative
prior. It has been observed that as the sample size increases maximum likelihood estimation
and Bayes estimation under all the loss functions have their average mean squared errors
decreasing unswervingly. The proposed generalised non-informative prior (data-dependent
prior) outperform the vague prior. The same observation is made taking into consideration
Tables 6 and 8 which contain the average absolute errors for the hazard rate.

According to Vasile et al. [14] the Bayes estimators under squared error loss and general
entropy loss functions performed better than their corresponding maximum likelihood esti-
mator and that of the Bayes estimators under linear exponential loss function. Their study
was considered with progressive censored data which tern to contradict our findings with
uncensored data whereby Bayes with linear loss function performed better than squared
error and general entropy loss functions. Our findings support the study of Al-Aboud [2]
that the Bayes estimators relative to asymmetric loss functions LINEX and general entropy
are sensitive to the values of the loss parameters and perform better than that of maximum
likelihood and Bayes via squared error loss function. Though his premise was based on
extreme value distribution.

As may be expected since all the priors are non-informative, it is observed that the perfor-
mances of all estimators become better when the sample size increases. It is also observed
in terms of MSEs that, for large sample sizes the Bayes estimates and the MLEs become
closer.

The loss parameters for both the LINEX and general entropy loss functions give one
the opportunity to estimate the unknown parameters, the reliability and hazard functions
with more flexibility. The estimations of α , β , R(t) and H(t) relative to asymmetric loss
functions are sensitive to the values of the loss parameters. The problem of choosing values
of the loss parameters for both the LINEX and general entropy loss functions was discussed
in detail in Calabria and Pulcini [6].

The analytical ease with which results can be obtained using asymmetric loss functions
makes them attractive for use in applied problems and in assessing the effects of departures
from that of assumed symmetric loss functions which do not consider the practicability of
over-and-under estimation.

Finally we should mention that, although we have in this paper considered only uncen-
sored observations in comparing the maximum likelihood, standard non-informative and
our proposed prior, it is possible to consider our proposed prior on general class of censored
observations.
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Table 1. Average MSEs for R̂(t) with vague prior

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

25 ML 0.004539 0.004439 0.004650 0.004541
BS 0.004649 0.004547 0.004586 0.004677

BL(c = 0.7) 0.004741 0.004606 0.004482 0.004844
BL(c =−0.7) 0.004917 0.004279 0.004374 0.004595
BL(c = 1.6) 0.004551 0.004370 0.004666 0.004544

BL(c =−1.6) 0.004949 0.004457 0.004337 0.004585
BG(k = 0.7) 0.004906 0.004927 0.004727 0.004517

BG(k =−0.7) 0.004547 0.004673 0.004369 0.004523
BG(k = 1.6) 0.004847 0.004762 0.004391 0.004554

BG(k =−1.6) 0.004527 0.004590 0.004572 0.004549
50 ML 0.002311 0.002298 0.002329 0.002319

BS 0.002459 0.002319 0.002293 0.002319
BL(c = 0.7) 0.002187 0.002153 0.002110 0.002141

BL(c =−0.7) 0.002257 0.002349 0.002211 0.002186
BL(c = 1.6) 0.002219 0.002309 0.002220 0.002325

BL(c =−1.6) 0.002226 0.002129 0.002279 0.002286
BG(k = 0.7) 0.002120 0.002197 0.002112 0.002126

BG(k =−0.7) 0.002122 0.002240 0.002181 0.002230
BG(k = 1.6) 0.002222 0.002234 0.002217 0.002213

BG(k =−1.6) 0.002173 0.002127 0.002160 0.002386
100 ML 0.001119 0.001153 0.001114 0.001084

BS 0.001132 0.001155 0.001100 0.001090
BL(c = 0.7) 0.001136 0.001086 0.001079 0.001119

BL(c =−0.7) 0.001138 0.001078 0.001067 0.001034
BL(c = 1.6) 0.001086 0.001067 0.001157 0.001099

BL(c =−1.6) 0.001138 0.001136 0.001057 0.001133
BG(k = 0.7) 0.001069 0.001081 0.001090 0.001022

BG(k =−0.7) 0.001105 0.001116 0.001039 0.001020
BG(k = 1.6) 0.001116 0.001058 0.001131 0.001066

BG(k =−1.6) 0.001127 0.001155 0.001065 0.001069

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 2. Average MSEs for Ĥ(t) with vague prior

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

25 ML 3.783420 0.560094 0.178732 0.064335
BS 4.913962 0.543178 0.453892 0.063931

BL(c = 0.7) 2.723836 0.430512 0.101904 0.055452
BL(c =−0.7) 4.011972 0.643023 0.362907 0.065747
BL(c = 1.6) 2.301949 0.392819 0.156331 0.048229

BL(c =−1.6) 4.013245 0.648014 0.621963 0.072735
BG(k = 0.7) 1.813694 0.483790 0.236298 0.055523

BG(k =−0.7) 4.709160 0.528657 0.257529 0.056453
BG(k = 1.6) 1.548734 0.455916 0.125755 0.053361

BG(k =−1.6) 3.791071 0.506485 0.517603 0.059592
50 ML 2.265619 0.224225 0.206696 0.026346

BS 2.198552 0.209081 0.168144 0.025864
BL(c = 0.7) 1.142458 0.197646 0.186539 0.024681

BL(c =−0.7) 1.358746 0.240983 0.183011 0.026024
BL(c = 1.6) 1.780576 0.191138 0.121118 0.023976

BL(c =−1.6) 3.344647 0.251547 0.136765 0.029309
BG(k = 0.7) 1.718245 0.217423 0.182593 0.022839

BG(k =−0.7) 2.086132 0.200302 0.143292 0.024236
BG(k = 1.6) 1.367952 0.207346 0.059657 0.023501

BG(k =−1.6) 1.647876 0.234730 0.242375 0.025636
100 ML 0.301270 0.104144 0.033570 0.011559

BS 0.501418 0.096940 0.073336 0.011562
BL(c = 0.7) 0.214610 0.097575 0.023751 0.011150

BL(c =−0.7) 0.485988 0.115443 0.050981 0.012031
BL(c = 1.6) 0.349674 0.093267 0.025393 0.010395

BL(c =−1.6) 0.346782 0.113941 0.069610 0.011549
BG(k = 0.7) 0.251469 0.095601 0.043867 0.010644

BG(k =−0.7) 0.370011 0.097999 0.040944 0.011346
BG(k = 1.6) 0.216079 0.098692 0.025571 0.011078

BG(k =−1.6) 0.275517 0.105664 0.078485 0.010508

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 3. Average MSEs for R(t) with gen. non-informative prior

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

a = 0.9, [1.8] a = 0.9, [1.8]

25 BS 0.004514 [0.004351] 0.004861 [0.004541] 0.004438 [0.004239] 0.004678 [0.004858]
BL(c = 0.7) 0.004761 [0.004411] 0.004880 [0.004256] 0.004482 [0.004053] 0.004393 [0.004260]

BL(c =−0.7) 0.004567 [0.003992] 0.004862 [0.004253] 0.004197 [0.004421] 0.004808 [0.004483]
BL(c = 1.6) 0.004517 [0.004338] 0.004375 [0.004343] 0.004302 [0.004527] 0.004756 [0.004339]

BL(c =−1.6) 0.004584 [0.004316] 0.004571 [0.004035] 0.004527 [0.004261] 0.004339 [0.004479]
BG(k = 0.7) 0.004669 [0.004652] 0.004853 [0.004167] 0.004418 [0.004332] 0.004689 [0.004374]

BG(k =−0.7) 0.004834 [0.004233] 0.004458 [0.004370] 0.004150 [0.004321] 0.004682 [0.004414]
BG(k = 1.6) 0.005029 [0.004743] 0.004961 [0.004344] 0.004461 [0.004544] 0.004859 [0.004270]

BG(k =−1.6) 0.004972 [0.004338] 0.004432 [0.004304] 0.004109 [0.004521] 0.004591 [0.004597]
50 BS 0.002317 [0.002263] 0.002353 [0.002169] 0.002213 [0.002113] 0.002259 [0.002339]

BL(c = 0.7) 0.002403 [0.002222] 0.002218 [0.002201] 0.002155 [0.002287] 0.002258 [0.002151]
BL(c =−0.7) 0.002366 [0.002291] 0.002199 [0.002160] 0.002198 [0.002130] 0.002247 [0.002195]

BL(c = 1.6) 0.002358 [0.002011] 0.002112 [0.002102] 0.002079 [0.002052] 0.002353 [0.002173]
BL(c =−1.6) 0.002245 [0.002064] 0.002243 [0.002037] 0.002125 [0.002148] 0.002120 [0.002284]

BG(k = 0.7) 0.002284 [0.002294] 0.002173 [0.001998] 0.002288 [0.002033] 0.002300 [0.002039]
BG(k =−0.7) 0.002177 [0.002139] 0.002229 [0.002077] 0.002215 [0.002259] 0.002172 [0.002165]

BG(k = 1.6) 0.002169 [0.002231] 0.002169 [0.002261] 0.002234 [0.002017] 0.002286 [0.002236]
BG(k =−1.6) 0.002229 [0.001908] 0.002329 [0.002090] 0.002190 [0.002125] 0.002286 [0.002286]

100 BS 0.001127 [0.001034] 0.001033 [0.001035] 0.001146 [0.001121] 0.001087 [0.001113]
BL(c = 0.7) 0.001168 [0.001137] 0.001098 [0.001124] 0.001059 [0.001065] 0.001080 [0.001039]

BL(c =−0.7) 0.001083 [0.001060] 0.001073 [0.001061] 0.001083 [0.001084] 0.001094 [0.001054]
BL(c = 1.6) 0.001152 [0.001099] 0.001109 [0.001012] 0.001179 [0.001104] 0.001082 [0.001054]

BL(c =−1.6) 0.001112 [0.001062] 0.001184 [0.001025] 0.000981 [0.001119] 0.001102 [0.001120]
BG(k = 0.7) 0.001127 [0.001138] 0.001062 [0.001045] 0.001152 [0.001011] 0.001122 [0.001111]

BG(k =−0.7) 0.001105 [0.001034] 0.001054 [0.001066] 0.001109 [0.001034] 0.001079 [0.001070]
BG(k = 1.6) 0.001096 [0.001084] 0.001092 [0.001102] 0.001130 [0.001096] 0.001082 [0.001104]

BG(k =−1.6) 0.001097 [0.001109] 0.001158 [0.001079] 0.001044 [0.001045] 0.001043 [0.001064]

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function

Table 4. Average MSEs for Ĥ(t) with gen. non-informative prior.

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

a = 0.9, [1.8] a = 0.9, [1.8]

25 BS 6.162885 [7.070932] 0.541834 [0.512479] 0.893700 [0.895048] 0.063392 [0.061908]
BL(c = 0.7) 2.378734 [1.333984] 0.476059 [0.406154] 0.353531 [0.377706] 0.053889 [0.053417]

BL(c =−0.7) 3.493634 [2.903458] 0.726778 [0.630562] 0.689086 [0.410405] 0.067490 [0.067991]
BL(c = 1.6) 4.447621 [4.795282] 0.426760 [0.439095] 0.665762 [0.755662] 0.049852 [0.051064]

BL(c =−1.6) 3.546875 [3.721305] 0.765891 [0.541278] 0.547275 [0.611891] 0.075004 [0.070765]
BG(k = 0.7) 1.314662 [3.055011] 0.506001 [0.633310] 0.372011 [0.223407] 0.055012 [0.058685]

BG(k =−0.7) 6.470203 [4.397155] 0.561801 [0.622212] 0.849058 [0.524798] 0.061184 [0.067194]
BG(k = 1.6) 0.854643 [0.971416] 0.507121 [0.522118] 0.127378 [0.119673] 0.050048 [0.054119]

BG(k =−1.6) 6.113259 [7.941836] 0.578219 [0.610981] 0.715303 [0.435711] 0.065594 [0.068357]
50 BS 1.099980 [3.152638] 0.222548 [0.220448] 0.137102 [0.505778] 0.024875 [0.026084]

BL(c = 0.7) 1.927603 [1.627315] 0.201077 [0.193187] 0.121378 [0.192231] 0.023597 [0.025428]
BL(c =−0.7) 1.595877 [0.862981] 0.239591 [0.228354] 0.369632 [0.176571] 0.024378 [0.027583]

BL(c = 1.6) 1.163671 [0.625549] 0.191433 [0.183036] 0.127998 [0.119826] 0.023899 [0.023312]
BL(c =−1.6) 1.041237 [1.773712] 0.263088 [0.278687] 0.218235 [0.138254] 0.026042 [0.028918]

BG(k = 0.7) 1.219203 [1.051208] 0.214923 [0.224566] 0.164129 [0.148459] 0.024371 [0.023003]
BG(k =−0.7) 1.430543 [2.177439] 0.233314 [0.225804] 0.388349 [0.209519] 0.024107 [0.024473]

BG(k = 1.6) 0.576417 [0.616461] 0.209880 [0.227224] 0.062305 [0.062459] 0.024426 [0.023518]
BG(k =−1.6) 3.408256 [3.061849] 0.246163 [0.250584] 0.249856 [0.167228] 0.024099 [0.026635]

100 BS 0.828949 [0.468291] 0.092059 [0.096484] 0.105431 [0.050118] 0.011208 [0.011076]
BL(c = 0.7) 0.219983 [0.679051] 0.092645 [0.098504] 0.028705 [0.027313] 0.010711 [0.010105]

BL(c =−0.7) 0.412189 [0.970795] 0.106671 [0.105212] 0.085741 [0.051188] 0.010672 [0.011897]
BL(c = 1.6) 0.394538 [0.324953] 0.093859 [0.087551] 0.035253 [0.045600] 0.010474 [0.010510]

BL(c =−1.6) 0.543434 [0.554014] 0.113636 [0.106709] 0.045853 [0.061020] 0.011788 [0.012620]
BG(k = 0.7) 0.300170 [0.326592] 0.096168 [0.103724] 0.043880 [0.030176] 0.011490 [0.011364]

BG(k =−0.7) 0.459765 [0.660640] 0.098755 [0.106063] 0.045283 [0.064522] 0.011162 [0.011162]
BG(k = 1.6) 0.190678 [0.194472] 0.094005 [0.104792] 0.033504 [0.031192] 0.011374 [0.010566]

BG(k =−1.6) 0.805029 [0.637823] 0.109503 [0.103108] 0.068016 [0.074382] 0.011129 [0.011701]

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 5. Average Absolute Errors for R̂(t) with vague prior

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

25 ML 0.0526 0.0526 0.0540 0.0539
BS 0.0534 0.0530 0.0531 0.0542

BL(c = 0.7) 0.0528 0.0531 0.0515 0.0541
BL(c =−0.7) 0.0527 0.0538 0.0515 0.0524

BL(c = 1.6) 0.0542 0.0523 0.0503 0.0526
BL(c =−1.6) 0.0536 0.0522 0.0518 0.0539

BG(k = 0.7) 0.0547 0.0536 0.0505 0.0522
BG(k =−0.7) 0.0506 0.0527 0.0518 0.0529

BG(k = 1.6) 0.0558 0.0551 0.0532 0.0531
BG(k =−1.6) 0.0523 0.0524 0.0528 0.0505

50 ML 0.0360 0.0354 0.0364 0.0366
BS 0.0366 0.0355 0.0362 0.0368

BL(c = 0.7) 0.0365 0.0359 0.0362 0.0375
BL(c =−0.7) 0.0366 0.0366 0.0351 0.0366

BL(c = 1.6) 0.0357 0.0364 0.0359 0.0360
BL(c =−1.6) 0.0359 0.0363 0.0357 0.0354

BG(k = 0.7) 0.0372 0.0372 0.0361 0.0361
BG(k =−0.7) 0.0366 0.0357 0.0364 0.0358

BG(k = 1.6) 0.0363 0.0372 0.0372 0.0354
BG(k =−1.6) 0.0358 0.0355 0.0362 0.0358

100 ML 0.0245 0.0257 0.0265 0.0249
BS 0.0245 0.0258 0.0265 0.0251

BL(c = 0.7) 0.0251 0.0259 0.0252 0.0247
BL(c =−0.7) 0.0255 0.0254 0.0253 0.0258

BL(c = 1.6) 0.0258 0.0262 0.0251 0.0260
BL(c =−1.6) 0.0252 0.0256 0.0251 0.0253

BG(k = 0.7) 0.0255 0.0249 0.0259 0.0249
BG(k =−0.7) 0.0256 0.0253 0.0249 0.0255

BG(k = 1.6) 0.0249 0.0259 0.0263 0.0249
BG(k =−1.6) 0.0252 0.0247 0.0258 0.0258

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 6. Average Absolute Errors for Ĥ(t) with vague prior

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

25 ML 0.5822 0.5267 0.1868 0.1830
BS 0.7870 0.5232 0.2278 0.1827

BL(c = 0.7) 0.5376 0.5209 0.1702 0.1761
BL(c =−0.7) 0.5803 0.5524 0.1927 0.1802

BL(c = 1.6) 0.5471 0.4913 0.1596 0.1698
BL(c =−1.6) 0.5823 0.5604 0.1891 0.1850

BG(k = 0.7) 0.5278 0.5379 0.1747 0.1737
BG(k =−0.7) 0.6160 0.5273 0.1896 0.1792

BG(k = 1.6) 0.4749 0.5320 0.1755 0.1733
BG(k =−1.6) 0.6741 0.5376 0.2259 0.1747

50 ML 0.3664 0.3464 0.1195 0.1154
BS 0.4182 0.3465 0.1357 0.1153

BL(c = 0.7) 0.3376 0.3437 0.1148 0.1193
BL(c =−0.7) 0.3784 0.3596 0.1289 0.1190

BL(c = 1.6) 0.3412 0.3368 0.1112 0.1104
BL(c =−1.6) 0.3756 0.3677 0.1254 0.1168

BG(k = 0.7) 0.3429 0.3507 0.1184 0.1122
BG(k =−0.7) 0.3749 0.3411 0.1252 0.1153

BG(k = 1.6) 0.3360 0.3568 0.1150 0.1126
BG(k =−1.6) 0.3709 0.3476 0.1290 0.1165

100 ML 0.2355 0.2395 0.0852 0.0788
BS 0.2516 0.2392 0.0910 0.0786

BL(c = 0.7) 0.2277 0.2450 0.0792 0.0783
BL(c =−0.7) 0.2518 0.2430 0.0830 0.0806

BL(c = 1.6) 0.2439 0.2408 0.0760 0.0810
BL(c =−1.6) 0.2483 0.2423 0.0852 0.0817

BG(k = 0.7) 0.2469 0.2330 0.0805 0.0794
BG(k =−0.7) 0.2457 0.2414 0.0811 0.0786

BG(k = 1.6) 0.2328 0.2451 0.0816 0.0792
BG(k =−1.6) 0.2447 0.2358 0.0842 0.0826

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 7. Average Absolute Errors for R̂(t) under gen. non-informative prior. Absolute
Errors for a = 1.8 are in the parenthesis.

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

a = 0.9 and (1.8) a = 0.9 and (1.8)

25 BS 0.0532 (0.0525) 0.0531 (0.0496) 0.0509 (0.0486) 0.0533 (0.0518)
BL(c = 0.7) 0.0536 (0.0522) 0.0523 (0.0466) 0.0528 (0.0490) 0.0529 (0.0495)

BL(c =−0.7) 0.0529 (0.0501) 0.0523 (0.0505) 0.0490 (0.0475) 0.0521 (0.0522)
BL(c = 1.6) 0.0528 (0.0550) 0.0520 (0.0489) 0.0516 (0.0493) 0.0522 (0.0507)

BL(c =−1.6) 0.0531 (0.0499) 0.0515 (0.0498) 0.0526 (0.0497) 0.0515 (0.0503)
BG(k = 0.7) 0.0526 (0.0541) 0.0522 (0.0510) 0.0516 (0.0504) 0.0515 (0.0509)

BG(k =−0.7) 0.0542 (0.0509) 0.0525 (0.0485) 0.0535 (0.0484) 0.0532 (0.0501)
BG(k = 1.6) 0.0537 (0.0538) 0.0545 (0.0555) 0.0513 (0.0471) 0.0543 (0.0509)

BG(k =−1.6) 0.0557 (0.0499) 0.0534 (0.0479) 0.0527 (0.0506) 0.0517 (0.0509)
50 BS 0.0363 (0.0349) 0.0347 (0.0355) 0.0370 (0.0351) 0.0355 (0.0363)

BL(c = 0.7) 0.0353 (0.0346) 0.0351 (0.0328) 0.0365 (0.0347) 0.0365 (0.0359)
BL(c =−0.7) 0.0363 (0.0356) 0.0353 (0.0350) 0.0359 (0.0338) 0.0358 (0.0346)

BL(c = 1.6) 0.0355 (0.0346) 0.0364 (0.0346) 0.0344 (0.0349) 0.0359 (0.0360)
BL(c =−1.6) 0.0369 (0.0341) 0.0369 (0.0343) 0.0352 (0.0337) 0.0365 (0.0366)

BG(k = 0.7) 0.0366 (0.0350) 0.0347 (0.0349) 0.0374 (0.0352) 0.0361 (0.0363)
BG(k =−0.7) 0.0372 (0.0343) 0.0359 (0.0345) 0.0356 (0.0346) 0.0372 (0.0371)

BG(k = 1.6) 0.0375 (0.0377) 0.0362 (0.0347) 0.0365 (0.0353) 0.0368 (0.0370)
BG(k =−1.6) 0.0359 (0.0341) 0.0359 (0.0344) 0.0363 (0.0354) 0.0359 (0.0370)

100 BS 0.0252 (0.0254) 0.0250 (0.0250) 0.0251 (0.0252) 0.0244 (0.0257)
BL(c = 0.7) 0.0260 (0.0241) 0.0252 (0.0247) 0.0249 (0.0246) 0.0261 (0.0249)

BL(c =−0.7) 0.0259 (0.0245) 0.0262 (0.0245) 0.0265 (0.0249) 0.0251 (0.0248)
BL(c = 1.6) 0.0258 (0.0244) 0.0250 (0.0241) 0.0255 (0.0247) 0.0256 (0.0249)

BL(c =−1.6) 0.0241 (0.0242) 0.0257 (0.0247) 0.0254 (0.0248) 0.0249 (0.0244)
BG(k = 0.7) 0.0251 (0.0256) 0.0250 (0.0252) 0.0256 (0.0257) 0.0253 (0.0248)

BG(k =−0.7) 0.0256 (0.0241) 0.0256 (0.0241) 0.0261 (0.0240) 0.0257 (0.0248)
BG(k = 1.6) 0.0260 (0.0257) 0.0254 (0.0248) 0.0250 (0.0251) 0.0261 (0.0255)

BG(k =−1.6) 0.0252 (0.0251) 0.0253 (0.0244) 0.0246 (0.0252) 0.0256 (0.0246)

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 8. Average Absolute Errors for Ĥ(t) under gen. non-informative prior. Absolute
Errors for a = 1.8 are in the parenthesis.

α = 0.5 α = 1.5
n Estimators β = 0.8 β = 1.2 β = 0.8 β = 1.2

a = 0.9 and (1.8) a = k = 0.9 and (1.8)

25 BS 0.8340 (0.7004) 0.5304 (0.5098) 0.2414 (0.3184) 0.1751 (0.1750)
BL(c = 0.7) 0.5032 (0.4896) 0.4872 (0.4699) 0.1738 (0.1719) 0.1699 (0.1715)

BL(c =−0.7) 0.6023 (0.6207) 0.5489 (0.5862) 0.1900 (0.1917) 0.1726 (0.1784)
BL(c = 1.6) 0.6113 (0.4839) 0.4895 (0.4837) 0.1816 (0.1773) 0.1661 (0.1610)

BL(c =−1.6) 0.6031 (0.6042) 0.5541 (0.5600) 0.1937 (0.1994) 0.1816 (0.1796)
BG(k = 0.7) 0.5226 (0.9114) 0.5135 (0.6495) 0.1736 (0.1964) 0.1648 (0.1809)

BG(k =−0.7) 0.5837 (0.7545) 0.5206 (0.6600) 0.1917 (0.2212) 0.1733 (0.1793)
BG(k = 1.6) 0.4748 (0.7829) 0.5274 (0.6558) 0.1726 (0.1666) 0.1737 (0.1769)

BG(k =−1.6) 0.6068 (0.7264) 0.5435 (0.6499) 0.2831 (0.2144) 0.1839 (0.1828)
50 BS 0.4347 (0.3772) 0.3377 (0.3374) 0.1399 (0.1373) 0.1154 (0.1188)

BL(c = 0.7) 0.3391 (0.3195) 0.3380 (0.3124) 0.1168 (0.1117) 0.1107 (0.1148)
BL(c =−0.7) 0.3627 (0.3515) 0.3591 (0.3493) 0.1317 (0.1260) 0.1138 (0.1141)

BL(c = 1.6) 0.3476 (0.3306) 0.3341 (0.3252) 0.1107 (0.1133) 0.1136 (0.1127)
BL(c =−1.6) 0.3719 (0.3789) 0.3667 (0.3712) 0.1201 (0.1228) 0.1185 (0.1203)

BG(k = 0.7) 0.3497 (0.4445) 0.3339 (0.3886) 0.1179 (0.1162) 0.1168 (0.1223)
BG(k =−0.7) 0.3708 (0.4431) 0.3489 (0.3784) 0.1194 (0.1234) 0.1199 (0.1210)

BG(k = 1.6) 0.3338 (0.4312) 0.3491 (0.3786) 0.1143 (0.1173) 0.1140 (0.1204)
BG(k =−1.6) 0.3720 (0.4580) 0.3506 (0.3917) 0.1277 (0.1522) 0.1162 (0.1221)

100 BS 0.2590 (0.2479) 0.2352 (0.2403) 0.0877 (0.0931) 0.0753 (0.0814)
BL(c = 0.7) 0.2458 (0.2229) 0.2313 (0.2350) 0.0785 (0.0802) 0.0800 (0.0798)

BL(c =−0.7) 0.2606 (0.2409) 0.2455 (0.2388) 0.0890 (0.0840) 0.0785 (0.0798)
BL(c = 1.6) 0.2324 (0.2229) 0.2311 (0.2243) 0.0785 (0.0781) 0.0778 (0.0774)

BL(c =−1.6) 0.2400 (0.2424) 0.2506 (0.2413) 0.0843 (0.0819) 0.0813 (0.0783)
BG(k = 0.7) 0.2418 (0.2804) 0.2340 (0.2550) 0.0800 (0.0823) 0.0795 (0.0792)

BG(k =−0.7) 0.2431 (0.2665) 0.2465 (0.2498) 0.0866 (0.0784) 0.0815 (0.0784)
BG(k = 1.6) 0.2398 (0.2588) 0.2376 (0.2488) 0.0785 (0.0797) 0.0799 (0.0798)

BG(k =−1.6) 0.2438 (0.2844) 0.2417 (0.2480) 0.0823 (0.0833) 0.0804 (0.0779)

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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Table 9. Average Absolute Errors for (α̂)

n α a β α̂ML α̂BS α̂BL α̂BG α̂BL α̂BG α̂BL α̂BG α̂BL α̂BG
c = k = 0.7 c = k =−0.7 c = k = 1.6 c = k =−1.6

25 0.5 0.9 0.8 0.1052 0.1052 0.1074 0.1088 0.1048 0.1067 0.1094 0.1088 0.1004 0.1064
0.5 0.9 1.2 0.0684 0.0685 0.0723 0.0713 0.0714 0.0722 0.0714 0.0721 0.0682 0.0733
0.5 1.8 0.8 0.1056 0.1056 0.0981 0.0988 0.0934 0.0899 0.1062 0.1021 0.0889 0.0831
0.5 1.8 1.2 0.0699 0.0697 0.0687 0.0686 0.0662 0.0655 0.0693 0.0658 0.0662 0.0637
1.5 0.9 0.8 0.3206 0.3200 0.3252 0.3246 0.3105 0.3171 0.3690 0.3368 0.2913 0.3174
1.5 0.9 1.2 0.2087 0.2087 0.2136 0.2120 0.2021 0.2192 0.2271 0.2186 0.2146 0.2190
1.5 1.8 0.8 0.3165 0.3133 0.3050 0.2967 0.2925 0.3010 0.3254 0.3038 0.3014 0.3028
1.5 1.8 1.2 0.2104 0.2017 0.2095 0.2111 0.2019 0.2080 0.2155 0.2098 0.2105 0.2097

50 0.5 0.9 0.8 0.0736 0.0736 0.0738 0.0763 0.0736 0.0741 0.0754 0.0762 0.0723 0.0738
0.5 0.9 1.2 0.0495 0.0495 0.0491 0.0502 0.0501 0.0498 0.0507 0.0509 0.0499 0.0499
0.5 1.8 0.8 0.0756 0.0754 0.0698 0.0695 0.0687 0.0677 0.0728 0.0738 0.0662 0.0663
0.5 1.8 1.2 0.0493 0.0471 0.0490 0.0485 0.0490 0.0481 0.0492 0.0495 0.0472 0.0476
1.5 0.9 0.8 0.2202 0.2200 0.2242 0.2274 0.2174 0.2234 0.2371 0.2262 0.2138 0.2242
1.5 0.9 1.2 0.1454 0.1454 0.1510 0.1522 0.1521 0.1503 0.1560 0.1484 0.1503 0.1484
1.5 1.8 0.8 0.2247 0.2247 0.2181 0.2135 0.2163 0.2130 0.2251 0.2229 0.2108 0.2187
1.5 1.8 1.2 0.1463 0.1477 0.1516 0.1506 0.1487 0.1503 0.1531 0.1505 0.1480 0.1505

100 0.5 0.9 0.8 0.0522 0.0522 0.0529 0.0514 0.0522 0.0534 0.0530 0.0529 0.0522 0.0519
0.5 0.9 1.2 0.0354 0.0354 0.0353 0.0349 0.0352 0.0355 0.0361 0.0354 0.0356 0.0351
0.5 1.8 0.8 0.0522 0.0520 0.0515 0.0508 0.0505 0.0502 0.0513 0.0520 0.0502 0.0496
0.5 1.8 1.2 0.0349 0.0349 0.0347 0.0349 0.0352 0.0338 0.0349 0.0348 0.0346 0.0343
1.5 0.9 0.8 0.1592 0.1588 0.1601 0.1580 0.1560 0.1578 0.1635 0.1585 0.1562 0.1580
1.5 0.9 1.2 0.1049 0.1047 0.1070 0.1067 0.1073 0.1051 0.1086 0.1063 0.1052 0.1056
1.5 1.8 0.8 0.1571 0.1571 0.1585 0.1543 0.1550 0.1549 0.1585 0.1577 0.1552 0.1566
1.5 1.8 1.2 0.1040 0.1040 0.1044 0.1045 0.1055 0.1060 0.1067 0.1047 0.1059 0.1053

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function

Table 10. Average Absolute Errors for (β̂ )

n α a β β̂ML β̂BS β̂BL β̂BG β̂BL β̂BG β̂BL β̂BG β̂BL β̂BG
c = k = 0.7 c = k =−0.7 c = k = 1.6 c = k =−1.6

25 0.5 0.9 0.8 0.1135 0.1104 0.1084 0.1091 0.1133 0.1153 0.1048 0.1082 0.1134 0.1149
0.5 0.9 1.2 0.1708 0.1652 0.1568 0.1636 0.1652 0.1663 0.1564 0.1593 0.1761 0.1678
0.5 1.8 0.8 0.1154 0.1170 0.1148 0.1131 0.1135 0.1159 0.1104 0.1118 0.1186 0.1205
0.5 1.8 1.2 0.1711 0.1736 0.1654 0.1719 0.1767 0.1771 0.1603 0.1639 0.1845 0.1779
1.5 0.9 0.8 0.1107 0.1076 0.1061 0.1092 0.1120 0.1108 0.1052 0.1047 0.1141 0.1158
1.5 0.9 1.2 0.1710 0.1656 0.1589 0.1641 0.1676 0.1677 0.1561 0.1583 0.1724 0.1708
1.5 1.8 0.8 0.1126 0.1142 0.1150 0.1100 0.1176 0.1166 0.1083 0.1113 0.1187 0.1164
1.5 1.8 1.2 0.1688 0.1716 0.1671 0.1726 0.1773 0.1749 0.1619 0.1673 0.1826 0.1775

50 0.5 0.9 0.8 0.0748 0.0737 0.0739 0.0732 0.0743 0.0747 0.0712 0.0725 0.0746 0.0753
0.5 0.9 1.2 0.1136 0.1118 0.1018 0.1097 0.1134 0.1140 0.1070 0.1087 0.1160 0.1115
0.5 1.8 0.8 0.0745 0.0747 0.0755 0.0766 0.0766 0.0752 0.0733 0.0755 0.0781 0.0777
0.5 1.8 1.2 0.1112 0.1119 0.1116 0.1103 0.1179 0.1110 0.1094 0.1108 0.1185 0.1137
1.5 0.9 0.8 0.0743 0.0731 0.0785 0.0721 0.0747 0.0749 0.0729 0.0724 0.0748 0.0764
1.5 0.9 1.2 0.1126 0.1105 0.1094 0.1093 0.1109 0.1098 0.1076 0.1071 0.1156 0.1105
1.5 1.8 0.8 0.0753 0.0758 0.0737 0.0758 0.0763 0.0751 0.0739 0.0739 0.0764 0.0778
1.5 1.8 1.2 0.1106 0.1114 0.1124 0.1136 0.1141 0.1153 0.1115 0.1128 0.1178 0.1180

100 0.5 0.9 0.8 0.0512 0.0508 0.0513 0.0507 0.0508 0.0510 0.0502 0.0496 0.0517 0.0520
0.5 0.9 1.2 0.0772 0.0765 0.0766 0.0743 0.0759 0.0781 0.0748 0.0757 0.0782 0.0771
0.5 1.8 0.8 0.0503 0.0504 0.0519 0.0512 0.0512 0.0523 0.0504 0.0507 0.0518 0.0528
0.5 1.8 1.2 0.0773 0.0776 0.0777 0.0765 0.0781 0.0780 0.0770 0.0774 0.0796 0.0773
1.5 0.9 0.8 0.0504 0.0499 0.0505 0.0507 0.0512 0.0511 0.0507 0.0507 0.0508 0.0519
1.5 0.9 1.2 0.0771 0.0764 0.0768 0.0764 0.0778 0.0751 0.0758 0.0766 0.0766 0.0771
1.5 1.8 0.8 0.0524 0.0526 0.0509 0.0512 0.0517 0.0508 0.0515 0.0518 0.0524 0.0522
1.5 1.8 1.2 0.0769 0.0773 0.0758 0.0773 0.0778 0.0777 0.0759 0.0767 0.0772 0.0789

ML = Maximum Likelihood, BG = General Entropy Loss Function,
BL = LINEX Loss Function, BS = Squared Error Loss Function
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10. Conclusion

Bayes estimators of the unknown parameters, the reliability function and the hazard rate are
obtained using vague prior and generalised non-informative prior under both asymmetric
and symmetric loss functions via Lindley approximation. Maximum likelihood estimators
of the reliability function and the hazard rate are obtained by using Newton-Raphson nu-
merical approach via Taylor series on the parameters.

Comparisons are made between the estimators based on simulation study. The effects of
maximum likelihood estimator and Bayes under asymmetric and symmetric loss functions
are examined. We observed that the Weibull parameters, reliability function and the hazard
rate are best estimated by Bayes using LINEX loss function followed by Bayes using gen-
eral entropy loss function with uncensored observations. Both occurred with the proposed
generalised non-informative prior. We must emphasise that all the estimators seem to con-
verge to the same values with respect to the average mean squared errors as the sample size
increases especially with the reliability function and the parameters.

Acknowledgement. The authors would like to extend their sincere thanks to the reviewers
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