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Abstract. By means of the modified CK’s direct method, we give out the relationship be-
tween variable coefficients of the fifth-order KdV equation and the corresponding constant
coefficient ones. At the same time, we have studied the generalized fifth-order KdV equa-
tion with constants coefficients using the Lie symmetry group methods. By applying the
nonclassical symmetry method we found that the analyzed model does not admit supple-
mentary, nonclassical type, symmetries. At last, we give some exact analytic solutions by
using the power series method.
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1. Introduction

It is well known that the celebrated KdV types of equations have been around for a very long
time. Lot of studies have been conducted with these types of equations [2,8–10,20,23–25].
However, in multifarious real physical backgrounds, nonlinear partial differential equations
(NPDEs) with variable coefficients often provide more powerful and realistic models than
their constant coefficient counterparts when the inhomogeneities of media is considered. So
it is of great importance to seek exact solutions of NPDEs with variable coefficients. In this
paper, the generalized fifth-order KdV equation

(1.1) ut +uux +α(t)u+β (t)uxxxxx = 0,

of time dependent variable coefficients of the linear damping and dispersion is investigated.
Here in (1.1) the first term represents the evolution term while the second term represents
the nonlinear term. The third term represents the linear damping while the fourth term is
the dispersion term. The time dependent coefficients of damping and dispersion are, respec-
tively, α(t) and β (t) are arbitrary smooth functions of the variable t. A number of special
cases of the Equation (1.1) have been successfully used to model physically significant non-
linear problems in mathematical physics, nonlinear dynamics and plasma physics. These
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fifth-order KdV types of equations have been derived to model many physical phenomena,
such as gravity-capillary waves on a shallow layer and magneto-sound propagation in plas-
mas, and so on. In [12] similarity solutions for some classes of the Equation (1.1) were
considered. The paper [5] is mainly concerned with the local well-posedness of the initial-
value problems for the Kawahara and the modified Kawahara equations in Sobolev spaces.
Soliton solutions of a generalized fifth-order KdV equation with t-dependent coefficients
are obtained in [21].

Lie group analysis [4, 7, 18, 19] is the most powerful tool to find the general solution of
partial differential equations (PDEs). It is well known that symmetry methods for differ-
ential equations, was originally developed by Lie [11] at the end of the nineteenth century,
which was called classical Lie method. Later in 1969, the notion of nonclassical symme-
try was introduced by Bluman and Cole [3]. In this case, one generalizes and includes the
classical method for obtaining solutions of PDEs. Afterwards, in 1989, the Clarkson and
Kruskal put forward the CK direct method [6]. Lou et al. modified the CK’s direct method
and proposed a simple method (called the modified CK’s direct method) to find non-Lie
point symmetry group [15]. A great of many authors have used the classical, nonclassical
symmetry method and the CK direct method to solve PDEs [14, 16, 17, 22, 26, 27].

Our aim in the present work is to perform the variable coefficients version of the fifth-
order KdV equation with the help of the improved direct reduction method [15] and clas-
sical and nonclassical symmetries method. Then we obtain the corresponding relationship
between explicit solutions of fifth-order KdV equation and ones of corresponding reduced
equation, and then get group-invariant solutions.

2. Equivalence transformations of fifth-order KdV equation

In this section, we will utilize the improved direct reduction method for finding the rela-
tion between variable coefficient fifth-order KdV equation and the corresponding constant
coefficient ones.

We firstly use the improved direct reduction method to look for the equivalence transfor-
mations between Equation (1.1) and the following equation

(2.1) ut +uux +au+buxxxxx = 0,

where a,b are arbitrary constants. Suppose that Equation (1.1) has the following form solu-
tion:

(2.2) u(x, t) = A+BU(X ,T ),

where A = A(x, t), B = B(x, t), X = X(x, t), T = T (x, t) are functions to be determined by
requiring U(X ,T ) satisfies the same fifth-order KdV equation as u = u(x, t) with the trans-
formation {u,x, t}→ {U,X ,T}. That is to say, restricting {U,X ,T} to satisfy the following
equation with constant coefficients

(2.3) UT +UUX +aU +bUXXXXX = 0.

Substituting (2.2) into (1.1) and requiring U(X ,T ) satisfying Equation (2.3). Letting the
coefficients of U and their derivatives be zero, after tedious calculation, we have

(2.4) X = (d2 +d4x)e−aT +d3x+d1,T = T (t),

(2.5) B =
Tt

d3 +d4e−aT ,A =
(d4x+d2)aTte−aT

d3 +d4e−aT ,
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with the conditions

(2.6) α(t) =
T 2

t a
(

d3−d4e−aT
)
−Ttt

(
d3 +d4e−aT

)
Tt

(
d3 +d4e−aT

) ,β (t) =
bTt(

d3 +d4e−aT
)5 ,

where T (t) is an arbitrary function of t, d1,d2,d3 and d4 are arbitrary constants. With the
help of Equation (2.2), we can obtain new exact solutions for the Equation (1.1) as follows:

(2.7) u =
(d4x+d2)aTte−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT U
(
(d2 +d4x)e−aT +d3x+d1,T (t)

)
.

Obviously we have the following symmetry group theorem:

Theorem 2.1. If U = U(X ,T ) is a solution of fifth-order KdV Equation (2.1), then

u(x, t) = A+BU(X ,T ),

is also a solution of Equation (1.1), where A,B,X ,T are decided by (2.4)–(2.5).

3. Classical and nonclassical symmetry for the fifth-order KdV equation with constant
coefficients

In fact, Equation (2.7) is a non-auto-Bäcklund transformation, which gives out the relation-
ship between variable coefficients of the fifth-order KdV equation and constant coefficient
ones. In order to solve Equation (1.1) by using Equation (2.1), we need to get exact solutions
of Equation (2.1).

In this section, we will look for exact solutions of Equation (2.1) by using classical and
nonclassical symmetry method.

3.1. Classical symmetry analysis of (2.1)

If (2.1) is invariant under a one parameter Lie group of point transformations

(3.1) t∗= t +ετ(x, t,u)+O(ε2), x∗= x+εξ (x, t,u)+O(ε2), u∗= u+εη(x, t,u)+O(ε2),

with infinitesimal generator (the vector field)

(3.2) V = τ(x, t,u)
∂

∂ t
+ξ (x, t,u)

∂

∂x
+η(x, t,u)

∂

∂u
,

where the coefficient functions τ(x, t,u), ξ (x, t,u), η(x, t,u) of the vector field are to be
determined. If the vector field (3.2) generates a symmetry of the fifth-order KdV equation
with constant coefficients Equation (2.1), then V must satisfy Lie’s symmetry condition

(3.3) pr(5)V (∆)|
∆=0 = 0,

where ∆ = ut + uux + au + buxxxxx. Applying the fifth prolongation pr(5)V to the Equation
(2.1), we find the following system of symmetry equations then the invariant condition reads
as

η
t +uη

x +ηu+aη +bη
xxxxx = 0,
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where

η
t = Dt(η)−uxDt(ξ )−utDt(τ),

η
x = Dx(η)−uxDx(ξ )−utDx(τ),

η
xx = Dx(ηx)−uxtDx(τ)−uxxDx(ξ ),

η
xxx = Dx(ηxx)−uxxtDx(τ)−uxxxDx(ξ ),

η
xxxx = Dx(ηxxx)−uxxxtDx(τ)−uxxxxDx(ξ ),

η
xxxxx = Dx(ηxxxx)−uxxxxtDx(τ)−uxxxxxDx(ξ ).

(3.5)

Here, Di denotes the total derivative operator and is defined by

Di =
∂

∂xi +ui
∂

∂u
+ui j

∂

∂u j
+ · · · i = 1,2,

and (x1,x2) = (t,x).
Using (3.4) with the help of (3.5) we obtain the determining equations

τ = τ(t), ξu = 0, ηuu = 0,

bτt −5bξx = 0,

ηxu−2ξxx = 0,

τtu−ξxu+η−ξt +b(5ηxxxxu−ξxxxxx) = 0,

ηt +aη +auτt −auηu +uηx +bηxxxxx = 0.

(3.6)

Solving Equations (3.6), it follows that

(3.7) τ = c3, ξ=c2 + c1e−at , η =−c1ae−at ,

where c1,c2 and c3 are arbitrary constants.

3.2. Nonclassical symmetry analysis of (2.1)

In this section, we will apply the so called nonclassical symmetry method [3]. Therefore,
we expect that nonclassical symmetries are much more numerous than classical ones, since
any classical symmetry is clearly a nonclassical one. Beside the classical symmetry, we
must add the invariance surface condition to the given equation:

(3.8) ∆1 = η−ξ ux− τut .

The vector field (3.2) is a nonclassical symmetry of (2.1) if

(3.9) pr(5)V (∆)|
∆=0,∆1=0 = 0.

From the nature of the invariant surface condition (3.8), there are two cases to arise:
(i)τ = 0, ξ 6= 0; (ii)τ 6= 0. In case(i), there are not any nontrivial solutions. Without loss of
generality, in case (ii), we set τ = 1. Then from the invariance surface condition (3.8) one
can get

(3.10) ut = η−ξ ux,

and from (2.1) we get

(3.11) uxxxxx =−(ut +uux +au)/b.
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Substituting (3.10) and (3.11) into (3.9) leads to

τ = 1, ξu = 0, ηuu = 0,

ηxu−2ξxx = 0,

η−ξt −5ξxξ +4uξx = 0,

ηt +aη +5ξxη−auηu +uηx +5aξxu = 0.

(3.12)

The analysis of the associated overdetermined systems Equations (3.12), we obtain

(3.13) τ = 1, ξ=c2 +
c1

a
e−at , η =−c1e−at .

where c1,c2 are arbitrary constants.
As is easy to see from (3.13), we can find out that the only solutions we found were

exactly the solution obtained through the classical symmetry approach. This means that no
supplementary symmetries, of non-classical type, are specific for our model. Therefore no
new explicit solutions can be obtained by using the nonclassical symmetry method.

Now we shall deal with (3.7).
From (3.7), one can get the symmetry algebra of the fifth-order KdV equation is spanned

by the three vector fields

(3.14) V1 =
∂

∂x
, V2 =

∂

∂ t
, V3 = e−at ∂

∂x
−ae−at ∂

∂u
.

Their commutator table is
V1 V2 V3

V1 0 0 0
V2 0 0 −aV3
V3 0 aV3 0

To obtain the group transformation which is generated by the infinitesimal generators Vi
for i = 1,2,3 we need to solve the following initial problems

d(x̄(ε))
dε

= ξ

(
x̄(ε), t̄(ε), ū(ε)

)
, x̄(0) = x,

d(t̄(ε))
dε

= τ

(
x̄(ε), t̄(ε), ū(ε)

)
, t̄(0) = t,

d(ū(ε))
dε

= ξ

(
x̄(ε), t̄(ε), ū(ε)

)
, ū(0) = u,

(3.15)

where ε is a parameter. So we can obtain the Lie symmetry group

(3.16) g : (x, t,u)→ (x̄, t̄, ū).

Exponentiating the infinitesimal symmetries of Equation (2.1), we get the one-parameter
groups gi(ε) generated by Vi for i = 1,2,3

g1 : (x, t,u) 7→ (x+ ε, t,u),

g2 : (x, t,u) 7→ (x, t + ε,u),

g3 : (x, t,u) 7→ (x+ e−at
ε, t,u−ae−at

ε).

(3.17)

The symmetry groups g1 and g2 demonstrate the time- and space-invariance of the equa-
tion. Consequently, we can obtain the corresponding Theorem:
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Theorem 3.1. If u = f (x, t) is a solution of fifth-order KdV Equation (2.1), so are the
functions

g1(ε) · f (x, t) = f (x− ε, t),

g2(ε) · f (x, t) = f (x, t− ε),

g3(ε) · f (x, t) = f (x+ e−at
ε, t)−ae−at

ε.

(3.18)

4. Symmetry reductions and exact group-invariant solutions of Equation (1.1)

In this section we apply Theorem 2.1 to look for some exact solutions of Equation (1.1).
4.1.1. c1 = c3 = 0 (V1).
The group-invariant solution corresponding to V1 is u = f (ξ ), where ξ = t is the group-

invariant, the substitution of this solution into the Equation (2.1) gives the trivial solution

(4.1) u(x, t) = C,

C is a constant.
From Equation (2.7), one can get the solution of Equation (1.1)

(4.2) u =
(d4x+d2)aTte−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT C.

4.1.2. V2 + cV1.
For the linear combination V2 + cV1, we have

(4.3) u = f (ξ ),

where ξ = x− ct is the group-invariant. Substitution of (4.3) into the Equation (2.1), we
reduce it to the following ODE

(4.4) −c f ′+ f f ′+a f +b f (5) = 0.

Now, we seek a solution of Equation (4.4) in a power series of the form

(4.5) f (ξ ) =
∞

∑
n=0

cnξ
n.

Substituting (4.5) into (4.4), we get

120bc5 +b
∞

∑
n=1

(n+1)(n+2)(n+3)(n+4)(n+5)cn+5ξ
n +ac0 +a

∞

∑
n=1

cnξ
n

+c0c1 +
∞

∑
n=1

(
n

∑
k=0

(n− k +1)ckcn−k+1

)
ξ

n− cc1− c
∞

∑
n=1

(n+1)cn+1ξ
n = 0.

(4.6)

From (4.6), comparing coefficients, for n = 0, one can get

(4.7) c5 =
cc1− c0c1−ac0

120b
.

Generally, for n≥ 1, we have
(4.8)

cn+5 =
1

b(n+1)(n+2)(n+3)(n+4)(n+5)

(
c(n+1)cn+1−

n

∑
k=0

(n− k +1)ckcn−k+1−acn

)
.

From (4.7) and (4.8), we can get all the coefficients cn(n≥ 5) of the power series (4.5). For
arbitrary chosen constant numbers c0,c1,c2,c3 and c4, the other terms can be determined
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successively from (4.7) and (4.8) in a unique way. In addition, it is easy to prove that the
convergence of the power series (4.5) with the coefficients give by (4.7) and (4.8) [13]. The
details are omitted here. For this reason, this power series solution is an exact analytic
solution.

Hence, the power series solution of Equation (4.4) can be written as following

f (ξ ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 + c5ξ

5 +
∞

∑
n=1

cn+5ξ
n+5

= c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 +

cc1− c0c1−ac0

120b
ξ

5

+
∞

∑
n=1

1
b(n+1)(n+2)(n+3)(n+4)(n+5)

(4.9) (
c(n+1)cn+1−

n

∑
k=0

(n− k +1)ckcn−k+1−acn

)
ξ

n+5.

Thus, the exact power series solution of Equation (1.1) is

u(x, t) =
(d4x+d2)aTte−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT

[
c0 + c1 (X− cT )+ c2 (X− cT )2 + c3 (X− cT )3

+ c4 (X− cT )4 +
cc1− c0c1−ac0

120b
(X− cT )5 +

∞

∑
n=1

cn+5(X− cT )n+5

]

=
(d4x+d2)aTte−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT

[
c0 + c1 (X− cT )+ c2 (X− cT )2 + c3 (X− cT )3

+ c4 (X− cT )4 +
cc1− c0c1−ac0

120b
(X− cT )5 +

∞

∑
n=1

1
b(n+1)(n+2)(n+3)(n+4)(n+5)(

c(n+1)cn+1−
n

∑
k=0

(n− k +1)ckcn−k+1−acn

)
(X− cT )n+5

]
.

where ci(i = 0,1,2,3,4) are arbitrary constants, the other coefficients cn(n ≥ 5) can be
determined successively from (4.7) and (4.8).

Of course, in physical applications, it will be convenient to write the solution of Equation
(1.1) in the approximate form

u(x, t) =
(d4x+d2)aTte−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT

[
c0 + c1 (X− cT )+ c2 (X− cT )2 + c3 (X− cT )3

+ c4 (X− cT )4 +
cc1− c0c1−ac0

120b
(X− cT )5 + · · ·

]

in terms of the above computation. Here X and T are given by (2.4).
4.1.3. V2 +V3.
For this case, we have

(4.10) u = f (ξ )−ax,
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where ξ = x− e−at/a is the group-invariant. Substituting Equation (4.10) into Equation
(2.1), we reduce it to the following ODE

(4.11) b f (5) + f f ′−aξ f ′ = 0.

By the same method, we can obtain

120bc5 +b
∞

∑
n=1

(n+1)(n+2)(n+3)(n+4)(n+5)cn+5ξ
n−a

∞

∑
n=1

ncnξ
n

+ c0c1 +
∞

∑
n=1

(
n

∑
k=0

(n− k +1)ckcn−k+1

)
ξ

n = 0.

(4.12)

From (4.12), comparing coefficients, we have

(4.13) c5 =
−c0c1

120b
,

(4.14) cn+5 =
1

b(n+1)(n+2)(n+3)(n+4)(n+5)

(
ancn−

n

∑
k=0

(n− k +1)ckcn−k+1

)
.

Therefore, the power series solution of Equation (4.11) can be written as following

f (ξ ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 + c5ξ

5 +
∞

∑
n=1

cn+5ξ
n+5

= c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 +
−c0c1

120b
ξ

5

+
∞

∑
n=1

1
b(n+1)(n+2)(n+3)(n+4)(n+5)

(
ancn−

n

∑
k=0

(n− k +1)ckcn−k+1

)
ξ

n+5.

Thus, the exact power series solution of Equation (1.1) is

u(x, t) =
(d4x+d2)aTt e−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT

[
c0 + c1

(
X− e−aT

a

)
+ c2

(
X− e−aT

a

)2

+ c3

(
X− e−aT

a

)3

+ c4

(
X− e−aT

a

)4

+
cc1− c0c1−ac0

120b

(
X− e−aT

a

)5

+
∞

∑
n=1

cn+5(X−
e−aT

a
)n+5−aX

]

=
(d4x+d2)aTt e−aT

d3 +d4e−aT +
Tt

d3 +d4e−aT

[
c0 + c1

(
X− e−aT

a

)
+ c2

(
X− e−aT

a

)2

+ c3

(
X− e−aT

a

)3

+ c4

(
X− e−aT

a

)4

+
cc1− c0c1−ac0

120b

(
X− e−aT

a

)5

+
∞

∑
n=1

1
b(n+1)(n+2)(n+3)(n+4)(n+5)

(
ancn−

n

∑
k=0

(n− k +1)ckcn−k+1

)(
X− e−aT

a

)n+5

−aX

where ci(i = 0,1,2,3,4) are arbitrary constants, X and T are given by (2.4), the other coef-
ficients cn(n≥ 5) can be determined successively from (4.13) and (4.14).

Remark 4.1. It is easy to see that the reduced Equations (4.4) and (4.11) are all higher-
order nonlinear or nonautonomous ODEs. If we obtain a one-parameter symmetry group of
an ODE, then we could reduce the order of the equation by one. But we find out that such
reduced ODEs are more complicated than the original equation. In view of this, we can
find that the power series method [1,3–7,11–19,21,22,26,27] is an effective tool of solving
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such higher-order nonlinear or nonautonomous ODEs. Moreover, from our model, we could
found that these power series solutions are important for computations in numerical analysis
and physical applications. And above all, these power series play an important role in the
investigation of physical phenomena and other natural phenomenon.

5. Conclusion

In this paper, we have studied the generalized fifth-order KdV equation with variable coef-
ficients using the modified CK’s direct method. At the same time we get the corresponding
Lie algebra and the similarity reductions for equations of constants coefficients. By ap-
plying the nonclassical symmetry method we concluded that the analyzed model does not
admit supplementary, nonclassical type symmetries. At last, we also get some new exact
analytic solutions. These conclusions may be useful for the explanation of some practical
physical problems.

Acknowledgement. The authors express their sincere thanks to the referees for their careful
review of this manuscript and their useful suggestions.

References
[1] N. H. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems, China Ma-

chine Press, Beijing, China, 2nd edition, 2005.
[2] A. Biswas, Solitary wave solution for the generalized KdV equation with time-dependent damping and dis-

persion, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 9-10, 3503–3506.
[3] G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18

(1968/69), 1025–1042.
[4] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81,

Springer, New York, 1989.
[5] W. Chen, J. Li, C. Miao and J. Wu, Low regularity solutions of two fifth-order KdV type equations, J. Anal.

Math. 107 (2009), 221–238.
[6] P. A. Clarkson and M. D. Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys. 30

(1989), no. 10, 2201–2213.
[7] N. H. Ibragimov, Small effects in physics hinted by the Lie group philosophy: are they observable? I. From

Galilean principle to heat diffusion, Lie Groups Appl. 1 (1994), no. 1, 113–123.
[8] M. S. Ismail and A. Biswas, 1-soliton solution of the generalized KdV equation with generalized evolution,

Appl. Math. Comput. 216 (2010), no. 5, 1673–1679.
[9] A. G. Johnpillai and C. M. Khalique, Group analysis of KdV equation with time dependent coefficients, Appl.

Math. Comput. 216 (2010), no. 12, 3761–3771.
[10] A. G. Johnpillai and C. M. Khalique, Lie group classification and invariant solutions of mKdV equation with

time-dependent coefficients, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 3, 1207–1215.
[11] S. Lie, On integration of a class of linear partial differential equations by means of definite integrals, Arch.

Math. VI (3) 6(1881), 328–368.
[12] H. Liu, J. Li and L. Liu, Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV

types of equations, J. Math. Anal. Appl. 368 (2010), no. 2, 551–558.
[13] H. Liu and J. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonlinear Anal. 71

(2009), no. 5-6, 2126–2133.
[14] N. Liu and X. Q. Liu, Similarity reductions and similarity solutions of the (3+1)-dimensional Kadomtsev-

Petviashvili equation, Chinese Phys. Lett. 25 (2008), 3527–3530.
[15] S. Y. Lou and H.-C. Ma, Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from

a simple direct method, J. Phys. A 38 (2005), no. 7, L129–L137.
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