Normal Families of Meromorphic Functions with Sharing Functions

${ }^{1}$ Dan Liu, ${ }^{2}$ Bingmao Deng and ${ }^{3}$ Degui Yang
${ }^{1,3}$ Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, P. R. China
${ }^{2}$ South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, P. R. China
${ }^{1}$ liudan@scau.edu.cn, ${ }^{2}$ dbmao2012@163.com, ${ }^{3}$ dyang @scau.edu.cn

Abstract

Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $h(z)(\not \equiv 0, \infty)$ be a meromorphic function in D such that any $f \in \mathscr{F}$ have neither common zeros nor common poles with $h(z)$. If, for each $f \in \mathscr{F}$, the multiplicity of the zeros f is at least k, and $f=0 \Leftrightarrow f^{(k)}=0$, and $f^{(k)}(z)=h(z) \Rightarrow f(z)=h(z)$, then \mathscr{F} is normal in D. This improves the results due to Xia and Xu.

2010 Mathematics Subject Classification: 30D45
Keywords and phrases: Meromorphic function, normality, multiplicity.

1. Introduction and main result

Let f and g be two meromorphic functions on a domain D in \mathbb{C}, and let a be a complex number. If $g(z)=a$ whenever $f(z)=a$, we denote it by $f=a \Rightarrow g=a$. $f=a \Leftrightarrow g=a$ means $f(z)=a$ if and only if $g(z)=a$, and we say that f and g share a.

Let D be a domain in \mathbb{C} and \mathscr{F} a family of meromorphic functions in D. \mathscr{F} is said to be normal in D, in the sense of Montel, if each sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ has a subsequence $\left\{f_{n_{j}}\right\}$ which converges spherically locally uniformly in D, to a meromorphic function or ∞ (see [5, 10, 16]).

In 1992, Schwick [11] found a connection between normality and shared values, and proved the following well-known result.

Theorem 1.1. Let \mathscr{F} be a family of meromorphic functions defined in D, and let a_{1}, a_{2}, a_{3} be distinct complex numbers. If for each $f \in \mathscr{F}, f=a_{i} \Leftrightarrow f^{\prime}=a_{i}, i=1,2,3$, then \mathscr{F} is normal in D.

Since then, many scholars studied the normality criteria concerning shared values, such as Pang and Zalcman [8], Chen and Fang [1], Pang [7], Meng [6], Qi, Ding and Yang [9], etc, and have got several more general normality criteria concerning shared values.

In 2001, Fang [2] improved Theorem 1.1 from sharing values to sharing functions, and proved.

[^0]Theorem 1.2. Let \mathscr{F} be a family of meromorphic functions in a domain D, and let $\psi(z)(\neq$ $0)$ be an analytic function in D. If for each $f \in \mathscr{F}, f=0 \Leftrightarrow f^{\prime}(z)=0$, and $f^{\prime}(z)=\psi(z) \Rightarrow$ $f(z)=\psi(z)$, then \mathscr{F} is normal in D.

In 2006, Xu [14] proved the following result.
Theorem 1.3. Let \mathscr{F} be a family of meromorphic functions in a domain D, and k be a positive integer, and let $\psi(z)(\not \equiv 0)$ be an analytic function in D such that $f \in D$ and $\psi(z)$ has no common zeros and $\psi(z)$ has no simple zeros in D. If for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least $k, f=0 \Leftrightarrow f^{(k)}(z)=0$, and $f^{(k)}(z)=\psi(z) \Rightarrow f(z)=\psi(z)$, then \mathscr{F} is normal in D.

In [14], an example was given to show that the condition any $f \in \mathscr{F}$ and $\psi(z)$ have no common zeros is necessary. In fact, the condition $\psi(z)$ has no simple zeros is not necessary.

In 2010, Xia and Xu [12] proved that Theorem 1.3 still holds for a meromorphic function $\psi(z)(\not \equiv 0)$ as following,

Theorem 1.4. Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $\psi(z)(\not \equiv 0, \infty)$ be an meromorphic function in D such that $f \in \mathscr{F}$ and $\psi(z)$ have no common zeros and $\psi(z)$ has no simple zeros in D, and all poles of $\psi(z)$ have multiplicity at most k. If for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least k, $f=0 \Leftrightarrow f^{(k)}(z)=0$, and $f^{(k)}(z)=\psi(z) \Rightarrow f(z)=\psi(z)$, then \mathscr{F} is normal in D.

In [12], Xia and Xu also proposed a conjecture that the restriction "all poles of $\psi(z)$ have multiplicity at most k " can be relaxed to that $\psi(z)$ has no common poles with any function $f \in \mathscr{F}$. We study this problem, and prove the following result.

Theorem 1.5. Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $h(z)(\not \equiv 0, \infty)$ be a meromorphic function in D such that f and $h(z)$ have neither common zeros nor common poles for all $f \in \mathscr{F}$. If, for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least $k, f(z)=0 \Leftrightarrow f^{(k)}(z)=0$, and $f^{(k)}(z)=h(z) \Rightarrow f(z)=h(z)$, then \mathscr{F} is normal in D.

An example was also given in [12] to show that the restriction that $h(z)$ has no common poles with any function in \mathscr{F} is indispensable.

2. Some lemmas

For the proof of Theorem 1.5, we require the following lemmas.
Lemma 2.1. $[4,8,17]$ Let k be a positive integer and let \mathscr{F} be a family of meromorphic functions in a domain D, such that each function $f \in \mathscr{F}$ has only zeros of multiplicity at least k, and suppose that there exist $A \geq 1$ such that $\left|f^{(k)}\right| \leq A$ whenever $f(z)=0, f \in \mathscr{F}$. If \mathscr{F} is not normal at $z_{0} \in D$, then for each $\alpha, 0 \leq \alpha \leq k$, there exist
a) points $z_{j} \in D, z_{j} \rightarrow z_{0}$;
b) functions $f_{j} \in \mathscr{F}$; and
c) positive numbers $\rho_{j} \rightarrow 0$
such that $g_{n}(\xi)=\rho_{j}^{-\alpha} f_{j}\left(z_{j}+\rho_{j} \xi\right) \rightarrow g(\xi)$ locally uniformly with respect to the spherical metric, where $g(\xi)$ is a non-constant meromorphic function on \mathbb{C}, all of whose zeros have multiplicity at least k, such that $g^{\sharp}(\xi) \leq g^{\sharp}(0)=k A+1$. Moreover, g has order at most 2 .

Lemma 2.2. [2] Let f be a meromorphic function of finite order in the plane \mathbb{C}. If $f=0 \Leftrightarrow$ $f^{(k)}=0, f^{\prime} \neq 1$, then f is a constant.

Lemma 2.3. [3] Let f be a meromorphic function of finite order in the plane, $k \geq 2$ be a positive integer. If all zeros of f are of order at least $k+1$, and $f^{(k)}(z)=0 \Leftrightarrow f(z)=0$, then $f(z)$ is a constant.

Lemma 2.4. [13] Let f be a transcendental meromorphic function, let $R(z)(\equiv \equiv 0)$ be a rational function, and let k be a positive integer. If all zeros of f have multiplicity at least $k+1$, except for finitely many, and $f^{(k)}=0 \Rightarrow f=0$, then $f^{(k)}-R(z)$ has infinitely many zeros.

Lemma 2.5. [15] Let k, l be two positive integers, and let $Q(z)$ be a rational function all of whose zeros are of order at least k. If $Q^{(k)}(z) \neq z^{-l}$, then $Q(z)$ is a constant.

3. Proof of Theorem 1.5

Since normality is a local property, we only need to prove that \mathscr{F} is normal at every pole of $h(z)$. Without loss of generality, we may assume that $D=\triangle=\{z:|z|<1\}, h(z)=b(z) / z^{l}$, and $b(0)=1, b(z) \neq 0, \infty, z \in D$, where l is a positive integer. We only need to prove that \mathscr{F} is normal at $z=0$. Suppose that \mathscr{F} is not normal at $z=0$. We consider two cases: $l \leq k$ and $l \geq k+1$. In fact, the case $l \leq k$ can be proved as same as Theorem 1.4 , so we only need to prove the case $l \geq k+1$.

Consider the family $\mathscr{G}=\{g(z)=f(z) / h(z): f \in \mathscr{F}, z \in \triangle\}$. Since $z=0$ is a pole of $h(z)$, and $f(z)$ and $h(z)$ have no common poles, $z=0$ is a zero of $g(z)$ of order at least $l(\geq k+1)$. Thus all zeros of $g(z)$ have multiplicity at least $k+1$ for the zeros of $f(z)$ are of order at least $k+1$.

We first prove that \mathscr{G} is normal in \triangle. Suppose that \mathscr{G} is not normal at $z_{0} \in D$. By Lemma 2.1, there exist a sequence of functions g_{n}, a sequence of points $z_{n} \rightarrow z_{0}$, and a sequence of positive numbers $\rho_{n} \rightarrow 0^{+}$, such that

$$
G_{n}(\zeta)=\frac{g_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \rightarrow G(\zeta)
$$

converges spherically uniformly on compact subsets of \mathbb{C}, where $G(\zeta)$ is a nonconstant meromorphic function on \mathbb{C}, and $G(\zeta)$ is of order at most two. By Hurwitz's theorem, all zeros of $G(\zeta)$ have multiplicity at least $k+1$.

Two cases are considered in the following.
Case $1 z_{n} / \rho_{n} \rightarrow \infty$.
Since $f_{n}(z)=g_{n}(z) h(z)$ and $h(z)=b(z) / z^{l}$, by simple calculation, we have

$$
g_{n}^{(k)}(z)=\frac{f_{n}^{(k)}(z)}{h(z)}-\sum_{j=1}^{k} C_{k}^{j} g_{n}^{(k-j)}(z) \frac{h^{(j)}(z)}{h(z)} .
$$

By mathematical induction, we have

$$
\begin{aligned}
\frac{h^{(j)}(z)}{h(z)}= & \frac{(-1)^{j} l(l+1) \cdots(l+j-1)}{z^{j}}+\frac{C_{j}^{1}(-1)^{j-1} l(l+1) \cdots(l+j-2)}{z^{j-1}} \frac{b^{\prime}(z)}{b(z)} \\
& +\cdots+\frac{C_{j}^{j-1}(-1) l}{z} \frac{b^{(j-1)}(z)}{b(z)}+\frac{b^{(j)}(z)}{b(z)} .
\end{aligned}
$$

and

$$
G_{n}^{(k)}(\zeta)=g_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow G^{(k)}(\zeta)
$$

uniformly on compact subsets of \mathbb{C} disjoint from the poles of G.
Thus

$$
\begin{aligned}
G_{n}^{(k)}(\zeta)= & \frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)}-C_{k}^{1} g_{n}^{(k-1)}\left(z_{n}+\rho_{n} \zeta\right)\left[\frac{-l}{z_{n}+\rho_{n} \zeta}+\frac{b^{\prime}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}\right] \\
& -\cdots-g_{n}\left(z_{n}+\rho_{n} \zeta\right)\left[\frac{(-1)^{k} l(l+1) \cdots(l+k-1)}{\left(z_{n}+\rho_{n} \zeta\right)^{k}}+\right. \\
& \left.\frac{C_{k}^{1}(-1)^{k-1} l(l+1) \cdots(l+k-2)}{\left(z_{n}+\rho_{n} \zeta\right)^{k-1}} \frac{b^{\prime}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}+\cdots+\frac{b^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}\right] \\
= & \frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)}-C_{k}^{1} \frac{g_{n}^{(k-1)}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}}\left[\frac{-l}{z_{n} / \rho_{n}+\zeta}+\frac{\rho_{n} b^{\prime}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}\right] \\
& -\cdots-\frac{g_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}}\left[\frac{(-1)^{k} l(l+1) \cdots(l+k-1)}{\left(z_{n} / \rho_{n}+\zeta\right)^{k}}+\right. \\
& \left.\frac{k(-1)^{k-1}(l+1) \cdots(l+k-2)}{\left(z_{n} / \rho_{n}+\zeta\right)^{k-1}} \frac{\rho_{n} b^{\prime}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}+\cdots+\frac{\rho_{n}^{k} b^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}\right] .
\end{aligned}
$$

On the other hand,

$$
\lim _{n \rightarrow \infty} \frac{1}{z_{n} / \rho_{n}+\zeta}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\rho_{n}^{j} b^{(j)}\left(z_{n}+\rho_{n} \zeta\right)}{b\left(z_{n}+\rho_{n} \zeta\right)}=0(j=1,2, \ldots, k)
$$

uniformly on compact subsets of \mathbb{C}. Noting that $g^{(k-j)}\left(z_{n}+\rho_{n} \zeta\right) / \rho_{n}^{j}$ is locally bounded on \mathbb{C} disjoint from the poles of $G(\zeta)$ since $g_{n}\left(z_{n}+\rho_{n} \zeta\right) / \rho_{n}^{k} \rightarrow G(\zeta)$.

Therefore,

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right)}{h\left(z_{n}+\rho_{n} \zeta\right)} \rightarrow G^{(k)}(\zeta)
$$

uniformly on compact subsets of \mathbb{C} disjoint from the poles of $G(\zeta)$.
We claim that
(i) $G(\zeta)=0 \Leftrightarrow G^{(k)}(\zeta)=0$, and
(ii) $G^{(k)}(\zeta) \neq 1$.

Since all zeros of $G(\zeta)$ are of multiplicity at least $k+1, G^{(k)}(\zeta)=0$ whenever $G(\zeta)=0$. Suppose that $G^{(k)}\left(\zeta_{0}\right)=0$. Clearly, $G^{(k)}(\zeta) \not \equiv 0$. Otherwise, $G(\zeta)$ would be a polynomial of degree less than k, which contradicts the condition that the multiplicity of the zeros of $G(\zeta)$ is at least $k+1$. Then by Hurwitz's theorem, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that, for n sufficiently large,

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{h\left(z_{n}+\rho_{n} \zeta_{n}\right)}=0
$$

Thus $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$ or $h\left(z_{n}+\rho_{n} \zeta_{n}\right)=\infty$. If $h\left(z_{n}+\rho_{n} \zeta_{n}\right)=\infty$, then $z_{n}+\rho_{n} \zeta_{n}=0$, and $\zeta_{n}=-z_{n} / \rho_{n} \rightarrow \infty$, which contradicts the fact that $\zeta_{n} \rightarrow \zeta_{0}, \zeta_{0}$ is a finite number. So we have $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=0$. Since f_{n} and $f_{n}^{(k)}$ share 0 . It follows that

$$
G\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} G_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k} h\left(z_{n}+\rho_{n} \zeta\right)}=0
$$

This shows that $G(\zeta)=0$ whenever $G^{(k)}(\zeta)=0$.
Next we prove (ii). Suppose that $G^{(k)}\left(\zeta_{0}\right)=1$. We claim that $G^{(k)}(\zeta) \not \equiv 1$. Otherwise, $G(\zeta)$ would be a polynomial of degree k, which is a contradiction with the fact that the zeros of $G(\zeta)$ have multiplicity at least $k+1$. Then by Hurwitz's theorem, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that, for n sufficiently large,

$$
\frac{f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)-h\left(z_{n}+\rho_{n} \zeta_{n}\right)}{h\left(z_{n}+\rho_{n} \zeta_{n}\right)}=0
$$

Thus $f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta_{n}\right)$ or $h\left(z_{n}+\rho_{n} \zeta_{n}\right)=\infty$. As the same as the previous proof, we know that $h\left(z_{n}+\rho_{n} \zeta_{n}\right) \neq \infty$. Thus $f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=h\left(z_{n}+\rho_{n} \zeta_{n}\right)$ for $f_{n}^{(k)}(z)=h(z) \Rightarrow$ $f_{n}(z)=h(z)$. It follows that

$$
G\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} G_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k} h\left(z_{n}+\rho_{n} \zeta_{n}\right)}=\infty
$$

which contradicts that $G^{(k)}\left(\zeta_{0}\right)=1$. This prove (ii).
However, it follows by Lemma 2.2 and Lemma 2.3 that $G(\zeta)$ is a constant, a contradiction.
Case $2 z_{n} / \rho_{n} \rightarrow \alpha$, where α is a finite complex number.
We have

$$
\frac{g_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k}}=\frac{g_{n}\left[z_{n}+\rho_{n}\left(\zeta-z_{n} / \rho_{n}\right)\right]}{\rho_{n}^{k}}=G_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right) \rightarrow G(\zeta-\alpha)=\tilde{G}(\zeta)
$$

spherically uniformly on compact subsets of \mathbb{C}. Since $f(z)$ and $h(z)$ have neither common zeros nor common poles, and the zeros of $f(z)$ have multiplicity at least $k+1$, then $\zeta=0$ is a zero of $\tilde{G}(\zeta)$ with multiplicity $l(\geq k+1)$, or $l+m(m \geq k+1)$. So all zeros of $\tilde{G}(\zeta)$ have multiplicity at least $k+1$.

Set

$$
H_{n}(\zeta)=\frac{f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k-l}}
$$

Then

$$
H_{n}(\zeta)=\frac{f_{n}\left(\rho_{n} \zeta\right)}{h\left(\rho_{n} \zeta\right) \rho_{n}^{k}} \cdot \frac{h\left(\rho_{n} \zeta\right)}{\rho_{n}^{-l}}=\frac{g_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}^{k}} \cdot \frac{h\left(\rho_{n} \zeta\right)}{\rho_{n}^{-l}}
$$

Noting that

$$
\frac{h\left(\rho_{n} \zeta\right)}{\rho_{n}^{-l}} \rightarrow 1 / \zeta^{l}
$$

uniformly on every compact subset of $\mathbb{C} /\{0\}$, thus

$$
H_{n}(\zeta) \rightarrow 1 / \zeta^{l} \cdot \tilde{G}(\zeta)=H(\zeta)
$$

uniformly on compact subsets of $\mathbb{C} /\{0\}$. Since $z=0$ is the zero of $\tilde{G}(\zeta)$ with multiplicity at least l, and the multiplicity of the other zeros of $\tilde{G}(\zeta)$ is at least $k+1$, the zeros of $H(\zeta)$ have multiplicity at least $k+1$, and $H(0) \neq \infty$.

We claim that
(iii) $H(\zeta)=0 \Leftrightarrow H^{(k)}(\zeta)=0$, and
(iv) $H^{(k)}(\zeta) \neq 1 / \zeta^{l}$.

Since all zeros of $H(\zeta)$ are of multiplicity at least $k+1, H^{(k)}(\zeta)=0$ whenever $H(\zeta)=0$. Suppose that $H^{(k)}\left(\zeta_{0}\right)=0$. Clearly, $H^{(k)}(\zeta) \not \equiv 0$. Otherwise $H(\zeta)$ would be a polynomial of degree less than k, which contradicts the fact that the multiplicity of the zeros of $H(\zeta)$ is at least $k+1$. Then by Hurwitz's theorem there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that, for n sufficiently large,

$$
H_{n}^{(k)}\left(\zeta_{n}\right)=f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right) \rho_{n}^{l}=0
$$

so we have $f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)=0$. Thus $f_{n}\left(\rho_{n} \zeta_{n}\right)=0$ since f_{n} and $f_{n}^{(k)}$ share 0 . It follows that

$$
H\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} H_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k-l}}=0
$$

This shows that $H(\zeta)=0$ whenever $H^{(k)}(\zeta)=0$. This completes the proof of (iii).
Next we prove (iv). Suppose $H^{(k)}\left(\zeta_{0}\right)=1 / \zeta_{0}^{l}$. Obviously, $H^{(k)}(\zeta) \not \equiv 1 / \zeta^{l}, \zeta_{0} \neq 0$ for $H(0) \neq \infty$. Then $H(\zeta)$ is holomorphic at ζ_{0} and noting that

$$
\rho_{n}^{l}\left[f_{n}^{(k)}\left(\rho_{n} \zeta\right)-h\left(\rho_{n} \zeta\right)\right] \rightarrow H^{(k)}(\zeta)-1 / \zeta^{l}
$$

uniformly on compact subset of $\mathbb{C} /\{0\}$ disjoint from the poles of $H(\zeta)$, then by Hurwitz's theorem there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that, for n sufficiently large, $f_{n}^{(k)}\left(\rho_{n} \zeta_{n}\right)=h\left(\rho_{n} \zeta_{n}\right)$. Thus $f_{n}\left(\rho_{n} \zeta_{n}\right)=h\left(\rho_{n} \zeta_{n}\right)$ for $f^{(k)}(z)=h(z) \Rightarrow f(z)=h(z)$. It follows that

$$
H\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} H_{n}\left(\zeta_{n}\right)=\lim _{n \rightarrow \infty} \frac{f_{n}\left(\rho_{n} \zeta_{n}\right) b\left(\rho_{n} \zeta_{n}\right)}{\rho_{n}^{k} h\left(\rho_{n} \zeta_{n}\right)}=\infty
$$

which contradicts that $H^{(k)}\left(\zeta_{0}\right)=1 / \zeta_{0}^{l}$. This proves (iv).
It follows from Lemma 2.4 that $H(\zeta)$ is a rational function. Noting that $H(0) \neq \infty$, by Lemma 2.5, $H(\zeta)$ is a constant. Since $H(\zeta)=0 \Leftrightarrow H^{(k)}(\zeta)=0, H \equiv 0$. For $H(\zeta)=$ $1 / \zeta^{l} \cdot \tilde{G}(\zeta)$, thus we have $\tilde{G}(\zeta)=G(\zeta-\alpha)=0$, which is a contradiction. We thus prove \mathscr{G} is normal on \triangle.

It remains to prove that \mathscr{F} is normal at 0 . Since \mathscr{G} is normal on \triangle, then the family \mathscr{G} is equicontinuous on \triangle with respect to the spherical distance. On the other hand, $g(0)=0$ for each $g \in \mathscr{G}$, so there exists $\delta>0$ such that $|g(z)| \leq 1$ for all $g \in \mathscr{G}$ and each $z \in \Delta_{\delta}=$ $\{z:|z|<\delta\}$. It follow that $f(z)$ is holomorphic on \triangle_{δ} for all $f \in \mathscr{F}$. Since \mathscr{F} is normal on \triangle^{\prime}, but it is not normal at $z=0$, there exists a sequence $\left\{f_{n}\right\} \subset \mathscr{F}$ which converges locally uniformly on $\triangle_{\delta}^{\prime}$, but not on \triangle_{δ}. By the maximum modulus principle, we have $f_{n} \rightarrow \infty$ on $\triangle_{\delta}^{\prime}$, and hence so does $\left\{g_{n}\right\} \subset \mathscr{G}$, where $g_{n}=f_{n} / h$. But $\left|g_{n}(z)\right| \leq 1$ for $z \in \triangle_{\delta}$, a contradiction. Thus \mathscr{F} is normal in D. Thus this completes the proof of Theorem 1.5.

Acknowledgement. Research supported by the NNSF of P. R. China (Grant No. 11371149; 61375006).

References

[1] H. Chen and M. Fang, Shared values and normal families of meromorphic functions, J. Math. Anal. Appl. 260 (2001), no. 1, 124-132.
[2] M. Fang, Picard values and normality criterion, Bull. Korean Math. Soc. 38 (2001), no. 2, 379-387.
[3] M. Fang and L. Zalcman, Normal families and shared values of meromorphic functions, Ann. Polon. Math. 80 (2003), 133-141.
[4] Y. X. Gu, X. C. Pang and M. L. Fang, The Theory of Normal Families and Its Application, Science Press, Beijing, 2007.
[5] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[6] C. Meng, Normal families and shared values of meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 1, 85-90.
[7] X. Pang, Shared values and normal families, Analysis (Munich) 22 (2002), no. 2, 175-182.
[8] X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325-331.
[9] J. Qi, J. Ding and L. Yang, Normality criteria for families of meromorphic function concerning shared values, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 449-457.
[10] J. L. Schiff, Normal Families, Universitext, Springer, New York, 1993.
[11] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), no. 1, 50-54.
[12] J. Xia and Y. Xu, Normality criterion concerning sharing functions II, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 479-486.
[13] Y. Xu, On the value distribution of derivatives of meromorphic functions, Appl. Math. Lett. 18 (2005), no. 5, 597-602.
[14] Y. Xu, Normality criterion concerning sharing functions, Houston J. Math. 32 (2006), no. 3, 945-954 (electronic).
[15] Y. Xu, Normal families and exceptional functions, J. Math. Anal. Appl. 329 (2007), no. 2, 1343-1354.
[16] L. Yang, Value Distribution Theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.
[17] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215-230.

[^0]: Communicated by V. Ravichandran.
 Received: August 29, 2012; Revised: November 13, 2012.

