BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Normal Families of Meromorphic Functions with Sharing Functions

¹Dan Liu, ²Bingmao Deng and ³Degui Yang

^{1,3}Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, P. R. China ²South China Institute of Software Engineering, Guangzhou University, Guangzhou 510990, P. R. China ¹liudan@scau.edu.cn, ²dbmao2012@163.com, ³dyang@scau.edu.cn

Abstract. Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $h(z) (\neq 0, \infty)$ be a meromorphic function in D such that any $f \in \mathscr{F}$ have neither common zeros nor common poles with h(z). If, for each $f \in \mathscr{F}$, the multiplicity of the zeros f is at least k, and $f = 0 \Leftrightarrow f^{(k)} = 0$, and $f^{(k)}(z) = h(z) \Rightarrow f(z) = h(z)$, then \mathscr{F} is normal in D. This improves the results due to Xia and Xu.

2010 Mathematics Subject Classification: 30D45

Keywords and phrases: Meromorphic function, normality, multiplicity.

1. Introduction and main result

Let f and g be two meromorphic functions on a domain D in \mathbb{C} , and let a be a complex number. If g(z) = a whenever f(z) = a, we denote it by $f = a \Rightarrow g = a$. $f = a \Leftrightarrow g = a$ means f(z) = a if and only if g(z) = a, and we say that f and g share a.

Let *D* be a domain in \mathbb{C} and \mathscr{F} a family of meromorphic functions in *D*. \mathscr{F} is said to be normal in *D*, in the sense of Montel, if each sequence $\{f_n\} \subset \mathscr{F}$ has a subsequence $\{f_{n_j}\}$ which converges spherically locally uniformly in *D*, to a meromorphic function or ∞ (see [5, 10, 16]).

In 1992, Schwick [11] found a connection between normality and shared values, and proved the following well-known result.

Theorem 1.1. Let \mathscr{F} be a family of meromorphic functions defined in D, and let a_1, a_2, a_3 be distinct complex numbers. If for each $f \in \mathscr{F}$, $f = a_i \Leftrightarrow f' = a_i, i = 1, 2, 3$, then \mathscr{F} is normal in D.

Since then, many scholars studied the normality criteria concerning shared values, such as Pang and Zalcman [8], Chen and Fang [1], Pang [7], Meng [6], Qi, Ding and Yang [9], etc, and have got several more general normality criteria concerning shared values.

In 2001, Fang [2] improved Theorem 1.1 from sharing values to sharing functions, and proved.

Communicated by V. Ravichandran.

Received: August 29, 2012; Revised: November 13, 2012.

Theorem 1.2. Let \mathscr{F} be a family of meromorphic functions in a domain D, and let $\psi(z) (\neq 0)$ be an analytic function in D. If for each $f \in \mathscr{F}$, $f = 0 \Leftrightarrow f'(z) = 0$, and $f'(z) = \psi(z) \Rightarrow f(z) = \psi(z)$, then \mathscr{F} is normal in D.

In 2006, Xu [14] proved the following result.

Theorem 1.3. Let \mathscr{F} be a family of meromorphic functions in a domain D, and k be a positive integer, and let $\psi(z) (\not\equiv 0)$ be an analytic function in D such that $f \in D$ and $\psi(z)$ has no common zeros and $\psi(z)$ has no simple zeros in D. If for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least k, $f = 0 \Leftrightarrow f^{(k)}(z) = 0$, and $f^{(k)}(z) = \psi(z) \Rightarrow f(z) = \psi(z)$, then \mathscr{F} is normal in D.

In [14], an example was given to show that the condition any $f \in \mathscr{F}$ and $\psi(z)$ have no common zeros is necessary. In fact, the condition $\psi(z)$ has no simple zeros is not necessary.

In 2010, Xia and Xu [12] proved that Theorem 1.3 still holds for a meromorphic function $\psi(z) (\neq 0)$ as following,

Theorem 1.4. Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $\psi(z) (\neq 0, \infty)$ be an meromorphic function in D such that $f \in \mathscr{F}$ and $\psi(z)$ have no common zeros and $\psi(z)$ has no simple zeros in D, and all poles of $\psi(z)$ have multiplicity at most k. If for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least k, $f = 0 \Leftrightarrow f^{(k)}(z) = 0$, and $f^{(k)}(z) = \psi(z) \Rightarrow f(z) = \psi(z)$, then \mathscr{F} is normal in D.

In [12], Xia and Xu also proposed a conjecture that the restriction "all poles of $\psi(z)$ have multiplicity at most k" can be relaxed to that $\psi(z)$ has no common poles with any function $f \in \mathscr{F}$. We study this problem, and prove the following result.

Theorem 1.5. Let \mathscr{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let $h(z) (\neq 0, \infty)$ be a meromorphic function in D such that f and h(z) have neither common zeros nor common poles for all $f \in \mathscr{F}$. If, for each $f \in \mathscr{F}$, all zeros of f have multiplicity at least k, $f(z) = 0 \Leftrightarrow f^{(k)}(z) = 0$, and $f^{(k)}(z) = h(z) \Rightarrow f(z) = h(z)$, then \mathscr{F} is normal in D.

An example was also given in [12] to show that the restriction that h(z) has no common poles with any function in \mathscr{F} is indispensable.

2. Some lemmas

For the proof of Theorem 1.5, we require the following lemmas.

Lemma 2.1. [4, 8, 17] Let k be a positive integer and let \mathscr{F} be a family of meromorphic functions in a domain D, such that each function $f \in \mathscr{F}$ has only zeros of multiplicity at least k, and suppose that there exist $A \ge 1$ such that $|f^{(k)}| \le A$ whenever f(z) = 0, $f \in \mathscr{F}$. If \mathscr{F} is not normal at $z_0 \in D$, then for each $\alpha, 0 \le \alpha \le k$, there exist

- a) points $z_j \in D$, $z_j \rightarrow z_0$;
- b) functions $f_j \in \mathscr{F}$; and
- c) positive numbers $\rho_j \rightarrow 0$

such that $g_n(\xi) = \rho_j^{-\alpha} f_j(z_j + \rho_j \xi) \to g(\xi)$ locally uniformly with respect to the spherical metric, where $g(\xi)$ is a non-constant meromorphic function on \mathbb{C} , all of whose zeros have multiplicity at least k, such that $g^{\sharp}(\xi) \leq g^{\sharp}(0) = kA + 1$. Moreover, g has order at most 2.

Lemma 2.2. [2] Let f be a meromorphic function of finite order in the plane \mathbb{C} . If $f = 0 \Leftrightarrow f^{(k)} = 0, f' \neq 1$, then f is a constant.

Lemma 2.3. [3] Let f be a meromorphic function of finite order in the plane, $k \ge 2$ be a positive integer. If all zeros of f are of order at least k + 1, and $f^{(k)}(z) = 0 \Leftrightarrow f(z) = 0$, then f(z) is a constant.

Lemma 2.4. [13] Let f be a transcendental meromorphic function, let $R(z) (\neq 0)$ be a rational function, and let k be a positive integer. If all zeros of f have multiplicity at least k+1, except for finitely many, and $f^{(k)} = 0 \Rightarrow f = 0$, then $f^{(k)} - R(z)$ has infinitely many zeros.

Lemma 2.5. [15] Let k, l be two positive integers, and let Q(z) be a rational function all of whose zeros are of order at least k. If $Q^{(k)}(z) \neq z^{-l}$, then Q(z) is a constant.

3. Proof of Theorem 1.5

Since normality is a local property, we only need to prove that \mathscr{F} is normal at every pole of h(z). Without loss of generality, we may assume that $D = \triangle = \{z : |z| < 1\}, h(z) = b(z)/z^l$, and $b(0) = 1, b(z) \neq 0, \infty, z \in D$, where *l* is a positive integer. We only need to prove that \mathscr{F} is normal at z = 0. Suppose that \mathscr{F} is not normal at z = 0. We consider two cases: $l \leq k$ and $l \geq k+1$. In fact, the case $l \leq k$ can be proved as same as Theorem 1.4, so we only need to prove the case $l \geq k+1$.

Consider the family $\mathscr{G} = \{g(z) = f(z)/h(z) : f \in \mathscr{F}, z \in \Delta\}$. Since z = 0 is a pole of h(z), and f(z) and h(z) have no common poles, z = 0 is a zero of g(z) of order at least $l(\geq k+1)$. Thus all zeros of g(z) have multiplicity at least k+1 for the zeros of f(z) are of order at least k+1.

We first prove that \mathscr{G} is normal in \triangle . Suppose that \mathscr{G} is not normal at $z_0 \in D$. By Lemma 2.1, there exist a sequence of functions g_n , a sequence of points $z_n \to z_0$, and a sequence of positive numbers $\rho_n \to 0^+$, such that

$$G_n(\zeta) = rac{g_n(z_n +
ho_n \zeta)}{
ho_n^k} o G(\zeta)$$

converges spherically uniformly on compact subsets of \mathbb{C} , where $G(\zeta)$ is a nonconstant meromorphic function on \mathbb{C} , and $G(\zeta)$ is of order at most two. By Hurwitz's theorem, all zeros of $G(\zeta)$ have multiplicity at least k + 1.

Two cases are considered in the following.

Case 1 $z_n/\rho_n \to \infty$. Since $f(z) = q_n(z)h(z)$ and $h(z) = h(z)/z^l$, by simple calculation

Since
$$f_n(z) = g_n(z)h(z)$$
 and $h(z) = b(z)/z^2$, by simple calculation, we have

$$g_n^{(k)}(z) = \frac{f_n^{(k)}(z)}{h(z)} - \sum_{j=1}^k C_k^j g_n^{(k-j)}(z) \frac{h^{(j)}(z)}{h(z)}$$

By mathematical induction, we have

$$\frac{h^{(j)}(z)}{h(z)} = \frac{(-1)^{j}l(l+1)\cdots(l+j-1)}{z^{j}} + \frac{C_{j}^{l}(-1)^{j-1}l(l+1)\cdots(l+j-2)}{z^{j-1}}\frac{b'(z)}{b(z)} + \frac{C_{j}^{j-1}(-1)l}{z}\frac{b^{(j-1)}(z)}{b(z)} + \frac{b^{(j)}(z)}{b(z)}.$$

and

$$G_n^{(k)}(\zeta) = g_n^{(k)}(z_n + \rho_n \zeta) \to G^{(k)}(\zeta)$$

uniformly on compact subsets of \mathbb{C} disjoint from the poles of *G*. Thus

$$\begin{split} G_n^{(k)}(\zeta) &= \frac{f_n^{(k)}(z_n + \rho_n \zeta)}{h(z_n + \rho_n \zeta)} - C_k^1 g_n^{(k-1)}(z_n + \rho_n \zeta) \left[\frac{-l}{z_n + \rho_n \zeta} + \frac{b'(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} \right] \\ &- \cdots - g_n(z_n + \rho_n \zeta) \left[\frac{(-1)^k l(l+1) \cdots (l+k-1)}{(z_n + \rho_n \zeta)^k} + \frac{C_k^1(-1)^{k-1} l(l+1) \cdots (l+k-2)}{(z_n + \rho_n \zeta)^{k-1}} \frac{b'(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} + \cdots + \frac{b^{(k)}(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} \right] \\ &= \frac{f_n^{(k)}(z_n + \rho_n \zeta)}{h(z_n + \rho_n \zeta)} - C_k^1 \frac{g_n^{(k-1)}(z_n + \rho_n \zeta)}{\rho_n} \left[\frac{-l}{z_n / \rho_n + \zeta} + \frac{\rho_n b'(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} \right] \\ &- \cdots - \frac{g_n(z_n + \rho_n \zeta)}{\rho_n^k} \left[\frac{(-1)^k l(l+1) \cdots (l+k-1)}{(z_n / \rho_n + \zeta)^k} + \frac{k(-1)^{k-1}(l+1) \cdots (l+k-2)}{(z_n / \rho_n + \zeta)^{k-1}} \frac{\rho_n b'(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} + \cdots + \frac{\rho_n^k b^{(k)}(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} \right] \end{split}$$

On the other hand,

$$\lim_{n\to\infty}\frac{1}{z_n/\rho_n+\zeta}=0,$$

and

$$\lim_{n\to\infty}\frac{\rho_n^{j}b^{(j)}(z_n+\rho_n\zeta)}{b(z_n+\rho_n\zeta)}=0 (j=1,2,\ldots,k),$$

uniformly on compact subsets of \mathbb{C} . Noting that $g^{(k-j)}(z_n + \rho_n \zeta)/\rho_n^j$ is locally bounded on \mathbb{C} disjoint from the poles of $G(\zeta)$ since $g_n(z_n + \rho_n \zeta)/\rho_n^k \to G(\zeta)$.

Therefore,

$$\frac{f_n^{(k)}(z_n+\rho_n\zeta)}{h(z_n+\rho_n\zeta)}\to G^{(k)}(\zeta)$$

uniformly on compact subsets of \mathbb{C} disjoint from the poles of $G(\zeta)$.

We claim that

- (i) $G(\zeta) = 0 \Leftrightarrow G^{(k)}(\zeta) = 0$, and
- (ii) $G^{(k)}(\zeta) \neq 1$.

Since all zeros of $G(\zeta)$ are of multiplicity at least k+1, $G^{(k)}(\zeta) = 0$ whenever $G(\zeta) = 0$. Suppose that $G^{(k)}(\zeta_0) = 0$. Clearly, $G^{(k)}(\zeta) \neq 0$. Otherwise, $G(\zeta)$ would be a polynomial of degree less than k, which contradicts the condition that the multiplicity of the zeros of $G(\zeta)$ is at least k+1. Then by Hurwitz's theorem, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that, for n sufficiently large,

$$\frac{f_n^{(k)}(z_n+\rho_n\zeta_n)}{h(z_n+\rho_n\zeta_n)}=0.$$

926

Thus $f_n(z_n + \rho_n \zeta_n) = 0$ or $h(z_n + \rho_n \zeta_n) = \infty$. If $h(z_n + \rho_n \zeta_n) = \infty$, then $z_n + \rho_n \zeta_n = 0$, and $\zeta_n = -z_n/\rho_n \to \infty$, which contradicts the fact that $\zeta_n \to \zeta_0$, ζ_0 is a finite number. So we have $f_n(z_n + \rho_n \zeta_n) = 0$. Since f_n and $f_n^{(k)}$ share 0. It follows that

$$G(\zeta_0) = \lim_{n \to \infty} G_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(z_n + \rho_n \zeta_n)}{\rho_n^k h(z_n + \rho_n \zeta)} = 0.$$

This shows that $G(\zeta) = 0$ whenever $G^{(k)}(\zeta) = 0$.

Next we prove (ii). Suppose that $G^{(k)}(\zeta_0) = 1$. We claim that $G^{(k)}(\zeta) \neq 1$. Otherwise, $G(\zeta)$ would be a polynomial of degree k, which is a contradiction with the fact that the zeros of $G(\zeta)$ have multiplicity at least k + 1. Then by Hurwitz's theorem, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that, for n sufficiently large,

$$\frac{f_n^{(k)}(z_n+\rho_n\zeta_n)-h(z_n+\rho_n\zeta_n)}{h(z_n+\rho_n\zeta_n)}=0.$$

Thus $f_n^{(k)}(z_n + \rho_n \zeta_n) = h(z_n + \rho_n \zeta_n)$ or $h(z_n + \rho_n \zeta_n) = \infty$. As the same as the previous proof, we know that $h(z_n + \rho_n \zeta_n) \neq \infty$. Thus $f_n(z_n + \rho_n \zeta_n) = h(z_n + \rho_n \zeta_n)$ for $f_n^{(k)}(z) = h(z) \Rightarrow f_n(z) = h(z)$. It follows that

$$G(\zeta_0) = \lim_{n \to \infty} G_n(\zeta_n) = \lim_{n \to \infty} rac{f_n(z_n +
ho_n \zeta_n)}{
ho_n^k h(z_n +
ho_n \zeta_n)} = \infty,$$

which contradicts that $G^{(k)}(\zeta_0) = 1$. This prove (ii).

However, it follows by Lemma 2.2 and Lemma 2.3 that $G(\zeta)$ is a constant, a contradiction.

Case 2 $z_n/\rho_n \rightarrow \alpha$, where α is a finite complex number.

We have

$$\frac{g_n(\rho_n\zeta)}{\rho_n^k} = \frac{g_n[z_n + \rho_n(\zeta - z_n/\rho_n)]}{\rho_n^k} = G_n(\zeta - \frac{z_n}{\rho_n}) \to G(\zeta - \alpha) = \tilde{G}(\zeta)$$

spherically uniformly on compact subsets of \mathbb{C} . Since f(z) and h(z) have neither common zeros nor common poles, and the zeros of f(z) have multiplicity at least k + 1, then $\zeta = 0$ is a zero of $\tilde{G}(\zeta)$ with multiplicity $l(\geq k+1)$, or $l + m(m \geq k+1)$. So all zeros of $\tilde{G}(\zeta)$ have multiplicity at least k + 1.

Set

$$H_n(\zeta) = rac{f_n(
ho_n \zeta)}{
ho_n^{k-l}}.$$

Then

$$H_n(\zeta) = \frac{f_n(\rho_n\zeta)}{h(\rho_n\zeta)\rho_n^k} \cdot \frac{h(\rho_n\zeta)}{\rho_n^{-l}} = \frac{g_n(\rho_n\zeta)}{\rho_n^k} \cdot \frac{h(\rho_n\zeta)}{\rho_n^{-l}}.$$

Noting that

$$rac{h(
ho_n\zeta)}{
ho_n^{-l}}
ightarrow 1/\zeta^{l}$$

uniformly on every compact subset of $\mathbb{C}/\{0\}$, thus

$$H_n(\zeta) \to 1/\zeta^l \cdot \tilde{G}(\zeta) = H(\zeta)$$

uniformly on compact subsets of $\mathbb{C}/\{0\}$. Since z = 0 is the zero of $\tilde{G}(\zeta)$ with multiplicity at least *l*, and the multiplicity of the other zeros of $\tilde{G}(\zeta)$ is at least k + 1, the zeros of $H(\zeta)$ have multiplicity at least k + 1, and $H(0) \neq \infty$.

We claim that

- (iii) $H(\zeta) = 0 \Leftrightarrow H^{(k)}(\zeta) = 0$, and (iv) $H^{(k)}(\zeta) \neq 1/\zeta^{l}$.
- (iv) $H^{(i)}(\zeta) \neq 1/\zeta^{\prime}$.

Since all zeros of $H(\zeta)$ are of multiplicity at least k+1, $H^{(k)}(\zeta) = 0$ whenever $H(\zeta) = 0$. Suppose that $H^{(k)}(\zeta_0) = 0$. Clearly, $H^{(k)}(\zeta) \neq 0$. Otherwise $H(\zeta)$ would be a polynomial of degree less than k, which contradicts the fact that the multiplicity of the zeros of $H(\zeta)$ is at least k+1. Then by Hurwitz's theorem there exist $\zeta_n, \zeta_n \to \zeta_0$, such that, for n sufficiently large,

$$H_n^{(k)}(\zeta_n)=f_n^{(k)}(\rho_n\zeta_n)\rho_n^l=0,$$

so we have $f_n^{(k)}(\rho_n\zeta_n) = 0$. Thus $f_n(\rho_n\zeta_n) = 0$ since f_n and $f_n^{(k)}$ share 0. It follows that

$$H(\zeta_0) = \lim_{n \to \infty} H_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(\rho_n \zeta_n)}{\rho_n^{k-l}} = 0.$$

This shows that $H(\zeta) = 0$ whenever $H^{(k)}(\zeta) = 0$. This completes the proof of (iii).

Next we prove (iv). Suppose $H^{(k)}(\zeta_0) = 1/\zeta_0^l$. Obviously, $H^{(k)}(\zeta) \neq 1/\zeta^l, \zeta_0 \neq 0$ for $H(0) \neq \infty$. Then $H(\zeta)$ is holomorphic at ζ_0 and noting that

$$\rho_n^l[f_n^{(k)}(\rho_n\zeta) - h(\rho_n\zeta)] \to H^{(k)}(\zeta) - 1/\zeta^l$$

uniformly on compact subset of $\mathbb{C}/\{0\}$ disjoint from the poles of $H(\zeta)$, then by Hurwitz's theorem there exist $\zeta_n, \zeta_n \to \zeta_0$, such that, for *n* sufficiently large, $f_n^{(k)}(\rho_n\zeta_n) = h(\rho_n\zeta_n)$. Thus $f_n(\rho_n\zeta_n) = h(\rho_n\zeta_n)$ for $f^{(k)}(z) = h(z) \Rightarrow f(z) = h(z)$. It follows that

$$H(\zeta_0) = \lim_{n \to \infty} H_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(\rho_n \zeta_n) b(\rho_n \zeta_n)}{\rho_n^k h(\rho_n \zeta_n)} = \infty,$$

which contradicts that $H^{(k)}(\zeta_0) = 1/\zeta_0^l$. This proves (iv).

It follows from Lemma 2.4 that $H(\zeta)$ is a rational function. Noting that $H(0) \neq \infty$, by Lemma 2.5, $H(\zeta)$ is a constant. Since $H(\zeta) = 0 \Leftrightarrow H^{(k)}(\zeta) = 0$, $H \equiv 0$. For $H(\zeta) = 1/\zeta^l \cdot \tilde{G}(\zeta)$, thus we have $\tilde{G}(\zeta) = G(\zeta - \alpha) = 0$, which is a contradiction. We thus prove \mathscr{G} is normal on Δ .

It remains to prove that \mathscr{F} is normal at 0. Since \mathscr{G} is normal on \triangle , then the family \mathscr{G} is equicontinuous on \triangle with respect to the spherical distance. On the other hand, g(0) = 0 for each $g \in \mathscr{G}$, so there exists $\delta > 0$ such that $|g(z)| \le 1$ for all $g \in \mathscr{G}$ and each $z \in \Delta_{\delta} = \{z : |z| < \delta\}$. It follow that f(z) is holomorphic on \triangle_{δ} for all $f \in \mathscr{F}$. Since \mathscr{F} is normal on \triangle' , but it is not normal at z = 0, there exists a sequence $\{f_n\} \subset \mathscr{F}$ which converges locally uniformly on \triangle'_{δ} , but not on \triangle_{δ} . By the maximum modulus principle, we have $f_n \to \infty$ on \triangle'_{δ} , and hence so does $\{g_n\} \subset \mathscr{G}$, where $g_n = f_n/h$. But $|g_n(z)| \le 1$ for $z \in \triangle_{\delta}$, a contradiction. Thus \mathscr{F} is normal in D. Thus this completes the proof of Theorem 1.5.

Acknowledgement. Research supported by the NNSF of P. R. China (Grant No. 11371149; 61375006).

928

References

- H. Chen and M. Fang, Shared values and normal families of meromorphic functions, J. Math. Anal. Appl. 260 (2001), no. 1, 124–132.
- [2] M. Fang, Picard values and normality criterion, Bull. Korean Math. Soc. 38 (2001), no. 2, 379-387.
- [3] M. Fang and L. Zalcman, Normal families and shared values of meromorphic functions, *Ann. Polon. Math.* 80 (2003), 133–141.
- [4] Y. X. Gu, X. C. Pang and M. L. Fang, The Theory of Normal Families and Its Application, Science Press, Beijing, 2007.
- [5] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
- [6] C. Meng, Normal families and shared values of meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 1, 85–90.
- [7] X. Pang, Shared values and normal families, Analysis (Munich) 22 (2002), no. 2, 175-182.
- [8] X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325–331.
- [9] J. Qi, J. Ding and L. Yang, Normality criteria for families of meromorphic function concerning shared values, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 449–457.
- [10] J. L. Schiff, Normal Families, Universitext, Springer, New York, 1993.
- [11] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), no. 1, 50-54.
- [12] J. Xia and Y. Xu, Normality criterion concerning sharing functions II, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 479–486.
- [13] Y. Xu, On the value distribution of derivatives of meromorphic functions, Appl. Math. Lett. 18 (2005), no. 5, 597–602.
- [14] Y. Xu, Normality criterion concerning sharing functions, Houston J. Math. 32 (2006), no. 3, 945–954 (electronic).
- [15] Y. Xu, Normal families and exceptional functions, J. Math. Anal. Appl. 329 (2007), no. 2, 1343–1354.
- [16] L. Yang, Value Distribution Theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.
- [17] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215-230.