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Abstract. Let .Z be a family of meromorphic functions in a domain D, let k be a positive
integer, and let h(z)(# 0,c0) be a meromorphic function in D such that any f € .# have
neither common zeros nor common poles with /(z). If, for each f € .%, the multiplicity of
the zeros f is at least k, and f = 0 < f®) =0, and f® (z) = h(z) = £(z) = h(z), then .Z is
normal in D. This improves the results due to Xia and Xu.
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1. Introduction and main result

Let f and g be two meromorphic functions on a domain D in C, and let a be a complex
number. If g(z) = a whenever f(z) = a, we denote itby f=a=g=a. f=a<g=a
means f(z) = a if and only if g(z) = a, and we say that f and g share a.

Let D be a domain in C and .# a family of meromorphic functions in D. . is said
to be normal in D, in the sense of Montel, if each sequence {f,} C .% has a subsequence
{/fa j} which converges spherically locally uniformly in D, to a meromorphic function or oo
(see [5,10,16])).

In 1992, Schwick [11] found a connection between normality and shared values, and
proved the following well-known result.

Theorem 1.1. Let & be a family of meromorphic functions defined in D, and let ay,a;,a;3
be distinct complex numbers. If for each f € &, f =a; & f' = a;,i = 1,2,3, then F is
normal in D.

Since then, many scholars studied the normality criteria concerning shared values, such
as Pang and Zalcman [8], Chen and Fang [1], Pang [7], Meng [6], Qi, Ding and Yang [9],
etc, and have got several more general normality criteria concerning shared values.

In 2001, Fang [2] improved Theorem 1.1 from sharing values to sharing functions, and
proved.
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Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and let y(z)(#
0) be an analytic function in D. If for each f € &, f =0< f'(z) =0, and f'(z) = y(z) =
f(z) = w(2), then F is normal in D.

In 2006, Xu [14] proved the following result.

Theorem 1.3. Let .F be a family of meromorphic functions in a domain D, and k be a
positive integer, and let y(z)(Z 0) be an analytic function in D such that f € D and y(z)
has no common zeros and Y(z) has no simple zeros in D . If for each f € %, all zeros of f
have multiplicity at least k, f =0 < f®)(z) =0, and f®)(z) = w(z) = f(z) = ¥(z), then
Z is normal in D.

In [14], an example was given to show that the condition any f € .# and y(z) have no
common zeros is necessary. In fact, the condition y/(z) has no simple zeros is not necessary.

In 2010, Xia and Xu [12] proved that Theorem 1.3 still holds for a meromorphic function
v (z)(£ 0) as following,

Theorem 1.4. Let % be a family of meromorphic functions in a domain D, let k be a
positive integer, and let W(z)(# 0,00) be an meromorphic function in D such that f € F
and y(z) have no common zeros and W(z) has no simple zeros in D, and all poles of y(z)
have multiplicity at most k. If for each f € F, all zeros of f have multiplicity at least k,
f=0& fO(z) =0, and fP(z) = y(z) = f(z) = Y(z), then F is normal in D.

In [12], Xia and Xu also proposed a conjecture that the restriction “all poles of y(z) have
multiplicity at most " can be relaxed to that y(z) has no common poles with any function
f € %. We study this problem, and prove the following result.

Theorem 1.5. Let % be a family of meromorphic functions in a domain D, let k be a
positive integer, and let h(z)(# 0,0) be a meromorphic function in D such that f and h(z)
have neither common zeros nor common poles for all f € F. If, for each [ € .F, all zeros
of f have multiplicity at least k, f(z) =0 < f®)(z) =0, and f®(z) = h(z) = f(z) = h(2),
then F is normal in D.

An example was also given in [12] to show that the restriction that 4(z) has no common
poles with any function in .% is indispensable.

2. Some lemmas
For the proof of Theorem 1.5, we require the following lemmas.

Lemma 2.1. [4,8,17] Let k be a positive integer and let ¥ be a family of meromorphic
functions in a domain D, such that each function f € F has only zeros of multiplicity at
least k, and suppose that there exist A > 1 such that | f®)| < A whenever f(z) =0, f € ..
If F is not normal at 7o € D, then for each a,,0 < a < k, there exist

a) pointsz; €D, z; — z0;

b) functions f; € F; and

¢) positive numbers p; — 0
such that g,(&) = p; * fi(zj +p;&) — g(&) locally uniformly with respect to the spherical
metric, where g(&) is a non-constant meromorphic function on C, all of whose zeros have
multiplicity at least k, such that g*(E) < g*(0) = kA + 1. Moreover, g has order at most 2.
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Lemma 2.2. [2] Let f be a meromorphic function of finite order in the plane C. If f =0 &
f® =0, ' #£1, then f is a constant.

Lemma 2.3. [3] Let f be a meromorphic function of finite order in the plane, k > 2 be a
positive integer. If all zeros of f are of order at least k+ 1, and f¥) (z) =0 < f(z) =0, then
f(2) is a constant.

Lemma 2.4. [13] Ler f be a transcendental meromorphic function, let R(z)(# 0) be a
rational function, and let k be a positive integer. If all zeros of f have multiplicity at least
k+ 1, except for finitely many, and f* =0= f =0, then f% — R(z) has infinitely many
zeros.

Lemma 2.5. [15] Let k,l be two positive integers, and let Q(z) be a rational function all of
whose zeros are of order at least k. If Q% (z) # z 7!, then Q(z) is a constant.

3. Proof of Theorem 1.5

Since normality is a local property, we only need to prove that .% is normal at every pole of
h(z). Without loss of generality, we may assume that D = A = {z: |z| < 1},h(z) = b(2) /7',
and b(0) = 1,b(z) # 0,00,z € D, where [ is a positive integer. We only need to prove that .#
is normal at z = 0. Suppose that .% is not normal at z = 0. We consider two cases: [ < k and
[ > k+ 1. In fact, the case [ < k can be proved as same as Theorem 1.4, so we only need to
prove the case [ > k+ 1.

Consider the family ¢ = {g(z) = f(2)/h(z) : f € F,z € A}. Since z =0 is a pole of
h(z), and f(z) and h(z) have no common poles, z = 0 is a zero of g(z) of order at least
I(> k+1). Thus all zeros of g(z) have multiplicity at least k+ 1 for the zeros of f(z) are of
order at least k+ 1.

We first prove that ¢ is normal in A. Suppose that ¢ is not normal at zp € D. By Lemma
2.1, there exist a sequence of functions g,, a sequence of points z, — zo, and a sequence of
positive numbers p, — 0%, such that

gn(zn+pnf)

Gu(8) = oF —G(&)

converges spherically uniformly on compact subsets of C, where G({) is a nonconstant
meromorphic function on C, and G(§) is of order at most two. By Hurwitz’s theorem, all
zeros of G(&) have multiplicity at least k+ 1.

Two cases are considered in the following.
Casel z,/p, — oo.

Since f,(z) = ga(2)h(z) and h(z) = b(z) /7', by simple calculation, we have

(k) fn (z k
8n ( Z) ;

By mathematical induction, we have

W (z) (=111 +1)--(I+j—1) +C}(—l)l‘*ll(H—1)---(l+j—2) V(2)

h(z) 7/ 7/1 b(z)

CI(=DIpU-D(z)  pU)(z)
4o L . b(z) + b(z)




926 D. Liu, B. Deng and D. Yang

and
G () = 8% (za+pul) — GW()

uniformly on compact subsets of C disjoint from the poles of G.

Thus
®) o £ @+ pul) (k1) —l b (20 + pnl)
O ) =i pa) G @t end) Ln+pnc * b(zn+pnC)}
o (=DXI(I+1)---(I+k—1)
s )|
CLD U+ D) (k=D W@ tpa) | b9+ pul)
(Zn +pnC)k_1 b(Zn +pnC) b(Zn +PnC)
_ frgk)(Zn +PnC) 7C1 gﬁlk_l)(Zn"‘pnC) |: -1 pnb/(Zn +pn€):|
h(zn "l‘pnC) k Pn Zn/pn"‘g b<Zn +pn§)
L gn(zn +Pn€) [(_l)kl(l+ 1)"'(l+k_ 1)
Py (zn/pn+ )k
KD 4 ) Uk =2) pab atpal) | PEbO (2 pu)
(zn/Pn+E)F! b(zn+ Pn) b(zn+ Pa)
On the other hand,
A
and
. pr{b(j>(zn +pn€)

lim
n=e b(zy+ pnC)
uniformly on compact subsets of C. Noting that g*=/)(z, + p,)/ p; is locally bounded on
C disjoint from the poles of G({) since g, (z, + pnC)/pk — G({).
Therefore,

=0(j=1,2,....k),

k
h(zn+pnC)
uniformly on compact subsets of C disjoint from the poles of G({).
We claim that
(i) G(§) =04 GW({)=0,and
(i) GW(§) #1.
Since all zeros of G(£) are of multiplicity at least k+ 1, G®)({) = 0 whenever G({) = 0.
Suppose that G®)({y) = 0. Clearly, G®)(&) # 0. Otherwise, G({) would be a polynomial
of degree less than &, which contradicts the condition that the multiplicity of the zeros of

G({) is at least k+ 1. Then by Hurwitz’s theorem, there exist §,, §, — o, such that, for n
sufficiently large,

frsk) (Zn + pnCn)

=0.
h(zn + pngn)
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Thus f,(zn 4 pnCi) = 0 or h(zy + PuCy) = oo. If h(zy + Py 8n) = oo, then z, + p, &, = 0, and
&y = —zu/Pn — o0, which contradicts the fact that §, — {p, § is a finite number. So we

have f,(z, + pn€y) = 0. Since f,, and f,fk) share 0. It follows that

fn(zn +pngn)
e Prh(zn + pnl)

This shows that G({) = 0 whenever G(¥ >(C) =0.

Next we prove (ii). Suppose that G®)(y) = 1. We claim that G ({) # 1. Otherwise,
G({) would be a polynomial of degree k, which is a contradiction with the fact that the zeros
of G(&) have multiplicity at least k+ 1. Then by Hurwitz’s theorem, there exist &, &, — o,
such that, for n sufficiently large,

G(Go) = lim Gu(Gn) = li =0.

IO @+ pula) = h(za+ Pul)
h(zn + pncn)

Thus frsk) (zn+PnCn) = h(zn+ PnGy) or h(zy + pn,) = . As the same as the previous proof,

we know that i(z, + pu &) # oo. Thus f,(zn + pn&y) = h(zn + pu&y,) for frgk> (2) = h(z) =
fa(2) = h(z). It follows that

=0.

Jn (Zn =+ Pn Cn)
0) = hm G, = lim ———————~ = oo,
(c )= (Cn) e pkh(zn +Pnln)
which contradicts that G*) (&) = 1. This prove (ii).
However, it follows by Lemma 2.2 and Lemma 2.3 that G({) is a constant, a contradic-
tion.

Case 2 z,/p, — a, where « is a finite complex number.
We have

gn(P}:zC) _ 8nlzn "‘Pn(i Zn/Pn)] = G,(C — Zl) -Gl —a)=G6(0)
P Pn Pn
spherically uniformly on compact subsets of C. Since f(z) and h(z) have neither common
zeros nor common poles, and the zeros of f(z) have multiplicity at least k+ 1, then { =0 is
a zero of G({) with multiplicity /(> k+ 1), or I +m(m > k+1). So all zeros of G({) have
multiplicity at least K+ 1.

Set
iy (§) = L)
Then
_ Jn(Pn€) ) h(pn€) _ gn(pn€) ) h(pn€)
Hi(6) = h(pu)pk py! pk pnl
Noting that
h(pa
0id)

n

uniformly on every compact subset of C/{0}, thus

Hy(8) —1/¢"-G(8) = H(C)
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uniformly on compact subsets of C/{0}. Since z = 0 is the zero of G({) with multiplicity
at least /, and the multiplicity of the other zeros of G() is at least k + 1, the zeros of H({)
have multiplicity at least k+ 1, and H(0) # eo.

We claim that

(iii) H({)=0< HW({) =0, and

(v) HO(G) #1/¢".

Since all zeros of H({) are of multiplicity atleast k+1, H® ({) = 0 whenever H({) = 0.
Suppose that H*)(&y) = 0. Clearly, H®) () # 0. Otherwise H({) would be a polynomial
of degree less than k, which contradicts the fact that the multiplicity of the zeros of H({) is

atleast k+ 1. Then by Hurwitz’s theorem there exist &, £, — o, such that, for n sufficiently
large,

(8 = 19 (onla)ph =0,
so we have f,sk) (pn&y) =0. Thus f,(pn&,) = 0 since f, and f,5k> share 0. It follows that

H(Go) = lim Hy(G,) = lim #5222 fn(pnCn)

n—oo0 pn

=0.

This shows that H({) = 0 whenever H ®)(¢&) = 0. This completes the proof of (iii).

Next we prove (iv). Suppose H®) (&) = 1/¢}. Obviously, H®) ({) # 1/¢', & # 0 for
H(0) # oo. Then H({) is holomorphic at {, and noting that

LA (puC) = h(pal)) — HP (L) = 1/¢

uniformly on compact subset of C/{0} disjoint from the poles of H({), then by Hurwitz’s
theorem there exist {,,, — o, such that, for n sufficiently large, f,E"> (PnCy) = h(pnGy).
Thus f,(pn&y) = h(pn&y) for f®(2) = h(z) = f(z) = h(z). It follows that

fn(Pngn) (PnCn) -
H(&) = hm Hy () = 1#’0 PEh(pnCy) )
which contradicts that H®) (&) =1/ ¢l. This proves (iv).

It follows from Lemma 2.4 that H({) is a rational function. Noting that H(0) # oo, by
Lemma 2.5, H({) is a constant. Since H({) =0« H®({) =0, H=0. For H({) =
1/¢1-G(£), thus we have G({) = G({ — a) = 0, which is a contradiction. We thus prove
% is normal on A.

It remains to prove that .% is normal at 0. Since ¢ is normal on A\, then the family ¢
is equicontinuous on A with respect to the spherical distance. On the other hand, g(0) =0
for each g € ¥, so there exists 0 > 0 such that |g(z)| < 1 forall g€ ¥ and each z € A5 =
{z:]z] < &}. It follow that f(z) is holomorphic on A for all f € .%. Since .# is normal
on A, but it is not normal at z = 0, there exists a sequence {f,} C .% which converges
locally uniformly on A%, but not on Ag. By the maximum modulus principle, we have
fu — oo on A, and hence so does {g,} C ¥, where g, = fu/h. But |g,(z)| < 1 forz € Ag,
a contradiction. Thus .% is normal in D. Thus this completes the proof of Theorem 1.5.
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