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Abstract. Let F be a family of meromorphic functions in a domain D, let k be a positive
integer, and let h(z)(6≡ 0,∞) be a meromorphic function in D such that any f ∈ F have
neither common zeros nor common poles with h(z). If, for each f ∈F , the multiplicity of
the zeros f is at least k, and f = 0⇔ f (k) = 0, and f (k)(z) = h(z)⇒ f (z) = h(z), then F is
normal in D. This improves the results due to Xia and Xu.
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1. Introduction and main result

Let f and g be two meromorphic functions on a domain D in C, and let a be a complex
number. If g(z) = a whenever f (z) = a, we denote it by f = a⇒ g = a. f = a⇔ g = a
means f (z) = a if and only if g(z) = a, and we say that f and g share a.

Let D be a domain in C and F a family of meromorphic functions in D. F is said
to be normal in D, in the sense of Montel, if each sequence { fn} ⊂F has a subsequence
{ fn j} which converges spherically locally uniformly in D, to a meromorphic function or ∞

(see [5, 10, 16]).
In 1992, Schwick [11] found a connection between normality and shared values, and

proved the following well-known result.

Theorem 1.1. Let F be a family of meromorphic functions defined in D, and let a1,a2,a3
be distinct complex numbers. If for each f ∈F , f = ai ⇔ f ′ = ai, i = 1,2,3, then F is
normal in D.

Since then, many scholars studied the normality criteria concerning shared values, such
as Pang and Zalcman [8], Chen and Fang [1], Pang [7], Meng [6], Qi, Ding and Yang [9],
etc, and have got several more general normality criteria concerning shared values.

In 2001, Fang [2] improved Theorem 1.1 from sharing values to sharing functions, and
proved.
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Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and let ψ(z)(6=
0) be an analytic function in D. If for each f ∈F , f = 0⇔ f ′(z) = 0, and f ′(z) = ψ(z)⇒
f (z) = ψ(z), then F is normal in D.

In 2006, Xu [14] proved the following result.

Theorem 1.3. Let F be a family of meromorphic functions in a domain D, and k be a
positive integer, and let ψ(z)(6≡ 0) be an analytic function in D such that f ∈ D and ψ(z)
has no common zeros and ψ(z) has no simple zeros in D . If for each f ∈F , all zeros of f
have multiplicity at least k, f = 0⇔ f (k)(z) = 0, and f (k)(z) = ψ(z)⇒ f (z) = ψ(z), then
F is normal in D.

In [14], an example was given to show that the condition any f ∈F and ψ(z) have no
common zeros is necessary. In fact, the condition ψ(z) has no simple zeros is not necessary.

In 2010, Xia and Xu [12] proved that Theorem 1.3 still holds for a meromorphic function
ψ(z)(6≡ 0) as following,

Theorem 1.4. Let F be a family of meromorphic functions in a domain D, let k be a
positive integer, and let ψ(z)(6≡ 0,∞) be an meromorphic function in D such that f ∈F
and ψ(z) have no common zeros and ψ(z) has no simple zeros in D, and all poles of ψ(z)
have multiplicity at most k. If for each f ∈F , all zeros of f have multiplicity at least k,
f = 0⇔ f (k)(z) = 0, and f (k)(z) = ψ(z)⇒ f (z) = ψ(z), then F is normal in D.

In [12], Xia and Xu also proposed a conjecture that the restriction ”all poles of ψ(z) have
multiplicity at most k” can be relaxed to that ψ(z) has no common poles with any function
f ∈F . We study this problem, and prove the following result.

Theorem 1.5. Let F be a family of meromorphic functions in a domain D, let k be a
positive integer, and let h(z)(6≡ 0,∞) be a meromorphic function in D such that f and h(z)
have neither common zeros nor common poles for all f ∈F . If, for each f ∈F , all zeros
of f have multiplicity at least k, f (z) = 0⇔ f (k)(z) = 0, and f (k)(z) = h(z)⇒ f (z) = h(z),
then F is normal in D.

An example was also given in [12] to show that the restriction that h(z) has no common
poles with any function in F is indispensable.

2. Some lemmas

For the proof of Theorem 1.5, we require the following lemmas.

Lemma 2.1. [4, 8, 17] Let k be a positive integer and let F be a family of meromorphic
functions in a domain D, such that each function f ∈F has only zeros of multiplicity at
least k, and suppose that there exist A≥ 1 such that | f (k)| ≤ A whenever f (z) = 0, f ∈F .
If F is not normal at z0 ∈ D, then for each α,0≤ α ≤ k, there exist

a) points z j ∈ D, z j→ z0;
b) functions f j ∈F ; and
c) positive numbers ρ j→ 0

such that gn(ξ ) = ρ
−α

j f j(z j +ρ jξ )→ g(ξ ) locally uniformly with respect to the spherical
metric, where g(ξ ) is a non-constant meromorphic function on C, all of whose zeros have
multiplicity at least k, such that g](ξ )≤ g](0) = kA+1. Moreover, g has order at most 2.
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Lemma 2.2. [2] Let f be a meromorphic function of finite order in the plane C. If f = 0⇔
f (k) = 0, f ′ 6= 1, then f is a constant.

Lemma 2.3. [3] Let f be a meromorphic function of finite order in the plane, k ≥ 2 be a
positive integer. If all zeros of f are of order at least k+1, and f (k)(z) = 0⇔ f (z) = 0, then
f (z) is a constant.

Lemma 2.4. [13] Let f be a transcendental meromorphic function, let R(z)(6≡ 0) be a
rational function, and let k be a positive integer. If all zeros of f have multiplicity at least
k + 1, except for finitely many, and f (k) = 0⇒ f = 0, then f (k)−R(z) has infinitely many
zeros.

Lemma 2.5. [15] Let k, l be two positive integers, and let Q(z) be a rational function all of
whose zeros are of order at least k. If Q(k)(z) 6= z−l , then Q(z) is a constant.

3. Proof of Theorem 1.5

Since normality is a local property, we only need to prove that F is normal at every pole of
h(z). Without loss of generality, we may assume that D =4= {z : |z|< 1},h(z) = b(z)/zl ,
and b(0) = 1,b(z) 6= 0,∞,z ∈D, where l is a positive integer. We only need to prove that F
is normal at z = 0. Suppose that F is not normal at z = 0. We consider two cases: l ≤ k and
l ≥ k +1. In fact, the case l ≤ k can be proved as same as Theorem 1.4, so we only need to
prove the case l ≥ k +1.

Consider the family G = {g(z) = f (z)/h(z) : f ∈F ,z ∈ 4}. Since z = 0 is a pole of
h(z), and f (z) and h(z) have no common poles, z = 0 is a zero of g(z) of order at least
l(≥ k +1). Thus all zeros of g(z) have multiplicity at least k +1 for the zeros of f (z) are of
order at least k +1.

We first prove that G is normal in4. Suppose that G is not normal at z0 ∈D. By Lemma
2.1, there exist a sequence of functions gn, a sequence of points zn→ z0, and a sequence of
positive numbers ρn→ 0+, such that

Gn(ζ ) =
gn(zn +ρnζ )

ρk
n

→ G(ζ )

converges spherically uniformly on compact subsets of C, where G(ζ ) is a nonconstant
meromorphic function on C, and G(ζ ) is of order at most two. By Hurwitz’s theorem, all
zeros of G(ζ ) have multiplicity at least k +1.

Two cases are considered in the following.
Case 1 zn/ρn→ ∞.

Since fn(z) = gn(z)h(z) and h(z) = b(z)/zl , by simple calculation, we have

g(k)
n (z) =

f (k)
n (z)
h(z)

−
k

∑
j=1

C j
kg(k− j)

n (z)
h( j)(z)
h(z)

.

By mathematical induction, we have

h( j)(z)
h(z)

=
(−1) jl(l +1) · · ·(l + j−1)

z j +
C1

j (−1) j−1l(l +1) · · ·(l + j−2)
z j−1

b′(z)
b(z)

+ · · ·+
C j−1

j (−1)l

z
b( j−1)(z)

b(z)
+

b( j)(z)
b(z)

.
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and

G(k)
n (ζ ) = g(k)

n (zn +ρnζ )→ G(k)(ζ )

uniformly on compact subsets of C disjoint from the poles of G.
Thus

G(k)
n (ζ ) =

f (k)
n (zn +ρnζ )
h(zn +ρnζ )

−C1
k g(k−1)

n (zn +ρnζ )
[
−l

zn +ρnζ
+

b′(zn +ρnζ )
b(zn +ρnζ )

]
−·· ·−gn(zn +ρnζ )

[
(−1)kl(l +1) · · ·(l + k−1)

(zn +ρnζ )k +

C1
k (−1)k−1l(l +1) · · ·(l + k−2)

(zn +ρnζ )k−1
b′(zn +ρnζ )
b(zn +ρnζ )

+ · · ·+ b(k)(zn +ρnζ )
b(zn +ρnζ )

]

=
f (k)
n (zn +ρnζ )
h(zn +ρnζ )

−C1
k

g(k−1)
n (zn +ρnζ )

ρn

[
−l

zn/ρn +ζ
+

ρnb′(zn +ρnζ )
b(zn +ρnζ )

]
−·· ·− gn(zn +ρnζ )

ρk
n

[
(−1)kl(l +1) · · ·(l + k−1)

(zn/ρn +ζ )k +

k(−1)k−1(l +1) · · ·(l + k−2)
(zn/ρn +ζ )k−1

ρnb′(zn +ρnζ )
b(zn +ρnζ )

+ · · ·+ ρk
nb(k)(zn +ρnζ )
b(zn +ρnζ )

]
.

On the other hand,

lim
n→∞

1
zn/ρn +ζ

= 0,

and

lim
n→∞

ρ
j

nb( j)(zn +ρnζ )
b(zn +ρnζ )

= 0( j = 1,2, . . . ,k),

uniformly on compact subsets of C. Noting that g(k− j)(zn +ρnζ )/ρ
j

n is locally bounded on
C disjoint from the poles of G(ζ ) since gn(zn +ρnζ )/ρk

n → G(ζ ).
Therefore,

f (k)
n (zn +ρnζ )
h(zn +ρnζ )

→ G(k)(ζ )

uniformly on compact subsets of C disjoint from the poles of G(ζ ).
We claim that

(i) G(ζ ) = 0⇔ G(k)(ζ ) = 0, and
(ii) G(k)(ζ ) 6= 1.

Since all zeros of G(ζ ) are of multiplicity at least k+1, G(k)(ζ ) = 0 whenever G(ζ ) = 0.
Suppose that G(k)(ζ0) = 0. Clearly, G(k)(ζ ) 6≡ 0. Otherwise, G(ζ ) would be a polynomial
of degree less than k, which contradicts the condition that the multiplicity of the zeros of
G(ζ ) is at least k + 1. Then by Hurwitz’s theorem, there exist ζn,ζn→ ζ0, such that, for n
sufficiently large,

f (k)
n (zn +ρnζn)
h(zn +ρnζn)

= 0.
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Thus fn(zn + ρnζn) = 0 or h(zn + ρnζn) = ∞. If h(zn + ρnζn) = ∞, then zn + ρnζn = 0, and
ζn = −zn/ρn → ∞, which contradicts the fact that ζn → ζ0, ζ0 is a finite number. So we
have fn(zn +ρnζn) = 0. Since fn and f (k)

n share 0. It follows that

G(ζ0) = lim
n→∞

Gn(ζn) = lim
n→∞

fn(zn +ρnζn)
ρk

nh(zn +ρnζ )
= 0.

This shows that G(ζ ) = 0 whenever G(k)(ζ ) = 0.
Next we prove (ii). Suppose that G(k)(ζ0) = 1. We claim that G(k)(ζ ) 6≡ 1. Otherwise,

G(ζ ) would be a polynomial of degree k, which is a contradiction with the fact that the zeros
of G(ζ ) have multiplicity at least k+1. Then by Hurwitz’s theorem, there exist ζn,ζn→ ζ0,
such that, for n sufficiently large,

f (k)
n (zn +ρnζn)−h(zn +ρnζn)

h(zn +ρnζn)
= 0.

Thus f (k)
n (zn +ρnζn) = h(zn +ρnζn) or h(zn +ρnζn) = ∞. As the same as the previous proof,

we know that h(zn + ρnζn) 6= ∞. Thus fn(zn + ρnζn) = h(zn + ρnζn) for f (k)
n (z) = h(z)⇒

fn(z) = h(z). It follows that

G(ζ0) = lim
n→∞

Gn(ζn) = lim
n→∞

fn(zn +ρnζn)
ρk

nh(zn +ρnζn)
= ∞,

which contradicts that G(k)(ζ0) = 1. This prove (ii).
However, it follows by Lemma 2.2 and Lemma 2.3 that G(ζ ) is a constant, a contradic-

tion.
Case 2 zn/ρn→ α , where α is a finite complex number.

We have

gn(ρnζ )
ρk

n
=

gn[zn +ρn(ζ − zn/ρn)]
ρk

n
= Gn(ζ −

zn

ρn
)→ G(ζ −α) = G̃(ζ )

spherically uniformly on compact subsets of C. Since f (z) and h(z) have neither common
zeros nor common poles, and the zeros of f (z) have multiplicity at least k+1, then ζ = 0 is
a zero of G̃(ζ ) with multiplicity l(≥ k +1), or l +m(m≥ k +1). So all zeros of G̃(ζ ) have
multiplicity at least k +1.

Set

Hn(ζ ) =
fn(ρnζ )

ρ
k−l
n

.

Then

Hn(ζ ) =
fn(ρnζ )

h(ρnζ )ρk
n
· h(ρnζ )

ρ
−l
n

=
gn(ρnζ )

ρk
n
· h(ρnζ )

ρ
−l
n

.

Noting that
h(ρnζ )

ρ
−l
n
→ 1/ζ

l

uniformly on every compact subset of C/{0}, thus

Hn(ζ )→ 1/ζ
l · G̃(ζ ) = H(ζ )
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uniformly on compact subsets of C/{0}. Since z = 0 is the zero of G̃(ζ ) with multiplicity
at least l, and the multiplicity of the other zeros of G̃(ζ ) is at least k +1, the zeros of H(ζ )
have multiplicity at least k +1, and H(0) 6= ∞.

We claim that

(iii) H(ζ ) = 0⇔ H(k)(ζ ) = 0, and
(iv) H(k)(ζ ) 6= 1/ζ l .

Since all zeros of H(ζ ) are of multiplicity at least k+1, H(k)(ζ ) = 0 whenever H(ζ ) = 0.
Suppose that H(k)(ζ0) = 0. Clearly, H(k)(ζ ) 6≡ 0. Otherwise H(ζ ) would be a polynomial
of degree less than k, which contradicts the fact that the multiplicity of the zeros of H(ζ ) is
at least k+1. Then by Hurwitz’s theorem there exist ζn,ζn→ ζ0, such that, for n sufficiently
large,

H(k)
n (ζn) = f (k)

n (ρnζn)ρ l
n = 0,

so we have f (k)
n (ρnζn) = 0. Thus fn(ρnζn) = 0 since fn and f (k)

n share 0. It follows that

H(ζ0) = lim
n→∞

Hn(ζn) = lim
n→∞

fn(ρnζn)
ρ

k−l
n

= 0.

This shows that H(ζ ) = 0 whenever H(k)(ζ ) = 0. This completes the proof of (iii).
Next we prove (iv). Suppose H(k)(ζ0) = 1/ζ l

0. Obviously, H(k)(ζ ) 6≡ 1/ζ l ,ζ0 6= 0 for
H(0) 6= ∞. Then H(ζ ) is holomorphic at ζ0 and noting that

ρ
l
n[ f (k)

n (ρnζ )−h(ρnζ )]→ H(k)(ζ )−1/ζ
l

uniformly on compact subset of C/{0} disjoint from the poles of H(ζ ), then by Hurwitz’s
theorem there exist ζn,ζn → ζ0, such that, for n sufficiently large, f (k)

n (ρnζn) = h(ρnζn).
Thus fn(ρnζn) = h(ρnζn) for f (k)(z) = h(z)⇒ f (z) = h(z). It follows that

H(ζ0) = lim
n→∞

Hn(ζn) = lim
n→∞

fn(ρnζn)b(ρnζn)
ρk

nh(ρnζn)
= ∞,

which contradicts that H(k)(ζ0) = 1/ζ l
0. This proves (iv).

It follows from Lemma 2.4 that H(ζ ) is a rational function. Noting that H(0) 6= ∞, by
Lemma 2.5, H(ζ ) is a constant. Since H(ζ ) = 0⇔ H(k)(ζ ) = 0, H ≡ 0. For H(ζ ) =
1/ζ l · G̃(ζ ), thus we have G̃(ζ ) = G(ζ −α) = 0, which is a contradiction. We thus prove
G is normal on4.

It remains to prove that F is normal at 0. Since G is normal on 4, then the family G
is equicontinuous on4 with respect to the spherical distance. On the other hand, g(0) = 0
for each g ∈ G , so there exists δ > 0 such that |g(z)| ≤ 1 for all g ∈ G and each z ∈ ∆δ =
{z : |z| < δ}. It follow that f (z) is holomorphic on 4δ for all f ∈F . Since F is normal
on 4′, but it is not normal at z = 0, there exists a sequence { fn} ⊂ F which converges
locally uniformly on 4′

δ
, but not on 4δ . By the maximum modulus principle, we have

fn→ ∞ on4′
δ

, and hence so does {gn} ⊂ G , where gn = fn/h. But |gn(z)| ≤ 1 for z ∈4δ ,
a contradiction. Thus F is normal in D. Thus this completes the proof of Theorem 1.5.
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