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Department of Mathematics, Technical University of Cluj-Napoca, Str. Memorandumului nr. 28, 400114,
Cluj-Napoca, Romania

laszlosziszi@yahoo.com

Abstract. We give several regularity conditions, both closedness and interior point type,
that ensure the maximal monotonicity of the generalized parallel sum of two maximal mono-
tone operators of Gossez type (D), and we extend some recent results concerning on the
same problem.

2010 Mathematics Subject Classification: 47H05, 46N10, 42A50

Keywords and phrases: Strongly representable maximal monotone operator, maximal mono-
tone operator of Gossez type (D), representative function, parallel sum.

1. Introduction and preliminaries

It is well known that in a reflexive Banach space the sum of two (set-valued) maximal mono-
tone operators is still maximal monotone, provided the domain of one of them intersects the
interior of the domain of the other (cf. Rockafellar see [35]), but in the nonreflexive case it
is still unknown whether this condition is sufficient. However, there are several results, that
in particular validate this conjecture. Motivated by a study of parallel connection of electri-
cal multiports, Anderson and Duffin (see [1]) introduced the concept of parallel addition of
matrices. Passty (see [27]) approached the parallel sum of arbitrary nonlinear monotone op-
erators starting from the following situation arising from electricity: if two resistors having
resistance S and T are connected in parallel, Kirchhoff’s law and Ohm’s law can be com-
bined to show that their joint resistance is (S−1 +T−1)−1. The same considerations apply to
parallel connections of electrical multiports. Instead of resistances which are positive real
numbers, however, one must work with impedance operators which map a finite- or infinite
dimensional space into itself. There then arises the issue of proper extension of the joint
resistance formula given above. Motivated from above, but also inspired from the signifi-
cant number of results concerning on the problem of maximality of the sum of two maximal
monotone operators, Penot and Zălinescu in [31] introduced the concepts of generalized
parallel sums.

In what follows X , respectively Y will be real nonzero Banach spaces, and X∗, respec-
tively Y ∗ will denote their topological dual spaces. Let S : X ⇒ X∗, respectively T : Y ⇒ Y ∗
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be two monotone operators. Moreover, consider the continuous, linear operator A : X −→Y,
and let us denote by A∗ its adjoint operator. Recall that the generalized parallel sum S||AT,
(see [31]), of the monotone operators S, respectively T is defined as

S||AT : X ⇒ X∗, S||AT := (S−1 +(A∗TA)−1)−1.

The generalized parallel sum S||AT : Y ⇒ Y ∗ (see [31]), is defined by

S||AT := (AS−1A∗+T−1)−1.

Obviously, when X = Y and A ≡ idX , both sums reduce to the parallel sum introduced by
Passty, that is

S||T : X ⇒ X∗, S||T := (S−1 +T−1)−1.

Recently, Boţ and László has obtained some conditions, both closedness and interior
point type, that ensure the maximal monotonicity of the parallel sum S||AT , (see [13]).

In a recent paper of Simons (see [39]) is given an interior point condition, that ensures
the maximal monotonicity of the generalized sum S||AT . Observe, that in reflexive spaces
one can easily obtain regularity conditions that ensure the maximal monotonicity of this
sum from existing ones, by interchanging the operators with their inverses. However, this
is not the case in nonreflexive Banach spaces. Concerning on the generalized parallel sum
S||AT , regularity conditions that ensure its maximal monotonicity cannot be obtained from
existing ones even in a reflexive Banach space context.

In this paper, we give a closdness type regularity condition that ensures the maximal
monotonicity of the generalized parallel sum S||AT , and, we show that our condition is
weaker than that given in [39]. Nevertheless, using the same technique we obtain and ex-
tend the results from [39] as well. Our results are based on the concepts of representative
function and Fenchel conjugate, while the technique used to establish closedness type, re-
spectively interior-point type regularity conditions, that ensure the maximal monotonicity
of this generalized parallel sum, is stable strong duality. We deal with the sum problem in-
volving strongly representable operators in nonreflexive Banach spaces, hence, according to
a recent result of Marques Alves and Svaiter, our results also hold for operators of negative
infimum type (see [36]) and of Gossez type (D) in arbitrary Banach spaces, (see Remark
1.3).

We give an useful application of the stable strong duality for the problem involving the
function f ◦A + g, where f and g are proper, convex and lower semicontinuous functions,
and A is a linear and continuous operator. We also introduce some new generalized infimal
convolution formulas, and establish some results concerning on their Fenchel conjugate.

The paper is organized as follows. In the remaining of this section we recall some ele-
ments of convex analysis and introduce the necessary apparatus of notions and results refer-
ring to monotone operators in general Banach spaces. In Section 2 we introduce some gen-
eralized bivariate infimal convolution formulas for which we provide equivalent closedness-
type regularity conditions, but also sufficient interiority-type ones. This formula will be used
in Section 3 for establishing the maximal monotonicity of Gossez type (D) of a generalized
parallel sum of the maximal monotone operators of Gossez type (D) S and T , defined by
making use of their extensions to the corresponding biduals. The maximal monotonicity
of Gossez type (D) of S||AT will follow as a particular instance of this general result. A
special attention will be also given to the formulation of further sufficient conditions for the
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interiority-type regularity condition and to the situation when these became equivalent. Fi-
nally, in Section 4, as a particular instance of the general result on the maximal monotonicity
of S||AT , the maximal monotonicity of the parallel sum of S and T is considered.

1.1. Interiority notions and regularity conditions for stable strong duality

Consider X a separated locally convex space and let X∗ be its topological dual space. We
denote by w∗ the weak∗ topology on X∗ induced by X . We say that the function f : X −→R
is convex if

∀x,y ∈ X , ∀t ∈ [0,1] : f (tx+(1− t)y)≤ t f (x)+(1− t) f (y),

with the conventions (+∞) + (−∞) = +∞, 0 · (+∞) = +∞ and 0 · (−∞) = 0 (see [45]).
We consider dom f = {x ∈ X : f (x) < +∞} the domain of f and epi f = {(x,r) ∈ X ×R :
f (x)≤ r} its epigraph. We call f proper if dom f 6= /0 and f (x) >−∞ for all x ∈ X . By cl f
we denote the lower semicontinuous hull of f , namely the function whose epigraph is the
closure of epi f in X ×R, that is epi(cl f ) = cl(epi f ). We consider also co f , the convex hull
of f , which is the greatest convex function majorized by f .

We denote by 〈x∗,x〉 the value of the continuous linear functional x∗ ∈ X∗ at x ∈ X .
Consider the identity function on X , idX : X −→ X , idX (x) = x for all x ∈ X . For a function
f : U ×V −→ R we denote by f> the transpose of f , namely the function f> : V ×U −→
R, f>(v,u) = f (u,v) for all (v,u) ∈ V ×U . For E and F two nonempty sets we consider
the projection operator prE : E×F → E, prE(e, f ) = e for all (e, f ) ∈ E×F . For G and H
two further nonempty sets and k : E → G and l : F → H two given functions we denote by
k× l : E×F→G×H the function defined as k× l(e, f ) = (k(e), l( f )) for all (e, f )∈ E×F .

The indicator function of U , denoted by δU , is defined as δU : X −→ R,

δU (x) =
{

0, if x ∈U,
+∞, otherwise.

The Fenchel-Moreau conjugate of the function f : X → R is the function f ∗ : X∗ −→ R
defined by

f ∗(x∗) = sup
x∈X
{〈x∗,x〉− f (x)} ∀x∗ ∈ X∗.

We mention here some important properties of conjugate functions. We have the so-called
Young-Fenchel inequality

f ∗(x∗)+ f (x)≥ 〈x∗,x〉 ∀x ∈ X ∀x∗ ∈ X∗.

The Fenchel-Moreau Theorem states that if f is proper, then f is convex and lower semi-
continuous if and only if f ∗∗ = f (see [45]). Moreover, if f is convex and (cl f )(x) > −∞

for all x ∈ X , then f ∗∗ = cl f (see [45, Theorem 2.3.4]).
For a non-empty set D⊆ X , we denote by co(D),cone(D),aff(D), lin(D), inte(D),cl(D),

its convex hull, conic hull, affine hull, linear hull, interior, and closure, respectively. We say
that a set C ⊆ X is closed regarding D, if C∩D = cl(C)∩D. We have cone(D) = ∪t≥0tD
and if 0 ∈ D then obviously cone(D) = ∪t>0tD. The set rint(D) is the interior of D relative
to aff(D). Then, the relative interior of D is

ri(D) =
{

rint(D), if aff(D) is a closed set,
/0, otherwise. .
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The algebraic interior (the core) of D is the set (see [19, 34, 45])

core(D) = {u ∈ X | ∀x ∈ X , ∃δ > 0 such that ∀λ ∈ [0,δ ] : u+λx ∈ D},

while its relative algebraic interior (sometimes called also intrinsic core) is the set (see
[19, 45])

icr(D) = {u ∈ X | ∀x ∈ aff(D−D),∃δ > 0 such that ∀λ ∈ [0,δ ] : u+λx ∈ D}.

We consider also the strong quasi-relative interior (sometimes called intrinsic relative
algebraic interior) of D (see [7, 20, 45, 46]), denoted by ic(D),

ic(D) =
{

icr(D), if aff(D) is a closed set,
/0, otherwise.

Obviously, we have rint(D)⊆ icr(D), hence, if aff(D) is closed, we have ri(D) = rint(D)⊆
icr(D) = ic(D).

In the case when D is a convex set, the above generalized interiority notions can be
characterized as follows:

• core(D) = {x ∈ D : cone(D− x) = X} (see [34, 45]);
• icr(D) = {x ∈ D : cone(D− x) is a linear subspace of X} (see [8, 19, 45]);
• ic(D) = {x ∈ D : cone(D− x) is a closed linear subspace of X} (see [7, 20, 45, 46]);
• x ∈ ic(D) if and only if x ∈ icr(D) and aff(D− x) is a closed linear subspace of X

(see [45, 46]).
We have the following inclusions for a set D⊆ X :

inte(D)⊆ core(D)⊆ ic(D)⊆ icr(D)⊆ D,

in general the inclusions being strict. Let us suppose in the following that D is a convex
set. In case inte(D) 6= /0, all the generalized interiority notions mentioned above coincide
with inte(D) (see [6, Corollary 2.14]). Let us mention that if X is a Banach space and D is
a closed set then core(D) = inte(D) (see [34]). For other useful properties of generalized
interiority notions see [16].

Consider Y another separated locally convex space and let Y ∗ be its topological dual
space. For a given continuous linear mapping A : X −→Y , its adjoint operator, A∗ : Y ∗ −→
X∗ is defined by 〈A∗y∗,x〉 = 〈y∗,Ax〉 for all y∗ ∈ Y ∗ and x ∈ X . When X and Y are normed
spaces, the biadjoint operator of A, A∗∗ : X∗∗ −→ Y ∗∗, is defined as being the adjoint oper-
ator of A∗.

In what follows consider the proper, convex and lower semicontinuous functions f :
X −→R and g : Y −→R. Moreover, let A : Y −→ X be a linear and continuous operator and
let A∗ : X∗ −→ Y ∗ be its adjoint operator.

The next result ensures stable strong duality between the problems (PA) : infy∈Y{( f ◦
A+g)(y)} and (DA) : supx∗∈X∗{−( f ∗(x∗)+g∗(−A∗x∗))}, that is

sup
y∈Y
{〈y∗,y〉− ( f ◦A+g)(y)}= min

x∗∈X∗
{ f ∗(x∗)+g∗(y∗−A∗x∗)} for all y∗ ∈ Y ∗.

Theorem 1.1. Assume that X and Y are Fréchet spaces. Suppose that the feasibility condi-
tion A−1(dom( f ))∩dom(g) 6= /0 is fulfilled and 0 ∈ ic(dom( f )−A(dom(g))). Then,

sup
y∈Y
{〈y∗,y〉− ( f ◦A+g)(y)}= min

x∗∈X∗
{ f ∗(x∗)+g∗(y∗−A∗x∗)} for all y∗ ∈ Y ∗.
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Proof. Let us introduce the perturbation function

ΦA : Y ×X −→ R, ΦA(y,x) = f (x+Ay)+g(y).

Obviously, ΦA is proper, convex and lower semicontinuous. It can be easily verified, that
for all (y∗,x∗) ∈ Y ∗×X∗, Φ∗A(y∗,x∗) = f ∗(x∗) + g∗(y∗−A∗x∗). It is an easy verification
that prX (domΦA) = {x ∈ X |(∃)y ∈ dom(g), such that x + Ay ∈ dom( f )} = {u− Av|u ∈
dom( f ), v ∈ dom(g)}= dom( f )−A(dom(g)). Since A−1(dom( f ))∩dom(g) 6= /0, we have
0 ∈ prX (domΦA).

According to Theorem 5.5 from [9], if 0 ∈ ic(prX (domΦA)), then

sup
y∈Y
{〈y∗,y〉−ΦA(y,0)}= min

x∗∈X∗
Φ
∗
A(y∗,x∗)∀y∗ ∈ Y ∗.

In other words, if 0 ∈ ic(dom( f )−A(dom(g))), then

sup
y∈Y
{〈y∗,y〉− ( f ◦A+g)(y)}= min

x∗∈X∗
{ f ∗(x∗)+g∗(y∗−A∗x∗)} for all y∗ ∈ Y ∗.

Remark 1.1. According to Proposition 4 from [44] if X and Y are Fréchet spaces and
0 ∈ ic(prX (domΦA)) then ic(prX (domΦA)) = ri(prX (domΦA)), hence

ic(dom( f )−A(dom(g))) = ri(dom( f )−A(dom(g)))

In what follows we give an equivalent condition to stable strong duality for the problems
(PA) and (DA) considered above.

Theorem 1.2. Let U be a nonempty subset of Y ∗ and assume that the feasibility condition
A−1(dom( f ))∩dom(g) 6= /0 is fulfilled. The following statements are equivalent:

(i) supy∈Y{〈y∗,y〉−( f ◦A+g)(y)}= minx∗∈X∗{ f ∗(x∗)+g∗(y∗−A∗x∗)} for all y∗ ∈U.

(ii) The set {(A∗x∗+y∗,r) : f ∗(x∗)+g∗(y∗)≤ r} is closed regarding U×R in (Y ∗,w∗)×
R topology.

Proof. Let us introduce the perturbation function ΦA as in the proof of Theorem 1.1. It is an
easy verification that prY ∗×R(epiΦ∗A) = {(A∗x∗+ y∗,r) : f ∗(x∗)+ g∗(y∗) ≤ r, x∗ ∈ X∗, y∗ ∈
Y ∗}. According to Theorem 2 from [10], the following conditions are equivalent:

(a) supy∈Y{〈y∗,y〉−ΦA(y,0)}= minx∗∈X∗Φ∗A(y∗,x∗), for all y∗ ∈U.

(b) The set prY ∗×R(epi(Φ∗A)) is closed regarding U×R in (Y ∗,w∗)×R topology.
In other words, the following statements are equivalent:

(i) supy∈Y{〈y∗,y〉−( f ◦A+g)(y)}= minx∗∈X∗{ f ∗(x∗)+g∗(y∗−A∗x∗)} for all y∗ ∈U.

(ii) The set {(A∗x∗+y∗,r) : f ∗(x∗)+g∗(y∗)≤ r} is closed regarding U×R in (Y ∗,w∗)×
R topology.

Remark 1.2. Observe that if X and Y are Fréchet spaces, then the condition {(A∗x∗ +
y∗,r) : f ∗(x∗)+g∗(y∗)≤ r} is closed in (Y ∗,w∗)×R topology is weaker than the condition
0 ∈ic (dom( f )−A(dom(g)))

1.2. Maximal monotone operators and representative functions

Consider further X a nontrivial Banach space, let X∗ be its topological dual space and let
X∗∗ be its bidual space. A set-valued operator S : X ⇒ X∗ is said to be monotone if

〈y∗− x∗,y− x〉 ≥ 0, whenever y∗ ∈ S(y) and x∗ ∈ S(x).



1034 S. László

The monotone operator S is called maximal monotone if its graph

G(S) = {(x,x∗) : x∗ ∈ S(x)} ⊆ X×X∗

is not properly contained in the graph of any other monotone operator S′ : X ⇒ X∗. For S
we consider also its domain D(S) = {x ∈ X : S(x) 6= /0} = prX (G(S)) and its range R(S) =
∪x∈X S(x) = prX∗(G(S)).

The classical example of a maximal monotone operator is the subdifferential of a proper,
convex and lower semicontinuous function (this result is due to Rockafellar, see [35]). How-
ever, there exist maximal monotone operators which are not subdifferentials (see [36, 37]).

To an arbitrary monotone operator S : X ⇒ X∗ we associate the Fitzpatrick function ϕS :
X×X∗ −→ R, defined by

ϕS(x,x∗) = sup{〈y∗,x〉+ 〈x∗,y〉−〈y∗,y〉 : y∗ ∈ S(y)},

which is obviously convex and strong-weak∗ lower semicontinuous (it is even weak-weak∗

lower semicontinuous) in the corresponding topology on X×X∗. Introduced by Fitzpatrick
in 1988 (see [17]) and rediscovered after some years in [15, 21], it proved to be very im-
portant in the theory of maximal monotone operators, revealing important connections be-
tween convex analysis and monotone operators (see [3–5], [11,12], [15,22], [30,31,36,40],
[28, 29, 41, 47] and the references therein).

Considering the function c : X ×X∗→ R, c(x,x∗) = 〈x∗,x〉 for all (x,x∗) ∈ X ×X∗, we
get the equality ϕS(x,x∗) = c∗S(x

∗,x) for all (x,x∗) ∈ X ×X∗, where cS = c + δG(S) and we
are considering the natural injection X ⊆ X∗∗. Let us recall the most important properties of
the Fitzpatrick function.

Lemma 1.1. (see [17]) Let S : X ⇒ X∗ be a maximal monotone operator. Then

(i) ϕS(x,x∗)≥ 〈x∗,x〉 for all (x,x∗) ∈ X×X∗,
(ii) G(S) = {(x,x∗) ∈ X×X∗ : ϕS(x,x∗) = 〈x∗,x〉}.

Motivated by these properties of the Fitzpatrick function, the notion of representative
function of a monotone operator was introduced and studied in the literature.

Definition 1.1. For S : X ⇒ X∗ a monotone operator, we call representative function of S
a convex and lower semicontinuous function hS : X ×X∗ −→ R (in the strong topology of
X×X∗) fulfilling

hS ≥ c and G(S)⊆ {(x,x∗) ∈ X×X∗ : hS(x,x∗) = 〈x∗,x〉}.

We observe that if G(S) 6= /0 (in particular if S is maximal monotone), then every rep-
resentative function of S is proper. It follows immediately that the Fitzpatrick function
associated to a maximal monotone operator is a representative function of the operator. The
following proposition is a direct consequence of some results given in [15].

Proposition 1.1. Let S : X ⇒ X∗ be a maximal monotone operator and hS be a representa-
tive function of S. Then

(i) ϕS ≤ hS,
(ii) the canonical restriction of h∗>S to X×X∗ is also a representative function of S,

(iii) {(x,x∗) ∈ X×X∗ : hS(x,x∗) = 〈x∗,x〉}= {(x,x∗) ∈ X×X∗ : h∗>S (x,x∗) = 〈x∗,x〉}=
G(S).
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Let us give the following maximality criteria valid in reflexive Banach spaces (cf. [14,
Theorem 3.1] and [31, Proposition 2.1]; see also [37] for other maximality criteria in reflex-
ive spaces). We refer to [23, Theorem 4.2] for a generalization of the next result to arbitrary
Banach spaces.

Theorem 1.3. (cf. [14, 31]) Let X be a reflexive Banach space and f : X ×X∗ −→ R a
proper, convex and lower semicontinuous function such that f ≥ c. Then the operator whose
graph is the set {(x,x∗) ∈ X ×X∗ : f (x,x∗) = 〈x∗,x〉} is maximal monotone if and only if
f ∗>
∣∣
X×X∗ ≥ c.

The following particular class of maximal monotone operators has been recently intro-
duced in [23], being also studied in [42].

Definition 1.2. An operator S : X ⇒ X∗ is said to be strongly-representable whenever there
exists a proper, convex and strong lower semicontinuous function h : X ×X∗ −→ R such
that

h≥ c,h∗(x∗,x∗∗)≥ 〈x∗∗,x∗〉∀(x∗,x∗∗) ∈ X∗×X∗∗

and
G(S) = {(x,x∗) ∈ X×X∗ : h(x,x∗) = 〈x∗,x〉}.

In this case h is called a strong-representative of S.

The following result is a generalization of Theorem 1.3 (see [23, Theorem 4.2]).

Theorem 1.4. Let X be a nonzero Banach space and h : X×X∗ −→R a proper, convex and
lower semicontinuous function such that h≥ c and h∗(x∗,x∗∗)≥ 〈x∗∗,x∗〉 for all (x∗,x∗∗) ∈
X∗×X∗∗. Then the operator whose graph is the set {(x,x∗) ∈ X×X∗ : h(x,x∗) = 〈x∗,x〉} is
maximal monotone and it holds {(x,x∗) ∈ X×X∗ : h(x,x∗) = 〈x∗,x〉}= {(x,x∗) ∈ X×X∗ :
h∗(x∗,x) = 〈x∗,x〉}.

Hence, if S : X ⇒ X∗ is strongly-representable, then S is maximal monotone (see also [42,
Theorem 8]), and ϕS is a strong-representative of S.

Definition 1.3. (see [18]) Gossez’s monotone closure of a maximal monotone operator
S : X ⇒ X∗ is S : X∗∗ ⇒ X∗,

G(S) = {(x∗∗,x∗) ∈ X∗∗×X∗ : 〈x∗− y∗,x∗∗− y〉 ≥ 0, (∀)(y,y∗) ∈ G(S)}.
A maximal monotone operator S : X ⇒ X∗ is of Gossez type (D) if for any (x∗∗,x∗) ∈ G(S),
there exists a bounded net {(xα ,x∗α)}α∈I⊆G(S) which converges to (x∗∗,x∗) in the w∗×‖·‖
topology of X∗∗×X∗.

In [38] Simons introduced a new class of maximal monotone operators, called operators
of negative infimum type (NI).

Definition 1.4. (see [38]) A maximal monotone operator S : X ⇒ X∗ is of Simons type (NI)
if

inf
(y,y∗)∈G(S)

〈y∗− x∗,y− x∗∗〉 ≥ 0, (∀)(x∗,x∗∗) ∈ X∗×X∗∗.

Remark 1.3. Marques Alves and Svaiter recently proved that the class of strongly-repre-
sentable operators, the class of maximal monotone operators of type (NI) and the class of
maximal monotone operators of Gossez type (D) coincide (cf. [24, Theorem 1.2] and [25,
Theorem 4.4]).
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We will need further the following result of Simons, adapted to our purposes.

Proposition 1.2. (see [36] Lemma 20.4(b).) Let S : X∗∗⇒ X∗ be maximal monotone oper-
ator and (x∗,x∗∗) ∈ X∗×X∗∗, with 〈x∗∗,x∗〉 = 0. Suppose that there exists u ∈ R such that
〈x∗∗,s∗〉+〈s∗∗,x∗〉= 〈(x∗,x∗∗),(s∗∗,s∗)〉= u for all (s∗∗,s∗)∈G(S). Then 〈(x∗,x∗∗),(s∗∗,s∗)〉
= u for all (s∗∗,s∗) ∈ domϕS, where ϕS denotes the Fitzpatrick function of S.

2. About a generalized bivariate infimal convolution formula

Let X and Y be two normed spaces, let X∗ and Y ∗, respectively X∗∗ and Y ∗∗ be their topolog-
ical duals, respectively their topological biduals, and consider the proper, convex and lower
semicontinuous functions f : X×X∗ −→R and g : Y ×Y ∗ −→R. Moreover, let A : X −→Y
be a linear and continuous operator and A∗ : Y ∗ −→ X∗, respectively A∗∗ : X∗∗ −→ Y ∗∗ be
its adjoint, respectively its biadjoint operator.

Consider the following generalized infimal convolution formulas, f �A
1 g : Y ×Y ∗ −→ R

( f �A
1 g)(y,y∗) = inf{ f (x,A∗y∗)+g(y−Ax,y∗) : x ∈ X},

respectively, f ∗�A
2 g∗ : Y ∗×Y ∗∗ −→ R,

( f ∗�A
2 g∗)(y∗,y∗∗) = inf{ f ∗(A∗y∗,x∗∗)+g∗(y∗,y∗∗−A∗∗x∗∗) : x∗∗ ∈ X∗∗}.

Due to our best knowledge �A
1 , respectively �A

2 were not considered till now in the litera-
ture. Obviously, when A≡ idX , X = Y we obtain the classical bivariate infimal convolutions
f �1g and f ∗�2g∗, respectively (see, for instance, [10, 36, 40, 42]), that is

( f �1g)(x,x∗) = inf{ f (u,x∗)+g(x−u,x∗) : u ∈ X},

respectively,

( f ∗�2g∗)(x∗,x∗∗) = inf{ f ∗(x∗,u∗∗)+g∗(x∗,x∗∗−u∗∗) : u∗∗ ∈ X∗∗}.

The following result provides a closedness type regularity condition that not only ensures
that ( f �A

1 g)∗(y∗,y∗∗) = ( f ∗�A
2 g∗)(y∗,y∗∗) and f ∗�A

2 g∗ is exact for every (y∗,y∗∗) ∈ Y ∗×
Y ∗∗, that is, the infimum in its definition is attained, but is also equivalent to it.

Theorem 2.1. Consider the proper, convex and lower semicontinuous functions f : X ×
X∗ −→ R and g : Y ×Y ∗ −→ R, such that prX∗(dom( f ))∩A∗(prY ∗(dom(g))) 6= /0.

(a) The following statements are equivalent:
(i) (CQ�A

1 ) : The set {(x∗,y∗,A∗∗x∗∗ + y∗∗,r) : f ∗(x∗,x∗∗) + g∗(y∗,y∗∗) ≤ r} is
closed regarding the set ∆Y ∗

A∗×Y ∗∗×R in the (X∗,w∗)×(Y ∗,w∗)×(Y ∗∗,w∗)×
R topology, where ∆Y ∗

A∗ = {(A∗y∗,y∗) : y∗ ∈ Y ∗}.
(ii) ( f �A

1 g)∗(y∗,y∗∗)= ( f ∗�A
2 g∗)(y∗,y∗∗) and f ∗�A

2 g∗ is exact for every (y∗,y∗∗)∈
Y ∗×Y ∗∗.

(b) If (RC�A
1 ) : 0 ∈ic (prX∗(dom( f ))−A∗prY ∗(dom(g))) holds, then the statements (i)

and (ii) are true.

Proof. Consider the functions F : X ×Y ×X∗ −→ R, F(u,v,u∗) = f (u,u∗) and G : X ×
Y ×Y ∗ −→ R, G(u,v,v∗) = g(v,v∗), and the linear continuous operator M : X×Y ×Y ∗ −→
X ×Y ×X∗, M = idX × idY ×A∗. Since prX∗(dom( f ))∩A∗(prY ∗(dom(g))) 6= /0 we obtain
that M−1(dom(F))∩dom(G) 6= /0.

(a) We have
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( f �A
1 g)∗(y∗,y∗∗) = sup(s,v∗)∈Y×Y ∗{〈(y∗,y∗∗),(s,v∗)〉− infu∈X{ f (u,A∗v∗)+g(s−Au,v∗)}}

= sup(u,s,v∗)∈X×Y×Y ∗{〈(y∗,y∗∗),(s,v∗)〉− f (u,A∗v∗)−g(s−Au,v∗)}
= sup(u,v,v∗)∈X×Y×Y ∗{〈(y∗,y∗∗),(v+Au,v∗)〉− f (u,A∗v∗)−g(v,v∗)}
= sup(u,v,v∗)∈X×Y×Y ∗{〈(A∗y∗,y∗,y∗∗),(u,v,v∗)〉− (F ◦M)(u,v,v∗)−G(u,v,v∗)}.

It is an easy computation that F∗(u∗,v∗,u∗∗) = δ{0}(v∗)+ f ∗(u∗,u∗∗) and G∗(u∗,v∗,v∗∗)
= δ{0}(u∗)+g∗(v∗,v∗∗).

Let U = ∆Y ∗
A∗×Y ∗∗ ⊆ X∗×Y ∗×Y ∗∗. According to Theorem 1.2 the following statements

are equivalent:
(1) sup(u,v,v∗)∈X×Y×Y ∗{〈(A∗y∗,y∗,y∗∗),(u,v,v∗)〉− (F ◦M)(u,v,v∗)−G(u,v,v∗)}=

min(u∗,v∗,u∗∗)∈X∗×Y ∗×X∗∗{F∗(u∗,v∗,u∗∗)+G∗((A∗y∗,y∗,y∗∗)−M∗(u∗,v∗,u∗∗))}, for all
(A∗y∗,y∗,y∗∗) ∈U.

(2) {(M∗(u∗1,v∗1,u∗∗) + (u∗2,v
∗
2,v
∗∗),r) : F∗(u∗1,v

∗
1,u
∗∗) + G∗(u∗2,v

∗
2,v
∗∗) ≤ r} is closed

regarding to U×R in (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology. Thus, we obtain that
sup(u,v,v∗)∈X×Y×Y ∗{〈(A∗y∗,y∗,y∗∗),(u,v,v∗)〉− (F ◦M)(u,v,v∗)−G(u,v,v∗)}=
minu∗∗∈X∗∗{ f ∗(A∗y∗,u∗∗)+g∗(y∗,y−A∗∗u∗∗)} for all (A∗y∗,y∗,y∗∗) ∈U is equivalent to
{(u∗,v∗,A∗∗u∗∗+ v∗∗,r) : f ∗(u∗,u∗∗)+ g∗(v∗,v∗∗) ≤ r} is closed regarding the set U ×

R = ∆Y ∗
A∗ ×Y ∗∗×R in (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology.

In other words, ( f �A
1 g)∗(y∗,y∗∗) = ( f ∗�A

2 g∗)(y∗,y∗∗) and f ∗�A
2 g∗ is exact for every

(y∗,y∗∗) ∈ Y ∗×Y ∗∗ if, and only if, {(u∗,v∗,A∗∗u∗∗+ v∗∗,r) : f ∗(u∗,u∗∗)+ g∗(v∗,v∗∗) ≤ r}
is closed regarding the set ∆Y ∗

A∗ ×Y ∗∗×R in (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology.
(b) The assertion is a direct consequence of Theorem 1.1, as obviously,
(0,0,0) ∈ic (dom(F)−M dom(G))⇔ 0 ∈ ic(prX∗(dom( f ))−A∗prY ∗(dom(g))).

Remark 2.1. According to Remark 1.1 ic(prX∗(dom( f ))−A∗prY ∗(dom(g))) = ri(prX∗(dom
( f ))−A∗prY ∗(dom(g))).

By taking X = Y and A≡ idX in Theorem 2.1 we obtain the following result.

Corollary 2.1. Assume that prX∗(dom( f ))∩prX∗(dom(g)) 6= /0.

(a) The following statements are equivalent:
(i) (CQ�1) : {(u∗,v∗,u∗∗+v∗∗,r) : f ∗(u∗,u∗∗)+g∗(v∗,v∗∗)≤ r} is closed regard-

ing the set ∆X∗×X∗∗×R in the (X∗,w∗)× (X∗,w∗)× (X∗∗,w∗)×R topology,
where ∆X∗ = {(x∗,x∗) : x∗ ∈ X∗}.

(ii) ( f �1g)∗(x∗,x∗∗) = ( f ∗�2g∗)(x∗,x∗∗) and f ∗�2g∗ is exact for every (x∗,x∗∗)∈
X∗×X∗∗.

(b) If (RC�1) : 0∈ ic(prX∗(dom( f ))−prX∗(dom(g))) holds, then the statements (i) and
(ii) are true.

Remark 2.2. Observe that the condition (CQ�A
1 )), i.e.

{(x∗,y∗,A∗∗x∗∗ + y∗∗,r) : f ∗(x∗,x∗∗) + g∗(y∗,y∗∗) ≤ r} is closed regarding the set ∆Y ∗
A∗ ×

Y ∗∗×R in the (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology is weaker than (RC�A
1 ), i.e.

0 ∈ ic((prX∗(dom( f ))−A∗prY ∗(dom(g)))).

3. The maximal monotonicity of the generalized parallel sum S||AT

In the sequel, unless is otherwise specified, X and Y are nonzero Banach spaces, and X∗ and
Y ∗, respectively X∗∗ and Y ∗∗ denote their duals, respectively their biduals.
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Consider the monotone operators S : X ⇒ X∗ and T : Y ⇒ Y ∗ and let A : X −→ Y be a
linear and continuous operator, and let A∗, respectively A∗∗ be its adjoint, respectively its
biadjoint operator. Let us denote by S, respectively T the Gossez monotone closure of S,
respectively T. Then their generalized parallel sum may be introduced as S||AT : Y ⇒ Y ∗,

S||AT := (A∗∗S−1A∗+T −1)−1.

When X = Y, A ≡ idX we obtain the parallel sum for the Gossez monotone closure of S,
respectively T, that is S||T : X ⇒ X∗,

S||T := (S−1 +T −1)−1.

Next we will provide some conditions that ensures the maximal monotonicity of the gen-
eralized parallel sum S||AT . Due to our best knowledge, in the literature does not exists so
far any closedness type regularity condition that provides this result. However, in a recent
paper of Simons, (see [39]), some of the interior point type regularity conditions that will be
presented in the sequel are also obtained. In what follows, based on the results presented in
Section 2, we will give both an interior point type and a closedness type regularity condition,
that ensure the maximal monotonicity of the generalized parallel sum S||AT .

Theorem 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of
Gossez type (D), with strong representative functions hS and hT respectively, and let A :
X −→ Y be a linear and continuous operator, with its adjoint denoted by A∗, and its bi-
adjoint denoted by A∗∗. Assume, that prX∗(dom(hS))∩A∗prY ∗(dom(hT )) 6= /0. Assume that
one of the following conditions is fulfilled.

(a) 0 ∈ ic(prX∗(dom(hS))−A∗prY ∗(dom(hT ))).
(b) The set {(x∗,y∗,A∗∗x∗∗+ y∗∗,r) : h∗S(x

∗,x∗∗)+h∗T (y∗,y∗∗)≤ r} is closed regarding
the set ∆Y ∗

A∗ ×Y ∗∗×R in the (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology.

Then the function h : Y ×Y ∗ −→ R, h(y,y∗) = cl‖·‖×‖·‖∗(hS�A
1 hT )(y,y∗) is a strong repre-

sentative function of S||AT and the generalized parallel sum S||AT is maximal monotone
operator of Gossez type (D).

Proof. Obviously h is convex and lower semicontinuous in (Y,‖ · ‖)× (Y ∗,‖ · ‖∗) topol-
ogy and due to the feasibility condition prX∗(dom(hS))∩A∗(prY ∗(dom(hT ))) 6= /0 h is not
identically +∞. According to Theorem 2.1, if either (a) or (b) holds, then h∗(y∗,y∗∗) =
(hS�A

1 hT )∗(y∗,y∗∗) = (h∗S�
A
2 h∗T )(y∗,y∗∗) and the infimal convolution of the right side is ex-

act.
Next we prove that h(y,y∗) ≥ 〈y∗,y〉 for all (y,y∗) ∈ Y ×Y ∗, moreover G(S||AT ) =

{(y,y∗) : h∗(y∗,y) = 〈y∗,y〉} and h∗(y∗,y∗∗) ≥ 〈y∗∗,y∗〉 for all (y∗,y∗∗) ∈ Y ∗×Y ∗∗. Then,
according to Theorem 1.4, the operator whose graph is {(y,y∗)∈Y ×Y ∗ : h(y,y∗) = 〈y∗,y〉}
is maximal monotone of Gossez type (D), and {(y,y∗) ∈ Y ×Y ∗ : h(y,y∗) = 〈y∗,y〉} =
{(y,y∗) ∈ Y ×Y ∗ : h∗(y∗,y) = 〈y∗,y〉}. Hence, the generalized parallel sum S||AT is a max-
imal monotone operator of Gossez type (D).

We have (hS�A
1 hT )(y,y∗) = inf{hS(x,A∗y∗)+ hT (y−Ax,y∗) : x ∈ X} ≥ inf{〈A∗y∗,x〉+

〈y∗,y−Ax〉 : x ∈ X}= 〈y∗,y〉. Hence, h(y,y∗) = cl‖·‖×‖·‖∗(hS�A
1 hT )(y,y∗)≥ 〈y∗,y〉, which

implies that h≥ c, concomitantly ensuring that h is proper.
We have h∗(y∗,y∗∗)= (h∗S�

A
2 h∗T )(y∗,y∗∗)= infx∗∗∈X∗∗{h∗S(A∗y∗,x∗∗)+h∗T (y∗,y∗∗−A∗∗x∗∗)}

and the infimum is attained.
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Hence, h∗(y∗,y∗∗) = minx∗∗∈X∗∗{h∗S(A∗y∗,x∗∗)+h∗T (y∗,y∗∗−A∗∗x∗∗)}= h∗S(A
∗y∗,u∗∗)+

h∗T (y∗,y∗∗−A∗∗u∗∗). But h∗>S and h∗>T are strong representative functions of S and T , hence
h∗(y∗,y∗∗)≥ 〈u∗∗,A∗y∗〉+ 〈y∗∗−A∗∗u∗∗,y∗〉= 〈y∗∗,y∗〉.

Let (y,y∗)∈G(S||AT ). Then y∈A∗∗S−1A∗y∗+T −1y∗, hence there exists v∗∗1 ∈A∗∗S−1A∗y∗

and v∗∗2 ∈ T −1y∗ such that y = v∗∗1 + v∗∗2 . So we have v∗∗1 ∈ A∗∗S−1A∗y∗, hence there exists
u∗∗ ∈ S−1A∗y∗ such that v∗∗1 = A∗∗u∗∗. But then (u∗∗,A∗y∗) ∈G(S). Since y = v∗∗1 +v∗∗2 and
v∗∗2 ∈T −1y∗ we obtain that (y−A∗∗u∗∗,y∗)∈G(T ). We have h∗(y∗,y)= minx∗∗∈X∗∗{h∗S(A∗y∗,
x∗∗)+h∗T (y∗,y−A∗∗x∗∗)} ≤ h∗S(A

∗y∗,u∗∗)+h∗T (y∗,y−A∗∗u).
Taking into account that h∗>S and h∗>T are strong representative functions of S and T

and (u∗∗,A∗y∗) ∈ G(S), (y−A∗∗u∗∗,y∗) ∈ G(T ) we obtain h∗(y∗,y) ≤ 〈u∗∗,A∗y∗〉+ 〈y−
A∗∗u∗∗,y∗〉 = 〈y∗,y〉. On the other hand h∗(y∗,y) ≥ 〈y∗,y〉 for all (y,y∗) ∈ Y ×Y ∗, hence
equality must be fulfilled. Therefore we have G(S||AT ) ⊆ {(y,y∗) ∈ Y ×Y ∗ : h∗(y∗,y) =
〈y∗,y〉}, which shows that h∗>

∣∣
Y×Y ∗ is a representative function of S||AT .

Conversely, let h∗(y∗,y) = 〈y∗,y〉. We show that (y,y∗) ∈ G(S||AT ). We have 〈y∗,y〉 =
h∗(y∗,y) = h∗S(A

∗y∗,u∗∗) + h∗T (y∗,y−A∗∗u∗∗), for some u∗∗ ∈ X∗∗. But h∗>S and h∗>T are
strong representative functions of S and T , hence h∗S(A

∗y∗,u∗∗)≥ 〈u∗∗,A∗y∗〉 with equality
if, and only if, (u∗∗,A∗y∗) ∈ G(S) and h∗T (y∗,y− A∗∗u∗∗) ≥ 〈y− A∗∗u∗∗,y∗〉 with equal-
ity if, and only if, (y− A∗∗u∗∗,y∗) ∈ G(T ). Hence, we obtain that 〈y∗,y〉 = h∗(y∗,y) =
h∗S(A

∗y∗,u∗∗) + h∗T (y∗,y−A∗∗u∗∗) ≥ 〈u∗∗,A∗y∗〉+ 〈y−A∗∗u∗∗,y∗〉 = 〈y∗,y〉 with equality
if, and only if, (u∗∗,A∗y∗) ∈ G(S) and (y−A∗∗u∗∗,y∗) ∈ G(T ). Hence, we have A∗y∗ ∈
Su∗∗ which leads to u∗∗ ∈ S−1A∗y∗ and y∗ ∈ T (y−A∗∗u∗∗) which leads to y−A∗∗u∗∗ ∈
T −1y∗. Hence, y = A∗∗u∗∗+(y−A∗∗u∗∗) ∈ A∗∗S−1A∗y∗+T −1y∗, or equivalently (y,y∗) ∈
G(S||AT ).

Under the additional assumption that the domain of Gossez’s closure of S is a subset of
X , we obtain sufficient conditions for the maximal monotonicity of Gossez type (D) for the
generalized parallel sum S||AT . One can notice, that D(S)⊆ X is particulary fulfilled when
X is a reflexive Banach space.

Theorem 3.2. Consider A : X −→ Y a linear and continuous operator and let us denote by
A∗ its adjoint operator, and by A∗∗ its biadjoint operator. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be
two maximal monotone operators of Gossez type (D) with strong representative functions
hS and hT respectively, such that prX∗(dom(hS))∩A∗(prY ∗(dom(hT ))) 6= /0. Consider the
function h : Y ×Y ∗ −→R, h(y,y∗) = cl‖·‖×‖·‖∗(hS�A

1 hT )(y,y∗). Assume that D(S)⊆ X , and
that one of the following conditions is fulfilled.

(a) 0 ∈ ic(prX∗(dom(hS))−A∗prY ∗(dom(hT ))).
(b) The set {(x∗,y∗,A∗∗x∗∗+ y∗∗,r) : h∗S(x

∗,x∗∗)+h∗T (y∗,y∗∗)≤ r} is closed regarding
the set ∆Y ∗

A∗ ×Y ∗∗×R in the (X∗,w∗)× (Y ∗,w∗)× (Y ∗∗,w∗)×R topology.

Then h is a strong representative function of S||AT and S||AT is a maximal monotone oper-
ator of Gossez type (D).

Proof. We need only to show, that S||AT = S||AT, whenever D(S) ⊆ X . Indeed (y,y∗) ∈
G(S||AT ), if, and only if, there exists v∗∗1 ∈ A∗∗S−1A∗y∗ and v∗∗2 ∈ T −1y∗ such that y =
v∗∗1 +v∗∗2 . This is further equivalent to the existence of u∗∗ ∈ S−1A∗y∗ and v∗∗2 ∈ T −1y∗ such
that v∗∗1 = A∗∗u∗∗ and y = v∗∗1 + v∗∗2 . But then (u∗∗,A∗y∗) ∈ G(S), and from D(S) ⊆ X we
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have (u∗∗,A∗y∗)∈G(S), hence A∗∗u∗∗= Au∗∗ ∈Y, which leads to v∗∗1 ∈Y and v∗∗2 ∈Y. Thus,
y = v∗∗1 + v∗∗2 ∈ AS−1A∗y∗+T−1y∗, or. equivalently (y,y∗) ∈ G(S||AT ).

Remark 3.1. Concerning the two sufficient conditions for maximal monotonicity consid-
ered in Theorem 3.1 and Theorem 3.2, one can notice, according to Theorem 2.1, that
condition (b) is fulfilled whenever condition (a) is fulfilled. In [13] an example is provided,
where the latter fails, while condition (b) is valid (see [13], Example 5.1).

Remark 3.2. According to Remark 2.1,
ic(prX∗(dom(hs))−A∗prY ∗(dom(hT ))) = ri(prX∗(dom(hs))−A∗prY ∗(dom(hT ))).

Remark 3.3. In [32] (Corollary 14), in a reflexive Banach space context, it is shown that
if A : X −→ Y is a linear operator and S,T : X ⇒ X∗ are two maximal monotone operators
with representative functions hS and hT , then 0 ∈ icr(A(D(S))−D(T )) assures the maxi-
mal monotonicity of S + A∗TA. In this case we have ic(A(D(S))−D(T )) = icr(A(D(S))−
D(T )) = ic(A(prX (dom(hS)))−prY (dom(hT )).

Obviously, in a reflexive Banach space context, S, respectively T are maximal mono-
tone if and only if S−1, respectively T−1 are maximal monotone, as well that h>S respec-
tively h>T are representative functions for S−1, respectively T−1, and D(S−1) = R(S), re-
spectively D(T−1) = R(T ). Hence, 0 ∈ icr(A∗(R(T ))−R(S)) assures the maximal mono-
tonicity of S||AT, and in this case we have ic(A∗(R(T ))−R(S)) = icr(A∗(R(T ))−R(S)) =
ic(A∗(prY ∗(dom(hT )))− prX∗(dom(hS)). Hence, our regularity condition (RC)�

A
1 is actu-

ally equivalent to 0 ∈ ic(A∗(R(T ))−R(S)), that is
⋃

λ>0 λ (A∗(R(T ))−R(S)) is a closed
linear subspace of X∗. It is worthwhile to mention that this result was also established by
Simons in [39] in general Banach spaces. In what follows we obtain some similar results in
nonreflexive Banach spaces for maximal monotone operators of Gossez type (D).

Theorem 3.3. Let X and Y be nonzero real Banach spaces, let X∗ and Y ∗ be their dual
spaces and let A : X −→Y be a linear and continuous operator and A∗ :Y ∗−→X∗ its adjoint
operator. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez
type (D), with strong representative functions hS, respectively hT , such that prX∗(dom(hS))∩
A∗(prY ∗(dom(hT ))) 6= /0. Then it holds:

ic (R(S)−A∗(R(T )))⊆ ic (coR(S)−A∗(coR(T )))⊆
ic (prX∗(dom(hS))−A∗(prY ∗(dom(hT )))) = ri(prX∗(dom(hS))−A∗(prY ∗(dom(hT )))) .

Proof. Let us denote by C := prX∗(dom(hS))−A∗(prY ∗(dom(hT ))), and by D := R(S)−
A∗(R(T )). Obviously D ⊆ coD = coR(S)−A∗(coR(T )) ⊆C and according to Remark 3.2
we have icC = riC.

Since, coD ⊆ C, one has aff(coD) = aff(D) ⊆ aff(C). To complete our proof, observe
that it is enough to prove, that aff(C) ⊆ cl(aff(D)). For this we will use an idea of L. Yao,
(see [43]) and Proposition 1.2. Obviously C ⊆ prX∗(dom(ϕS))−A∗prY ∗(dom(ϕT )), where
ϕS, respectively ϕT denote the Fitzpatrick functions of the operators S, respectively T. It
can be easily realized that is enough to prove, that

prX∗(dom(ϕS))−A∗prY ∗(dom(ϕT ))⊆ cl(aff(D)).

We can assume, that (0,0)∈G(S) and (0,0)∈G(T ). Suppose that there exists (u∗−A∗v∗)∈
prX∗(dom(ϕS))−A∗prY ∗(dom(ϕT )) such that (u∗−A∗v∗) 6∈ cl(aff(D)). Then, according to



On the Strong Representability of the Generalized Parallel Sum 1041

strong separation theorem, there exists δ ∈ R and p∗∗ ∈ X∗∗, such that

〈p∗∗,u∗−A∗v∗〉> δ > sup{〈p∗∗,x∗〉 : x∗ ∈ cl(aff(D))}.

We show next, that 〈p∗∗,x∗〉= 0 for all x∗ ∈ aff(D). First of all, observe, that sup{〈p∗∗x∗〉 :
x∗ ∈ cl(aff(D))} ≥ 0, since 0 ∈ cl(aff(D)), hence δ > 0. Suppose, that there exists x∗ ∈
aff(D), such that 〈p∗∗x∗〉 6= 0. Then, since aff(D) is a linear space, we have

δ >

〈
p∗∗,

±δ

〈p∗∗,x∗〉
x∗
〉

=±δ , impossible.

Hence, 〈p∗∗,x∗ − A∗y∗)〉 = 0, for all x∗ ∈ R(S), y∗ ∈ R(T ). By taking y∗ = 0 we obtain
〈p∗∗,x∗〉= 0 for all x∗ ∈ R(S), and from here results that 〈p∗∗,A∗y∗〉= 〈A∗∗p∗∗,y∗〉= 0, for
all y∗ ∈R(T ). Let us denote by q∗∗= A∗∗p∗∗. Obviously 〈p∗∗,0〉= 0, respectively 〈q∗∗,0〉=
0. On the other hand, we have 〈(0, p∗∗),(x,x∗)〉 = 0, for all (x,x∗) ∈ G(S), respectively
〈(0,q∗∗),(y,y∗)〉= 0, for all (y,y∗) ∈ G(T ).

Since S and T are maximal monotone operators of Gossez type (D), according to The-
orem 4.4 from [25], S and T have a unique maximal monotone extension to X∗∗×X∗, re-
spectively Y ∗∗×Y ∗, which are their Gossez’s monotone closure, S, respectively T . We show
next, that 〈(0, p∗∗),(x∗∗,x∗)〉= 0, for all (x∗∗,x∗) ∈G(S), respectively 〈(0,q∗∗),(y∗∗,y∗)〉=
0, for all (y∗∗,y∗)∈G(T ). Let (x∗∗,x∗)∈G(S). Then, there exists (xα ,x∗α)∈G(S), such that
xα ⇀w∗ x∗∗ and x∗α −→‖·‖ x∗. Obviously, since (xα ,x∗α)∈G(S), we have 〈(0, p∗∗),(xα ,x∗α)〉=
0, for every α . On the other hand 〈(0, p∗∗),(xα ,x∗α)〉= 〈0,xα〉+〈p∗∗,x∗α〉, and 〈p∗∗,x∗α〉 −→
〈p∗∗,x∗〉, hence

〈(0, p∗∗),(x∗∗,x∗)〉= 0.

So we have 〈(0, p∗∗),(x∗∗,x∗)〉 = 0, for all (x∗∗,x∗) ∈ G(S), and can be proved in similar
way, that 〈(0,q∗∗),(y∗∗,y∗)〉= 0, for all (y∗∗,y∗) ∈ G(T ).

According to Proposition 1.2, 〈(0, p∗∗),(x∗∗,x∗)〉= 0, for all (x∗∗,x∗)∈ dom(ϕS), respec-
tively 〈(0,q∗∗),(y∗∗,y∗)〉= 0, for all (y∗∗,y∗) ∈ dom(ϕT ). But u∗ ∈ prX∗(dom(ϕS)), respec-
tively v∗ ∈ prY ∗(dom(ϕT )) and it is well known, that the restriction to X×X∗ of ϕS is ϕS and
the restriction to Y ×Y ∗ of ϕT is ϕT , hence u∗ ∈ prX∗(dom(ϕS)) and v∗ ∈ prY ∗(dom(ϕT )).

Hence, 0 = 〈p∗∗,u∗〉−〈q∗∗,v∗〉= 〈p∗∗,u∗−A∗v∗)〉> δ > 0, contradiction. Thus, since
D ⊆ coD ⊆C, we have aff(D) = aff(coD) ⊆ aff(C) ⊆ cl(aff(D)), hence if u∗ ∈ ic(D) then
u∗ ∈ ic(coD) and u∗ ∈ ic(C).

Let us mention, that the proof of Theorem 3.3 is an adaptation of the proof of Theorem
3.3 from [13]. Theorem 3.3 gives rise to two supplementary interior point type conditions
for the maximal monotonicity of S||AT .

Corollary 3.1. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of
Gossez type (D), and let A : X −→ Y be a linear and continuous operator, with its adjoint
denoted by A∗. Assume, that R(S)∩A∗(R(T )) 6= /0. If

0 ∈ ic(R(S)−A∗(R(T ))
)

or
0 ∈ ic(coR(S)−A∗(coR(T ))

)
,

then the generalized parallel sum S||AT is maximal monotone operator of Gossez type (D).
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Proof. Since, R(S) ∩ A∗(R(T )) 6= /0, one has prX∗(dom(ϕS)) ∩ A∗(prY ∗(dom(ϕT ))) 6= /0,
where ϕS, respectively ϕT are the Fitzpatrick functions of S, respectively T . Obviously
ϕS, respectively ϕT are strong representative functions of S, respectively T . According to
Theorem 3.3,
ic(R(S)−A∗(R(T ))

)
⊆ ic(coR(S)−A∗(coR(T ))

)
⊆ ic(prX∗(dom(ϕS))−A∗(prY ∗(dom(ϕT )))

)
,

hence 0∈ ic
(
R(S)−A∗(R(T ))

)
or 0∈ ic

(
coR(S)−A∗(coR(T ))

)
implies 0∈ ic

(
prX∗(dom(ϕS))

−A∗(prY ∗(dom(ϕT )))
)
. The conclusion follows from Theorem 3.1.

Under the assumption D(S)⊆X , the inclusions in Theorem 3.3 become equalities. Hence,
concerning on the maximal monotonicity of the generalized parallel sum S||AT, we have the
following result.

Theorem 3.4. Let X and Y be nonzero real Banach spaces, let X∗ and Y ∗ be their dual
spaces and let A : X −→Y be a linear and continuous operator and A∗ :Y ∗−→X∗ its adjoint
operator. Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators of Gossez
type (D), with strong representative functions hS, respectively hT , such that prX∗(dom(hS))∩
A∗(prY ∗(dom(hT ))) 6= /0. Assume that D(S)⊆ X. Then, the following hold.

1◦ ri(R(S)−A∗(R(T ))) = ic(R(S)−A∗(R(T ))) =
ri(coR(S)−A∗(coR(T ))) = ic(coR(S)−A∗(coR(T ))) =
ri(prX∗(dom(hS))−A∗(prY ∗(dom(hT ))))= ic(prX∗(dom(hS))−A∗(prY ∗(dom(hT )))).

2◦ The following statements are equivalent.
(a) 0 ∈ ri(R(S)−A∗(R(T ))),
(b) 0 ∈ ic(R(S)−A∗(R(T ))),
(c) 0 ∈ ri(coR(S)−A∗(coR(T ))),
(d) 0 ∈ ic(coR(S)−A∗(coR(T ))),
(e) 0 ∈ ri(prX∗(dom(hS))−A∗(prY ∗(dom(hT )))),
(f) 0 ∈ ic(prX∗(dom(hS))−A∗(prY ∗(dom(hT )))).

3◦ Every condition from 2◦ assures that the generalized parallel sum S||AT is a maxi-
mal monotone operator of Gossez type (D).

Proof. Obviously 2◦ follows from 1◦, and 3◦ follows from 2◦ and Theorem 3.2. Let us
prove 1◦. Let us denote by C := prX∗(dom(hS))−A∗(prY ∗(dom(hT ))), and by D := R(S)−
A∗(R(T )). Then coR(S)−A∗(coR(T )) = coD. Obviously D⊆C, and we prove that ic(C)⊆
D. Let (u∗ −A∗v∗) ∈ ic(C). Then 0 ∈ ic(C− (u∗ −A∗v∗), and consider the functions f̃ :
X×X∗ −→R, f̃ (x,x∗) = hS(x,x∗+u∗)−〈u∗,x〉, and g̃ : Y ×Y ∗ −→R, g̃(y,y∗) = hT (y,y∗+
v∗)−〈v∗,y〉.

Let S̃ : X ⇒ X∗ defined by G(S̃) = {(x,x∗) ∈ X ×X∗ : f̃ (x,x∗) = 〈x∗,x〉} and T̃ : Y ⇒
Y ∗ defined by G(T̃ ) = {(y,y∗) ∈ Y ×Y ∗ : g̃(y,y∗) = 〈y∗,y〉}. It can be easily observed,
that G(S̃) = G(S)− (0,u∗) and G(T̃ ) = G(T )− (0,v∗). Obviously S̃ and G̃ are maximal
monotone operators of Gossez type (D), and f̃ , respectively g̃ are their strong represen-
tative functions, hence according to Theorem 3.2, the condition 0 ∈ ic(prX∗(dom( f̃ ))−
A∗prY ∗(dom(g̃))) = ic(C−(u∗−A∗v∗)) ensures the maximal monotonicity of S̃||AT̃ . Hence,
G(S̃||AT̃ ) 6= /0, thus there exists y∗ ∈ (AS̃−1A∗+ T̃−1)−1(y) for some y ∈Y. Hence, there ex-
ists y1,y2 ∈ Y such that (y∗,y1) ∈ G(AS̃−1A∗) and (y2,y∗) ∈ G(T̃ ). Since G(T̃ ) = G(T )−
(0,v∗) we have

(0,v∗) ∈ G(T )− (y2,y∗)⇒ A∗v∗ ∈ A∗(R(T ))−A∗y∗. (∗)
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Since y1 ∈ AS̃−1A∗(y∗), there exists x∗ ∈ X∗, such that y1 ∈ AS̃−1(x∗) and x∗ = A∗y∗. Thus,
there exists x ∈ S̃−1(x∗) and y1 = Ax. Hence, (x,x∗) ∈G(S̃) = G(S)− (0,u∗) and we obtain,
that

u∗ ∈ R(S)− x∗ = R(S)−A∗y∗. (∗∗)
From (∗) and (∗∗) we have u∗−A∗v∗ ∈ ((R(S)−A∗y∗)− (A∗(R(T ))−A∗y∗)) = D. Hence,
ic(C)⊆ D.

If ic(C) = ri(C) = /0, then by Theorem 3.3 it holds ic(D) = ic(coD) = ic(C) = ri(C) = /0,
consequently ri(D) = ri(coD) = /0.

If ic(C) 6= /0 we have ic(C) ⊆ D ⊆ coD ⊆ C. Hence ic(D) = ic(coD) = ic(C) = ri(C).
Moreover, it holds aff(ic(C)) = aff(C) and as ri(C) = ic(C) ⊆ D ⊆ coD ⊆ C, we have
aff(C) = aff(D), these sets being closed. Thus ri(C) = ri(D) = ri(coD).

4. The maximal monotonicity of the parallel sum S||T

In the sequel, unless is otherwise specified, X is a nonzero Banach space, and X∗ respec-
tively X∗∗ denote its dual, respectively its bidual.

Consider the monotone operators S : X ⇒ X∗ and T : X ⇒ X∗. Their parallel sum is
defined as

S||T : X ⇒ X∗, S||T := (S−1 +T−1)−1.

Let us denote by S, respectively T the Gossez monotone closure of S, respectively T. Then
their parallel sum may be introduced as

S||T : X ⇒ X∗, S||T := (S−1 +T −1)−1.

In the literature there are only few regularity conditions, (and even those in reflexive
Banach spaces), that assure the maximal monotonicity of the parallel sum of two maximal
monotone operators (see [2, 26, 31, 33]). Relying on the results from the previous sections,
we are able to give both closedness type and interior point type regularity conditions that
ensure the maximal monotonicity of the parallel sum of two maximal monotone operators.
Let us mention that some of these results were also established by Simons in [39], and Boţ
and László in [13].

As a particular case of Theorem 3.1, when X = Y, A ≡ idX , we obtain the following
result.

Theorem 4.1. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of
Gossez type (D), with strong representative functions hS and hT respectively, such that
prX∗(dom(hS))∩ prX∗(dom(hT )) 6= /0. Assume that one of the following conditions is ful-
filled.

(a) 0 ∈ ic(prX∗(dom(hS))−prX∗(dom(hT ))).
(b) The set {(x∗,y∗,x∗∗+ y∗∗,r) : h∗S(x

∗,x∗∗)+h∗T (y∗,y∗∗)≤ r} is closed regarding the
set ∆X∗ ×X∗∗×R in the (X∗,w∗)× (X∗,w∗)× (X∗∗,w∗)×R topology.

Then the function h : X ×X∗ −→ R, h(x,x∗) = cl‖·‖×‖·‖∗(hS�1hT )(x,x∗) is a strong rep-
resentative function of S||T and the parallel sum S||T is maximal monotone operator of
Gossez type (D).

Under the additional assumption that the domain of Gossez’s closure of S is a subset
of X , as a particular case of Theorem 3.2, we obtain sufficient conditions for the maximal



1044 S. László

monotonicity of Gossez type (D) for the parallel sum S||T . One can notice, that D(S) ⊆ X
is particulary fulfilled when X is a reflexive Banach space.

Theorem 4.2. Let S : X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of
Gossez type (D) with strong representative functions hS and hT respectively, such that
prX∗(dom(hS))∩ prX∗(dom(hT )) 6= /0. Consider the function h : X ×X∗ −→ R, h(x,x∗) =
cl‖·‖×‖·‖∗(hS�1hT )(x,x∗). Assume that D(S) ⊆ X , and that one of the following conditions
is fulfilled.

(a) 0 ∈ ic(prX∗(dom(hS))−prX∗(dom(hT ))).
(b) The set {(x∗,y∗,x∗∗+ y∗∗,r) : h∗S(x

∗,x∗∗)+h∗T (y∗,y∗∗)≤ r} is closed regarding the
set ∆X∗ ×X∗∗×R in the (X∗,w∗)× (X∗,w∗)× (X∗∗,w∗)×R topology.

Then h is a strong representative function of S||T and S||T is a maximal monotone operator
of Gossez type (D).

As particular instances of Theorem 3.3 and Corollary 3.1 we have the following result.

Theorem 4.3. Let X be a nonzero real Banach spaces, let X∗ be its dual space and let S :
X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D), with strong
representative functions hS, respectively hT , such that prX∗(dom(hS))∩prX∗(dom(hT )) 6= /0.

(a) Then it holds:
ic(R(S)−R(T )

)
⊆ ic(coR(S)− coR(T )

)
⊆

ic(prX∗(dom(hS))−prX∗(dom(hT ))
)

= ri
(
prX∗(dom(hS))−prX∗(dom(hT ))

)
.

(b) If
0 ∈ ic(R(S)−R(T )

)
or

0 ∈ ic(coR(S)− coR(T )
)
,

then the parallel sum S||T is maximal monotone operator of Gossez type (D).

Let us mention that the condition 0 ∈ ic
(
R(S)−R(T )

)
which ensures that the parallel

sum S||T is maximal monotone operator of Gossez type (D) was also obtained by Simons
in [39], as well that Theorem 4.3 was also obtained by Boţ and László in [13]. Under
the assumption D(S) ⊆ X , the inclusions in Theorem 4.3 become equalities. Hence, as a
particular instance of Theorem 3.4, concerning on the maximal monotonicity of the parallel
sum S||T, we have the following result.

Theorem 4.4. Let X be a nonzero real Banach spaces, let X∗ be its dual space and let S :
X ⇒ X∗ and T : X ⇒ X∗ be two maximal monotone operators of Gossez type (D), with strong
representative functions hS, respectively hT , such that prX∗(dom(hS))∩prX∗(dom(hT )) 6= /0.
Assume that D(S)⊆ X. Then, the following hold.

1◦ ri(R(S)−R(T )) = ic(R(S)−R(T )) =
ri(coR(S)− coR(T )) = ic(coR(S)− coR(T )) =
ri(prX∗(dom(hS))−prX∗(dom(hT ))) = ic(prX∗(dom(hS))−prX∗(dom(hT ))).

2◦ The following statements are equivalent.
(a) 0 ∈ ri(R(S)−R(T )),
(b) 0 ∈ ic(R(S)−R(T )),
(c) 0 ∈ ri(coR(S)− coR(T )),
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(d) 0 ∈ ic(coR(S)− coR(T )),
(e) 0 ∈ ri(prX∗(dom(hS))−prX∗(dom(hT ))),
(f) 0 ∈ ic(prX∗(dom(hS))−prX∗(dom(hT ))).

3◦ Every condition from 2◦ assures that the parallel sum S||T is a maximal monotone
operator of Gossez type (D).
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