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Abstract. In this paper we discuss prime down-sets of a semilattice. We give a charac-
terization of prime down-sets of a semilattice. We also give some characterizations of 0-
distributive semilattices and a characterization of minimal prime ideals containing an ideal
of a 0-distributive semilattice. Finally, we give a characterization of minimal prime ideals
of a pseudocomplemented semilattice.
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1. Introduction

Semilattices have been studied by many authors. The class of distributive semilattices is an
important subclass of semilattices. We refer the readers to [4,9,10] for distributive semilat-
tices. We also refer the monograph [5] for the background of distributive semilattices. The
class of 0-distributive semilattices is a nice extension of the class of distributive semilattices.
This extension is useful for the study of pseudocomplemented semilattices. For pseudocom-
plemented semilattices we refer the readers to [2, 3, 5, 6]. We also refer the readers to [7, 8]
for 0-distributive semilattices (see [1, 11] for 0-distributive lattices). In this paper we study
0-distributive semilattices. By semilattice we mean meet-semilattice.

A semilattice S with 0 is called 0-distributive if for any a,b,c ∈ S such that a∧b = 0 =
a∧ c implies a∧ d = 0 for some d > b,c. The pentagonal lattice P5 (see Figure 1) as a
semilattice is 0-distributive but the diamond lattice M3 (see Figure 1) as a semilattice is
not 0-distributive. A semilattice S is called directed above if for all x,y ∈ S there exists
z ∈ S such that z > x,y. Every 0-distributive semilattice is directed above.

Minimal prime ideals and maximal filters play an important role in semilattices. In Sec-
tion 2, we introduce a notion of minimal prime down-set and maximal filters in semilattices.
Here we give a characterization of minimal prime down-sets and maximal filters in semilat-
tices.
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Figure 1. 0-distributive and non-0-distributive

Like as a distributive semilattice (or distributive lattice) Stone’s version separation the-
orem is not true for 0-distributive semilattice. For example, if we consider the pentagonal
lattice P5 (see Figure 1) as a 0-distributive semilattice, then F = [c) is a filter and I = (a],
is an ideal such that F ∩ I = /0 but there is no prime filter containing F and disjoint from I.
In Section 3 we discuss Stone’s version separation theorem for 0-distributive semilattices.
In this section we give some characterizations of 0-distributive semilattices.

In Section 4 we discuss the pseudocomplementation in semilattices. We close the paper
with a characterization of a minimal prime ideals of a pseudocomplemented 0-distributive
semilattice.

2. Prime down-sets and maximal filters

Let S be a semilattice. A non-empty subset D of S is called a down-set if a ∈ D,b ∈ S with
b 6 a implies that b∈D. A down-set D of S is called a proper down-set if D 6= S. A prime
down-set is a proper down-set P of S such that a∧b ∈ P implies a ∈ P or b ∈ P. A prime
down-set P is called minimal if there is a prime down-set Q such that Q⊆ P, then P = Q.

Theorem 2.1. Any prime down-set of a semilattice contains a minimal prime down-set.

Proof. Let S be a semilattice with 0. Let P be a prime down-set of S and let P be the set of
all prime down-sets contained in P. Then P is non-empty since P ∈P . Let C be a chain
in P and let

M :=
⋂
{X | X ∈ C }.

We claim that M is a prime down-set. Clearly M is non-empty as 0 ∈ M. Let a ∈ M and
b 6 a. Then a ∈ X for all X ∈ C . Hence b ∈ X for all X ∈ C as X is a down-set. Thus
b ∈ M. Now let x∧ y ∈ M for some x,y ∈ S. Then x∧ y ∈ X for all X ∈ C . Since X is a
prime down-set for all X ∈ C , we have either x ∈ X or y ∈ X for all X ∈ C . This implies
that either x ∈M or y ∈M. Hence M is a prime down-set.

Thus by applying the dual form of Zorn’s Lemma to P , there is a minimal member of
P .

Let S be a semilattice. A non-empty subset F of S is called a filter if
(i) a,b ∈ F implies a∧b ∈ F

(ii) a ∈ S, b ∈ F with a > b implies a ∈ F .
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A filter F of a semilattice S is called proper filter if F 6= S. A maximal filter F of S is a
proper filter which is not contained in any other proper filter, that is, if there is a proper filter
G such that F ⊆ G, then F = G.

Following result is due to [8].

Lemma 2.1. Let M be a proper filter of S with 0. Then M is maximal if and only if for all
a ∈ S\M, there is some b ∈M such that a∧b = 0.

Now we have the following result.

Theorem 2.2. Let F be a non-empty proper subset of a semilattice S. Then F is a filter if
and only if S\F is a prime down-set.

Proof. Let F be a filter of a semilattice S. Let x ∈ S \F and y 6 x. Then x /∈ F and hence
y /∈ F as F is a filter. This implies y ∈ S \F . Thus S \F is a down-set. Since F is a filter
S \F 6= S. Thus S \F is a proper down-set. To prove S \F is a prime down-set, let a,b ∈ S
such that a∧b ∈ S \F . Then a∧b /∈ F and hence either a /∈ F or b /∈ F as F is filter. This
implies either a ∈ S\F or b ∈ S\F . Therefore, S\F is a prime down-set.

Conversely, let S \F be a prime down-set and x,y ∈ F . Then clearly, x,y /∈ S \F and
hence x∧ y /∈ S \F as S \F is a prime down-set. Thus x∧ y ∈ F . Suppose x ∈ F and x 6 y.
Then x /∈ S \F . Since S \F is a down-set, we have y /∈ S \F . Hence y ∈ F . This implies F
is a filter.

Theorem 2.3. Let F be a non-empty subset of a semilattice S. Then F is a maximal filter if
and only if S\F is a minimal prime down-set.

Proof. Let F be a maximal filter and S \F is not a minimal prime down-set. Then there
exists a prime down-set I such that I ⊆ S\F which implies F ⊆ S\ I which contradict to the
maximality of F . Hence S\F is minimal prime down-set.

Conversely, let S \F be a minimal prime down-set and F is not a maximal filter. Thus
there exists a proper filter G such that F ⊆ G which implies S \G⊆ S \F which contradict
the minimality of S\F . Hence F is a maximal filter.

3. Minimal prime ideals

Let S be a semilattice. A down-set I of S is called an ideal if a,b ∈ I implies the existence
of c ∈ I such that a,b 6 c. The set of all ideals of S is denoted by I (S). An ideal I of S is
called a proper ideal if I 6= S. A prime ideal P is a proper ideal of S such that a∧ b ∈ P
implies either a ∈ P or b ∈ P. A prime ideal P is called minimal if there is a prime ideal Q
such that Q⊆ P, then P = Q. A filter F of S is called a prime filter if F 6= S and S \F is a
prime ideal.

We shall often use the following lemma in this paper.

Lemma 3.1. Let S be a directed above semilattice with 0. If S is not 0-distributive, then the
set

F := {x ∈ S | x > a∧ y 6= 0 for all y > b,c},
where a,b,c ∈ S such that a∧b = a∧ c = 0, is a proper filter.

Proof. Since S is not 0-distributive, there are p,q,r ∈ S such that p∧ q = p∧ r = 0 and
p∧ d 6= 0 for all d > q,r. Now we have p > p∧ d. Thus p ∈ F . Hence F is non-empty.
Clearly 0 /∈ F . It is enough to show that F is a filter. Let x ∈ F and z > x. Then x > a∧y for
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all y > b,c and by transitivity z > a∧y for all y > b,c. Hence z∈ F . Again let x,z∈ F . Then
x > a∧ y and z > a∧ y for all y > b,c. Thus x∧ z > a∧ y for all y > b,c. Hence x∧ z ∈ F .
This implies F is a filter.

Now we have the following result.

Theorem 3.1. Every maximal filter of a 0-distributive semilattice is a prime filter.

Proof. Let S be a 0-distributive semilattice. Again let Q be a maximal filter of S. We shall
show that Q is prime. It is sufficient to show that S \Q is a prime ideal. By Theorem 2.3
we have S \Q is a minimal prime down-set. Now let x,y ∈ S \Q. Then by Lemma 2.1 we
have a∧x = 0 = b∧y for some a,b ∈Q. Let c = a∧b. Clearly c∧x = 0 = c∧y and c ∈Q.
Hence by the 0-distributivity of S there exists z ∈ S such that z > x,y and c∧ z = 0. Hence
z ∈ S\Q. Thus S\Q is a prime ideal which implies Q is prime.

Let A be non-empty subset of a semilattice S with 0. Set

A⊥ := {x ∈ S | a∧ x = 0 for all a ∈ A}.
Then A⊥ is called the annihilator of A. If A = S then A⊥ = S⊥ = (0]. For a ∈ S, the
annihilator of {a} is simply denoted by a⊥ and hence a⊥ = {x ∈ S | a∧ x = 0}. We can
easily show that

A⊥ =
⋂
a∈A

a⊥.

Let S be a semilattice with 0. An ideal I of S is called an annihilator ideal if I = A⊥ for
some non-empty subset A of S.

Our aim is to prove a Stone’s version separation theorem for 0-distributive semilattices.
The following result due to [8, Theorem 7].

Theorem 3.2. Let S be a semilattice with 0. Then S is 0-distributive if and only if for any
filter F of S such that F∩x⊥ = /0(x∈ S), there exists a prime filter containing F and disjoint
from x⊥.

Our conjecture is:

Conjecture 3.1. Let S be a directed above semilattice with 0. Then S is 0-distributive if
and only if for any filter F and any annihilator ideal I of S such that F ∩ I = /0, there exists
a prime filter containing F and disjoint from I.

The necessary conditions of a directed above semilattice to be 0-distributive is given
below, but unfortunately, we could not prove or disprove the condition is sufficient or not.

Theorem 3.3. Let S be a directed above semilattice with 0. If for any filter F and any
annihilator ideal I of S such that F ∩ I = /0, there exists a prime filter containing F and
disjoint from I, then S is 0-distributive.

Proof. Suppose the condition holds. If S is not 0-distributive, then there are a,b,c ∈ S such
that a∧b = 0 = a∧c and a∧d 6= 0 for all d > b,c (such d exists as S is directed above). Let

F := {x ∈ S | x > a∧ y for all y > b,c}.
Then by Lemma 3.1, we have F is a proper filter.

Let I be an annihilator ideal such that a∧d /∈ I (such annihilator exists as a∧d /∈ S⊥). We
shall show that I∩F = /0. If x ∈ I∩F , then x > a∧y for all y > b,c which implies a∧d ∈ I,
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which is a contradiction. Hence I ∩F = /0. Thus by the assumption, there is a prime filter
Q such that F ⊆ Q and I ∩Q = /0. This implies a ∈ Q and y ∈ Q for all y > b,c. We shall
show that either b ∈ Q or c ∈ Q. If b,c /∈ Q then b,c ∈ S\Q. Since Q is a prime filter, S\Q
is a prime ideal. So, there is e ∈ S \Q such that e > b,c which is a contradiction. Hence
either b ∈ Q or c ∈ Q. This implies, either a∧ b ∈ Q or a∧ c ∈ Q. Hence 0 ∈ Q, which
contradicts the fact that Q is a prime filter. Therefore, a∧d = 0 for some d > b,c and hence
S is 0-distributive.

Let S be a semilattice. For a ∈ S, the ideal (a] is called the ideal generated by a. It can
be easily seen that (a]⊥ = a⊥ for any a ∈ S. An ideal I of S is called an α-ideal if (i⊥)⊥ ⊆ I
for any i ∈ I.

Now we shall give some characterizations of 0-distributive semilattice. The following
lemma is due to [1].

Lemma 3.2. Every proper filter of a semilattice with 0 is contained in a maximal filter.

We have the following result which is a generalization of [1, Theorem 3.1].

Theorem 3.4. Let S be a semilattice with 0. Then the following statements (i)–(iv) are
equivalent and any one of them implies (v) and (vi).

(i) S is 0-distributive;
(ii) every maximal filter of S is prime;

(iii) every minimal prime down-set of S is a minimal prime ideal;
(iv) every proper filter of S is disjoint from a minimal prime ideal;
(v) for each element a ∈ S such that a 6= 0, there is a minimal prime ideal not contain-

ing a;
(vi) each element a ∈ S such that a 6= 0 is contained in a prime filter.

Proof. (i)⇒(ii). This follows by the Lemma 3.1.
(ii)⇒(iii). Let N be a minimal prime down-set. Then by Lemma 2.3 we have S \N is a

maximal filter. Hence by (ii) S\N is a prime filter. Thus N is a prime ideal.
(iii)⇒(iv). Let F be a proper filter of S. By Lemma 3.2 there is a maximal filter M such

that F ⊆ M. Hence by Lemma 2.3 we have S \M is a minimal prime down-set. Thus by
(iii) S\M is a minimal prime ideal. Clearly, F ∩ (S\M) = /0.

(iv)⇒(i). Suppose S is not 0-distributive. Then there are a,b,c ∈ S such that a∧ b =
a∧ c = 0 and a∧d 6= 0 for all d > b,c. Now set

F = {x ∈ S | x > a∧ y for all y > b,c}.

Then by Lemma 3.1, we have F is a proper filter and hence by (iv) there exists a prime
ideal Q such that F ∩Q = /0. Thus a∧ p /∈ Q for any p > b,c. This implies a, p /∈ Q for any
p > b,c. Now a /∈ Q implies b,c ∈ Q. Then there is m > b,c such that m ∈ Q which is a
contradiction. Therefore, a∧d = 0 for some d > b,c and hence S is 0-distributive.

(iv)⇒(v). Let a∈ S such that a 6= 0. Then [a) is a proper filter. Then by (iv) [a) is disjoint
from a minimal prime ideal N of S. Thus a /∈ N.

(v)⇒(vi). Let a ∈ S such that a 6= 0. Then by (v) there is a minimal prime ideal P such
that a /∈ P which implies a ∈ S\P. By the definition of prime filter we have S\P is a prime
filter.

Now we have following result which is a generalization of [1, Lemma 1.8].
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Lemma 3.3. Let A be a non-empty subset of a semilattice S with 0. Then A⊥ is the inter-
section of all the minimal prime down-set not containing A.

Proof. Let S be a semilattice with 0 and /0 6= A⊆ S. Suppose

X :=
⋂
{P | A * P and P is a minimal prime down-set}

Let x ∈ A⊥. Then x∧ y = 0 for all y ∈ A. This implies there is z /∈ P such that x∧ z = 0 ∈ P.
As P is prime, we have x ∈ P. Hence x ∈ X .

Conversely let, x ∈ X . If x /∈ A⊥. Then x∧ q 6= 0 for some q ∈ A. Let D = [x∧ q).
Then 0 /∈ D. Hence, D 6= S. Then by Lemma 3.2 we have D ⊆M for some maximal filter
M. Hence by Lemma 2.3 we have S \M is a minimal prime down-set. Now x /∈ S \M as
x ∈ D implies x ∈M. Moreover A * S\M as q ∈ A but q ∈M implies q /∈ S\M, which is a
contradiction to x ∈ X . Hence x ∈ A⊥. Thus the lemma is proved.

Theorem 3.5. Let S be a 0-distributive semilattice. If A is a non-empty subset of S and F
is a proper filer intersecting A, there is a minimal prime ideal containing A⊥ and disjoint
from F.

Proof. Let S be a directed above semilattice with 0. Again let A be a non-empty subset of
S and F be a proper filter such that F ∩A 6= /0. Then Lemma 2.2 S \F is a prime down-set
and by Lemma 2.1 N ⊆ S\F for some minimal prime down-set N. Clearly, N∩F = /0. Also
A * S\F and so A * N. By Lemma 3.3 A⊥⊆N. Since S is 0-distributive, by theorem 3.4(iv)
N is a minimal prime ideal.

4. Pseudocomplementation for 0-distributive semilattices

Let S be a semilattice with 0. An element d ∈ S is called the pseudocomplement of x ∈ S,
if x∧d = 0 and y∈ S,x∧y = 0 implies y 6 d. The pseudocomplement of x is denoted by x∗.
A semilattice S is called pseudocomplemented if each element of S has a pseudocomple-
ment. The pseudocomplement of 0 is the largest element 1. Thus a pseudocomplemented
semilattice contains both the smallest element and the largest element.

Theorem 4.1. Every pseudocomplemented semilattice is 0-distributive but the converse is
not true.

Proof. Let S be a pseudocomplemented semilattice. Suppose a,b,c ∈ S with a∧ b = 0 =
a∧ c. By the definition of pseudocomplemented, b 6 a∗, c 6 a∗ and a∧a∗ = 0. Thus S is a
0-distributive semilattice.

To prove the converse is not true, consider the semilattice, M2 shown in the Figure 2,
which is clearly 0-distributive but not pseudocomplemented as a∗ does not exist.

Theorem 4.2. Let S be a pseudocomplemented semilattice and let J be an ideal of S. Then
a prime ideal P containing J is a minimal prime ideal containing J if and only if for each
x ∈ P there is y ∈ S\P such that x∧ y ∈ J.

Proof. Let P be a prime ideal of S containing J such that the given condition holds. We
shall show that P is a minimal prime ideal containing J. Let K be a prime ideal containing
J such that K ⊆ P. Let x ∈ P. Then there is y ∈ S \P such that x∧ y ∈ J. Hence x∧ y ∈ K
as K containing J. Since K is prime and y /∈ K implies x ∈ K. Hence P ⊆ K. Thus K = P.
Therefore, P is a minimal prime ideal containing J.
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Figure 2. A 0-distributive but not pseudocomplemented semilattice

Conversely, let P be a minimal prime ideal containing J. Let x ∈ P. Suppose for all
y ∈ S\P, x∧ y /∈ J. Set D = (S\P)∨ [x). We claim that 0 /∈ D. For if 0 ∈ D, then 0 = q∧ x
for some q ∈ S \P. Thus, x∧ q = 0 ∈ J which is a contradiction. Therefore, 0 /∈ D. Since
(0] = 1⊥ by Theorem 3.2, there is a prime filter Q such that D⊆Q and 0 /∈Q. Let M = S\Q.
Then by the definition of prime filter of a semilattice, M is a prime ideal. We claim that
M∩D = /0. If a ∈M∩D, then a ∈M and hence a /∈Q. Thus a /∈D which is a contradiction.
Hence M ∩D = /0. Therefore, M ∩ (S \P) = /0 and hence M ⊆ P. Also M 6= P, because
x ∈ D implies x ∈ Q and hence x /∈M but x ∈ P. This shows that P is not minimal which is
a contradiction. Hence the given condition holds.

We enclose the paper with the following useful characterization of minimal prime ideal.

Theorem 4.3. Let S be a pseudocomplemented semilattice and let P be a prime ideal of S.
Then the followings are equivalent:

(i) P is minimal.
(ii) x ∈ P implies that x∗ /∈ P.

Proof. (i)⇒(ii). Let P be a minimal prime ideal and let x∗ ∈ P for some x ∈ P. Set D = (S\
P)∨ [x). We claim that 0 /∈D. For if 0 ∈D, then 0 = q∧x for some q ∈ S\P, which implies
q 6 x∗ ∈ P which is a contradiction. Therefore, 0 /∈ D. Since (0] = 1⊥ by Theorem 3.2,
there is a prime filter Q such that D⊆Q and 0 /∈Q. Let M = S\Q. Then by the definition of
prime filter of a semilattice, M is a prime ideal. We claim that M∩D = /0. If a∈M∩D, then
a ∈M and hence a /∈Q. Thus a /∈D which is a contradiction. Hence M∩D = /0. Therefore,
M ∩ (S \P) = /0 and hence M ⊆ P. Also M 6= P, because x ∈ D implies x ∈ Q and hence
x /∈ M but x ∈ P. This shows that P is not minimal which is a contradiction. Hence (ii)
holds.

(ii)⇒(i). Let P be a prime ideal of S such that (ii) holds. We shall show that P is a
minimal prime ideal. Let K be a prime ideal satisfying (ii) such that K ⊆ P. Let x ∈ P. Then
x∧ x∗ = 0 ∈ K. Since K is prime and x∗ /∈ K implies x ∈ K. Hence P ⊆ K. Thus K = P.
Therefore, P is a minimal prime ideal.
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