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Abstract. We give explicit representations of the generalized Drazin inverse of a block ma-
trix having generalized Schur complement generalized Drazin invertible in Banach algebras.
Also we give equivalent conditions under which the group inverse of a block matrix exists
and a formula for its computation. The provided results extend earlier works given in the
literature.
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1. Introduction

Let A be a complex unital Banach algebra with unit 1. For a ∈A , the symbols σ(a) and
ρ(a) will denote the spectrum and the resolvent set of a, respectively. We use A nil and
A qnil , respectively, to denote the sets of all nilpotent and quasinilpotent elements (σ(a) =
{0}) of A .

The concept of the generalized Drazin inverse in Banach algebras was introduced by
Koliha (see [7]). For a ∈A , if there exists an element b ∈A which satisfies

bab = b, ab = ba, a−a2b ∈A qnil ,

then b is called the generalized Drazin inverse of a (or Koliha–Drazin inverse of a), and a
is generalized Drazin invertible. If the generalized Drazin inverse of a exists, it is unique
and denoted by ad . The set of all generalized Drazin invertible elements of A is denoted
by A d . If a ∈ A d , the spectral idempotent aπ of a corresponding to the set {0} is given
by aπ = 1−aad . The Drazin inverse is a special case of the generalized Drazin inverse for
which a− a2b ∈ A nil . Obviously, if a is Drazin invertible, then it is generalized Drazin
invertible. The group inverse is the Drazin inverse for which the condition a− a2b ∈ A nil

is replaced with a = aba. We use a# to denote the group inverse of a, and we use A # to
denote the set of all group invertible elements of A . Some interesting result about Cline’s
formula for the generalized Drazin inverse can be found in [11].
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The next result is proved for matrices [6, Theorem 2.1], for bounded linear operators [4,
Theorem 2.3] and for elements of Banach algebra [1].

Lemma 1.1. [1, Example 4.5] Let a,b ∈A d and let ab = 0. Then

(a+b)d =
∞

∑
n=0

(bd)n+1anaπ +
∞

∑
n=0

bπ bn(ad)n+1.

If a ∈ A qnil , then ad exists and ad = 0. Consequently, by Lemma 1.1, the following
lemma, which the part (i) is proved by Castro González and Koliha [1] and part (ii) for
bounded linear operators in [4, Theorem 2.2], holds.

Lemma 1.2. Let b ∈A d and a ∈A qnil .

(i) [1, Corollary 3.4] If ab = 0, then a+b ∈A d and (a+b)d =
∞

∑
n=0

(bd)n+1an.

(ii) If ba = 0, then a+b ∈A d and (a+b)d =
∞

∑
n=0

an(bd)n+1.

Let p = p2 ∈A be an idempotent. Then we can represent element a ∈A as

a =
[

a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
The following result is well-known for complex matrices (see [13]) and it is proved for

elements of Banach algebra [8].

Lemma 1.3. [8, Lemma 2.2] Let x =
[

a b
c d

]
∈ A relative to the idempotent p ∈ A ,

a ∈ (pA p)d and let w = aad +adbcad be such that aw ∈ (pA p)d . If caπ = 0, aπ b = 0 and
the generalized Schur complement s = d− cadb is equal to 0, then
(1.1)

xd =
[

p 0
cad 0

][
[(aw)d ]2a 0

0 0

][
p adb
0 0

]
=
[

[(aw)d ]2a [(aw)d ]2b
cad [(aw)d ]2a cad [(aw)d ]2b

]
.

The Drazin inverse has applications in a number of areas such as control theory, Markov
chains, singular differential and difference equations, iterative methods in numerical linear
algebra, etc.

Campbell and Meyer [2] proposed the problem of finding an explicit representation for
the Drazin inverse of a complex block matrix in terms of its blocks. This problem has not
been solved yet without any restrictions upon the blocks. Many authors have considered
this problem and presented formulae for the Drazin inverse under specific conditions [3, 5,
10, 15].

Let

(1.2) x =
[

a b
c d

]
∈A

relative to the idempotent p ∈ A , a ∈ (pA p)d and let the generalized Schur complement
s = d−cadb∈ ((1− p)A (1− p))d . The generalized Schur complement s plays an important
role in the representations for xd in many cases [5, 10, 12, 15].
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Several representations for the Drazin inverse of a 2× 2 block matrix under conditions
which involve W = AAD +ADBCAD and the generalized Schur complement equals to 0 are
presented by Hartwig et al. [5]. In [9] Li gave a representation for the Drazin inverse of
block matrices with a group invertible generalized Schur complement S and in terms of
W = AAD +ADBSπCAD, recovering the formula (1.1) for complex matrices [13].

In [14], some representations of the generalized Drazin inverse of a block matrix x in
(1.2) with a group invertible generalized Schur complement s = d− cadb are investigated,
under different conditions. The aim of paper [14] was to further weaken the conditions on
the elements needed to produce explicit formulae for the generalized Drazin inverse of x
compared to those known from the literature.

Under certain conditions, we present some formulae for the generalized Drazin inverse
of a block matrix x in (1.2) in terms of w = aad + adbsπ cad with generalized Schur com-
plement being generalized Drazin invertible in Banach algebras. Such formulae are very
complicated, but the main goal is to establish that x has the generalized Drazin inverse,
and the formulae are the means to produce that result. Necessary and sufficient conditions
for the existence as well as the expressions for the group inverse of triangular matrices are
obtained as a consequence. Recently results [13, 14] are extended to more general settings.

2. Results

Throughout this section when we say that x is defined as in (1.2), we assume that x has a
representation as in (1.2) relative to the idempotent p ∈A , a ∈ (pA p)d and s = d−cadb ∈
((1− p)A (1− p))d .

In the beginning of this section we derive new representation of the generalized Drazin
inverse of a block matrix x in (1.2) with a generalized Drazin invertible generalized Schur
complement in terms of the generalized Drazin inverse of a, s and a(aad + adbcad). This
representation for the generalized Drazin inverse of x is investigated under some rather cum-
bersome and complicated conditions but the theorem itself will have useful consequences
which will include much simpler conditions.

Theorem 2.1. Let x be defined as in (1.2) and let w = aad + adbsπ cad be such that aw ∈
(pA p)d . If

(2.1) aπ b = 0, bsπ caπ = 0, wbssd = 0, ssdcadbssd = 0, ssπ c = 0,

then x ∈A d and

xd =
(

1+
[

0 bsd

0 cadbsd

])
×
{[

0 0
(sd)2cad(aw)π a− sdcad(aw)da sd− sdcad(aw)db+(sd)2cad(aw)π bsπ

]
+

∞

∑
n=1

[
0 0

(sd)n+1can−1aπ (sd)2cad [(aw)d ]nbsn− sdcad [(aw)d ]n+1bsn

]
+

∞

∑
n=2

([
0 0

(sd)n+1cad(aw)n−1(aw)π a (sd)n+1cad(aw)n−1(aw)π bsπ

]
+

∞

∑
k=1

[
0 0
0 (sd)n+1cad(aw)n−1[(aw)d ]kbsk

]
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+
n−1

∑
k=1

[
0 0
0 (sd)n+1cad(aw)k−1bsn−ksπ

])}

+
[

p −bsd

0 (1− p)−dsd

](
r +

∞

∑
n=1

[
0 [(aw)d ]n+2bsn

0 cad [(aw)d ]n+2bsn

])
,

(2.2)

where

r =
[

[(aw)d ]2a [(aw)d ]2bsπ

cad [(aw)d ]2a cad [(aw)d ]2bsπ

]
.

Proof. Since aad +aπ = p and ssd + sπ = 1− p, we can write

x =
[

a2ad bsπ

caad dsπ

]
+
[

aaπ bssd

caπ dssd

]
:= y+ z.

The equalities adaπ = 0, sπ sd = 0 and (2.1) imply

yz =
[

bsπ caπ awbssd

cadbsπ caπ + ssπ caπ cwbssd + ssπ cadbssd

]
= 0.

In order to verify that y ∈A d , observe that

y =
[

a2ad bsπ

caad cadbsπ

]
+
[

0 0
0 ssπ

]
:= y1 + y2.

If Ay1 ≡ a2ad , By1 ≡ bsπ , Cy1 ≡ caad and Dy1 ≡ cadbsπ , by (a2ad)# = ad , Ay1 ∈ (pA p)#,
Sy1 ≡Dy1−Cy1A#

y1
By1 = 0 and Wy1 = Ay1A#

y1
+A#

y1
By1Cy1A#

y1
= w. From Aπ

y1
By1 = aπ bsπ =

0, Cy1Aπ
y1

= 0 and Lemma 1.3, we have that y1 ∈A d and

yd
1 =

[
p 0

cad 0

][
[(aw)d ]2a 0

0 0

][
p adbsπ

0 0

]
= r.

Recall that, for u =
[

m t
0 n

]
,

λ ∈ ρpA p(m)∩ρ(1−p)A (1−p)(n) ⇒ λ ∈ ρ(u),

i.e.
σ(u)⊆ σpA p(m)∪σ(1−p)A (1−p)(n).

Thus, ssπ ∈ ((1− p)A (1− p))qnil gives y2 ∈A qnil . Using Lemma 1.2(i), by y2y1 = 0, we
deduce that y ∈A d and

yd =
∞

∑
n=0

(yd
1)

n+1yn
2 =

∞

∑
n=0

rn+1
[

0 0
0 ssπ

]n

.

To prove that z ∈A d , consider

z =
[

aaπ 0
caπ 0

]
+
[

0 0
0 s2sd

]
+
[

0 bssd

0 cadbssd

]
:= z1 + z2 + z3.

Because aaπ ∈ (pA p)qnil and (s2sd)# = sd , then z1 ∈A qnil , z2 ∈A # and z#
2 =

[
0 0
0 sd

]
.

From z1z2 = 0 and Lemma 1.2(i), z1 + z2 ∈ A d and (z1 + z2)d =
∞

∑
n=0

(z#
2)

n+1zn
1. Also, z3 ∈
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A nil , by z2
3 = 0. Now, by (z1 + z2)z3 = 0 and Lemma 1.2(ii), we conclude that z ∈A d and

zd = (z1 + z2)d + z3[(z1 + z2)d ]2.
Applying Lemma 1.1, we obtain that x ∈A d and

xd =
∞

∑
n=0

(zd)n+1ynyπ +
∞

∑
n=0

zπ zn(yd)n+1

=
∞

∑
n=0

(1+ z3(z1 + z2)d)[(z1 + z2)d ]n+1ynyπ +
∞

∑
n=0

zπ zn(yd)n+1 := X1 +X2.(2.3)

From z1y = 0, we get (z1 + z2)dy = z#
2y and

∞

∑
n=0

[(z1 + z2)d ]n+1yn = (z1 + z2)d +
∞

∑
n=1

[(z1 + z2)d ]nz#
2yn

= (z1 + z2)d +
∞

∑
n=1

(
z#

2 +
∞

∑
k=1

(z#
2)

k+1zk
1

)n

z#
2yn

= (z1 + z2)d +
∞

∑
n=1

(
(z#

2)
n +(z#

2)
n−1

∞

∑
k=1

(z#
2)

k+1zk
1

)
z#

2yn

=
∞

∑
n=0

(z#
2)

n+1zn
1 +

∞

∑
n=1

(z#
2)

n+1yn

implying

X1 =

(
1+ z3

∞

∑
k=0

(z#
2)

k+1zk
1

)(
∞

∑
n=0

(z#
2)

n+1zn
1 +

∞

∑
n=1

(z#
2)

n+1yn

)
yπ

=

(
1+
[

0 b
0 cadb

][
z#

2 +
∞

∑
k=1

(z#
2)

k+1zk
1

])
z#

2

(
∞

∑
n=0

(z#
2)

nzn
1 +

∞

∑
n=1

(z#
2)

nyn

)
yπ

=
(

1+
[

0 bsd

0 cadbsd

])(
z#

2yπ +
∞

∑
n=1

(z#
2)

n+1zn
1yπ +

∞

∑
n=1

(z#
2)

n+1ynyπ

)

=
(

1+
[

0 bsd

0 cadbsd

])(
z#

2yπ +
∞

∑
n=1

(z#
2)

n+1zn
1 +

∞

∑
n=1

(z#
2)

n+1ynyπ

)
.(2.4)

It can be check that aad(aw) = aw = (aw)aad ,

yπ = yπ
1 −

∞

∑
n=1

(yd
1)

nyn
2, yyπ = y1yπ

1 − y1

∞

∑
n=1

(yd
1)

nyn
2 + y2

and

ynyπ = yn
1yπ

1 − yn
1

∞

∑
k=1

(yd
1)

kyk
2 +

n−1

∑
k=1

yk
1yn−k

2 + yn
2 (n = 2,3, . . .).

Further, note that

(yd
1)

nyn
2 =

[
0 [(aw)d ]n+1bsnsπ

0 cad [(aw)d ]n+1bsnsπ

]
(n = 1,2, . . .),

yk
1yn−k

2 =
[

0 (aw)k−1bsn−ksπ

0 cad(aw)k−1bsn−ksπ

]
(n = 1,2, . . . ; k = 1, . . . ,n−1).
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Also, we can show that

yπ
1 = 1− y1yd

1 =
[

p− (aw)da −(aw)dbsπ

−cad(aw)da (1− p)− cad(aw)dbsπ

]
and

yn
1yπ

1 =
[

aad(aw)n−1(aw)π a (aw)n−1(aw)π bsπ

cad(aw)n−1(aw)π a cad(aw)n−1(aw)π bsπ

]
(n = 1,2, . . .).

Therefore, by these equalities, (2.4) and, for n = 1,2, . . . and k = 1,2, . . . ,

(z#)n+1yk
1 =

[
0 0

(sd)n+1cad(aw)k−1a (sd)n+1cad(aw)k−1bsπ

]
,

we obtain

X1 =
(

1+
[

0 bsd

0 cadbsd

]){[
0 0

−sdcad(aw)da sd− sdcad(aw)db

]
−

∞

∑
n=1

[
0 0
0 sdcad [(aw)d ]n+1bsn

]
+

∞

∑
n=1

[
0 0

(sd)n+1can−1aπ 0

]
+
[

0 0
(sd)2cad(aw)π a (sd)2cad(aw)π bsπ

]
+

∞

∑
n=1

[
0 0
0 (sd)2cad [(aw)d ]nbsn

]
+

∞

∑
n=2

([
0 0

(sd)n+1cad(aw)n−1(aw)π a (sd)n+1cad(aw)n−1(aw)π bsπ

]
+

∞

∑
k=1

[
0 0
0 (sd)n+1cad(aw)n−1[(aw)d ]kbsk

]

+
n−1

∑
k=1

[
0 0
0 (sd)n+1cad(aw)k−1bsn−ksπ

])}
(2.5)

Observe that, by

zzdy = [(z1 + z2)(z1 + z2)d + z3(z1 + z2)d ]y = (z1 + z2)z#
2y+ z3z#

2y

= (z2 + z3)z#
2y,

we have zzdyd = (z2 + z3)z#
2yd , zπ yd =

[
p −bsd

0 (1− p)−dsd

]
yd and zzπ yd = z1y(yd)2 = 0.

Hence,

X2 = zπ yd +
∞

∑
n=1

znzπ(yd)n+1 = zπ yd

=
[

p −bsd

0 (1− p)−dsd

](
r +

∞

∑
n=1

[
0 [(aw)d ]n+2bsn

0 cad [(aw)d ]n+2bsn

])
.(2.6)

Thus, from (2.3), (2.5) and (2.6), we get (2.2).

Similarly as Theorem 2.1, we get the following formula for the generalized Drazin in-
verse of block matrix. For the sake of clarity of presentation, the proof is given.
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Theorem 2.2. Let x be defined as in (1.2) and let w = aad + adbsπ cad be such that aw ∈
(pA p)d . If

caπ = 0, aπ bsπ c = 0, ssdcw = 0, ssdcadbssd = 0, bsπ s = 0,

then x ∈A d and

xd =

(
t +

∞

∑
n=1

[
0 0

sncad [(aw)d ]n+2a sncad [(aw)d ]n+2b

])[
p 0
−sdc (1− p)− sdd

]

+

{[
0 aad(aw)π b(sd)2− (aw)dbsd

0 sd− sπ cad(aw)dbsd + sπ cad(aw)π b(sd)2

]
+

∞

∑
n=1

[
0 an−1aπ b(sd)n+1

0 0

]
+

∞

∑
n=0

[
0 0
0 sn+1cad [(aw)d ]n+2bsd− sn+1sπ cad [(aw)d ]n+1b(sd)2

]
+

∞

∑
n=2

([
0 (aw)n−1(aw)π b(sd)n+1

0 sπ cad(aw)n−1(aw)π b(sd)n+1

]
+

∞

∑
k=0

[
0 0
0 sk+1cad [(aw)d ]k+1(aw)n−1b(sd)n+1

]

+
n−1

∑
k=1

[
0 0
0 sn−ksπ cad(aw)k−1b(sd)n+1

])}(
1+
[

0 0
sdc sdcadb

])
,

(2.7)

where

t =
[

[(aw)d ]2a [(aw)d ]2b
sπ cad [(aw)d ]2a sπ cad [(aw)d ]2b

]
.

Proof. Notice that

x =
[

a2ad aadb
sπ c sπ d

]
+
[

aaπ aπ b
ssdc ssdd

]
:= y+ z

and zy = 0.
To show that y ∈A d , let

y =
[

a2ad aadb
sπ c sπ cadb

]
+
[

0 0
0 sπ s

]
:= y1 + y2.

Then, by Lemma 1.3, y1 ∈A d and yd
1 = t. Since y2 ∈A qnil and y1y2 = 0, by Lemma 1.2(ii),

y ∈A d and yd =
∞

∑
n=0

yn
2(y

d
1)

n+1.

Now, we will check that z ∈A d . If

z =
[

aaπ aπ b
0 0

]
+
[

0 0
0 s2sd

]
+
[

0 0
ssdc ssdcadb

]
:= z1 + z2 + z3,

we have z1 ∈A qnil , z2 ∈A #, z2
3 = 0, z2z1 = 0 and z3(z1 + z2) = 0. Applying Lemma 1.2,

first z1 + z2 ∈ A d and (z1 + z2)d =
∞

∑
n=0

zn
1(z

#
2)

n+1; and then z ∈ A d and zd = (z1 + z2)d +

[(z1 + z2)d ]2z3.
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Using Lemma 1.1, we deduce that x ∈A d and

(2.8) xd =
∞

∑
n=0

(yd)n+1znzπ +
∞

∑
n=0

yπ yn(zd)n+1 := X1 +X2.

By yz1 = 0, y(z1 + z2)d = yz#
2, ydzπ = yd

[
p 0
−sdc (1− p)− sdd

]
and ydzπ z = 0. So,

X1 = ydzπ +
∞

∑
n=1

(yd)n+1zπ zn = ydzπ . Since, for n = 1,2, . . . and k = 1,2, . . . ,

yn
2tk =

[
0 0

snsπ cad [(aw)d ]k+1a snsπ cad [(aw)d ]k+1b

]
,

we get

X1 =

(
t +

∞

∑
n=1

[
0 0

sncad [(aw)d ]n+2a sncad [(aw)d ]n+2b

])

×
[

p 0
−sdc (1− p)− sdd

]
.(2.9)

Furthermore,

X2 =
∞

∑
n=0

yπ yn(zd)n+1 =
∞

∑
n=0

yπ yn[(z1 + z2)d ]n+1(1+(z1 + z2)dz3)

=

(
yπ(z1 + z2)d +

∞

∑
n=1

yπ ynz#
2[(z1 + z2)d ]n

)
(1+(z1 + z2)dz3)

=

[
yπ

∞

∑
n=0

zn
1(z

#
2)

n+1 +
∞

∑
n=1

yπ ynz#
2

(
(z#

2)
n +

∞

∑
k=1

zk
1(z

#
2)

k+n

)]

×

(
1+ z#

2z3 +
∞

∑
n=1

zn
1(z

#
2)

n+1z3

)

=

[
yπ

∞

∑
n=0

zn
1(z

#
2)

n+1 +
∞

∑
n=1

yπ yn(z#
2)

n+1

]
(1+ z#

2z3)

=

[
yπ z#

2 +
∞

∑
n=1

zn
1(z

#
2)

n+1 +
∞

∑
n=1

yπ yn(z#
2)

n+1

]
(1+ z#

2z3).

We can get

yπ = yπ
1 −

∞

∑
n=0

yn+1
2 (yd

1)
n+1, yπ y = yπ

1 y1−
∞

∑
n=0

yn+1
2 (yd

1)
n+1y1 + y2,

yπ yn = yπ
1 yn

1−
∞

∑
n=0

yn+1
2 (yd

1)
n+1yn

1 +
n−1

∑
k=1

yn−k
2 yk

1 + yn
2, (n = 2,3, . . .),

and also, for n = 1,2, . . . and k = 1, . . . ,n−1,

yπ
1 =

[
p− (aw)da −(aw)db
−sπ cad(aw)da (1− p)− sπ cad(aw)db

]
,
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yn
1yπ

1 =
[

aad(aw)n−1(aw)π a aad(aw)n−1(aw)π b
sπ cad(aw)n−1(aw)π a sπ cad(aw)n−1(aw)π b

]
,

yn−k
2 yk

1 =
[

0 0
sn−ksπ cad(aw)k−1a sn−ksπ cad(aw)k−1b

]
,

yn
1(z

#
2)

n+1 =
[

0 aad(aw)n−1b(sd)n+1

0 sπ cad(aw)n−1b(sd)n+1

]
.

Now we obtain

X2 =

{[
0 −(aw)dbsd

0 sd− sπ cad(aw)dbsd

]
+

∞

∑
n=0

[
0 0
0 sn+1cad [(aw)d ]n+2bsd

]
+

∞

∑
n=1

[
0 an−1aπ b(sd)n+1

0 0

]
+
[

0 aad(aw)π b(sd)2

0 sπ cad(aw)π b(sd)2

]
−

∞

∑
n=0

[
0 0
0 sn+1sπ cad [(aw)d ]n+1b(sd)2

]
+

∞

∑
n=2

([
0 (aw)n−1(aw)π b(sd)n+1

0 sπ cad(aw)n−1(aw)π b(sd)n+1

]
+

∞

∑
k=0

[
0 0
0 sk+1cad [(aw)d ]k+1(aw)n−1b(sd)n+1

]

+
n−1

∑
k=1

[
0 0
0 sn−ksπ cad(aw)k−1b(sd)n+1

])}(
1+
[

0 0
sdc sdcadb

])(2.10)

The equalities (2.8), (2.9) and (2.10) imply (2.7).
If we assume that the generalized Drazin-Schur complement s is group invertible in The-

orem 2.1 and Theorem 2.2, we obtain [14, Theorem 2.1 and Theorem 2.2].
Using Theorem 2.1 and Theorem 2.2, we can get the next result which recovers Lemma

1.3 and the analogy result for matrices [13].

Corollary 2.1. Let x be defined as in (1.2) and let w = aad + adbcad be such that aw ∈
(pA p)d . If s = 0, and if

(aπ b = 0 and bcaπ = 0) or (caπ = 0 and aπ bc = 0) or (aπ b = 0 and caπ = 0),

then x ∈A d and xd is defined as in (1.1).

In the following theorems, we study the group inverse of a triangular block matrix. First,
if b = 0 in Theorem 2.1, we obtain the equivalent conditions for the existence and represen-
tation of the group inverse of x.

Theorem 2.3. Let x =
[

a 0
c s

]
∈A relative to the idempotent p ∈A , a ∈ (pA p)d and

s ∈ ((1− p)A (1− p))d . Assume that ssπ c = 0. Then

x ∈A # i f and only i f a ∈ (pA p)#, s ∈ ((1− p)A (1− p))# and sπ caπ = 0.

Furthermore, if a ∈ (pA p)#, s ∈ ((1− p)A (1− p))# and sπ caπ = 0, then

x# =
[

a# 0
sπ c(a#)2− s#ca# +(s#)2caπ s#

]
.
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Proof. Using Theorem 2.1 for b = 0, by s = d, w = aad , (aw)# = ad and ad(aw)π = adaπ =
0, we have x ∈A d and

xd =
[

ad 0
sπ c(ad)2− sdcad sd

]
+

∞

∑
n=1

[
0 0

(sd)n+1can−1aπ 0

]
.

Now we get

x2xd =

 a2ad 0

caad +
∞

∑
n=1

s2(sd)n+1can−1aπ s2sd

 ,

which gives that x2xd = x is equivalent to a2ad = a, s2sd = s and
∞

∑
n=1

s(sd)ncan−1aπ = caπ .

Therefore, x∈A # if and only if a∈ (pA p)#, s∈ ((1− p)A (1− p))# and ssdcaπ = caπ .

By Theorem 2.3, if x is defined as in Theorem 2.3, we can get:

(1) if sπ c = 0, then

x ∈A # if and only if a ∈ (pA p)# and s ∈ ((1− p)A (1− p))#;

(2) if s ∈ ((1− p)A (1− p))−1, then

x ∈A # if and only if a ∈ (pA p)#.

In addition, if s ∈ ((1− p)A (1− p))−1 and a ∈ (pA p)#,

x# =
[

a# 0
−s−1ca# + s−2caπ s−1

]
.

For c = 0 in Theorem 2.2, we show the next result similarly as Theorem 2.3.

Theorem 2.4. Let x =
[

a b
0 s

]
∈A relative to the idempotent p ∈A , a ∈ (pA p)d and

s ∈ ((1− p)A (1− p))d . Assume that bsπ s = 0. Then

x ∈A # i f and only i f a ∈ (pA p)#, s ∈ ((1− p)A (1− p))# and aπ bsπ = 0.

Furthermore, if a ∈ (pA p)#, s ∈ ((1− p)A (1− p))# and aπ bsπ = 0, then

x# =
[

a# (a#)2bsπ −a#bs# +aπ b(s#)2

0 s#

]
.

Notice that, if x is defined as in Theorem 2.4, we have:

(1) if bsπ = 0, then

x ∈A # if and only if a ∈ (pA p)# and s ∈ ((1− p)A (1− p))#;

(2) if s ∈ ((1− p)A (1− p))−1, then

x ∈A # if and only if a ∈ (pA p)#.

In addition, if s ∈ ((1− p)A (1− p))−1 and a ∈ (pA p)#,

x# =
[

a# −a#bs−1 +aπ bs−2

0 s−1

]
.
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Expressions for the group inverses in Theorem 2.3 and Theorem 2.4 are the special cases
of [1, Theorem 2.3] for Banach algebra elements and [4, Theorem 2.2] for bounded lin-
ear operators. Also these expressions are extensions of formulae in [14, Theorem 2.3 and
Theorem 2.4].

In the end of this section, we state an example to illustrate our results.

Example 2.1. In Banach algebra A , if x =
[

p b
0 0

]
∈A (or x =

[
p 0
c 0

]
∈A ) relative

to the idempotent p ∈ A , then ad = a = p, aπ = 0, s = 0 = sd , sπ = 1− p and w = p =

aw = (aw)d . Using Theorem 2.1 or Theorem 2.2, we get that x ∈A d and xd =
[

p b
0 0

]
or xd =

[
p 0
c 0

]
.
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[12] M. F. Martı́nez-Serrano and N. Castro-González, On the Drazin inverse of block matrices and generalized

Schur complement, Appl. Math. Comput. 215 (2009), no. 7, 2733–2740.
[13] J. M. Miao, Some results on the Drazin inverses of partitioned matrices, Shanghai Shifan Daxue Xuebao

Ziran Kexue Ban 18 (1989), no. 2, 25–31.
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