Several Inequalities for the Volume of the Unit Ball in \mathbb{R}^n

LI YIN

Department of Mathematics, Binzhou University, Binzhou City, Shandong Province, 256603, P. R. China
yinli_79@163.com

Abstract. In the paper, the author establishes several new inequalities involving the volume of the unit ball in \mathbb{R}^n.

2010 Mathematics Subject Classification: 33B15, 41A10, 42A16

Keywords and phrases: Volume of the unit n-dimensional ball, gamma function, monotonicity, inequalities.

1. Introduction

In the recent past, inequalities about the Euler gamma function $\Gamma(x)$ have attracted the attention of many authors. In particular, several researchers established interesting properties of the volume of the unit ball in \mathbb{R}^n,

$$\Omega_n = \frac{\pi^{n/2}}{\Gamma(n/2 + 1)}, n = 1, 2, \ldots.$$ \hspace{1cm} (1.1)

In the paper [5], it was proved that the sequence $\{\Omega_n\}_{n \geq 1}$ attains its maximum at $n = 5$. In the paper [4], the sequence $\{(\Omega_n)^{1/n}\}_{n \geq 1}$ is proved to be monotonically decreased to zero. Other results have been established by Anderson and Qiu [3], and Klain and Rota [9] who proved that the sequence $\{(\Omega_n)^{1/\ln n}\}_{n \geq 1}$ decreases to $e^{-1/2}$, and the sequence $\{n\Omega_n/\Omega_{n-1}\}_{n \geq 1}$ is increasing, respectively. Motivated by the following inequalities

$$\Omega_{n+1}^{n/(n+1)} < \Omega_n, n = 1, 2, \ldots$$ \hspace{1cm} (1.2)

and

$$1 < \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} < 1 + \frac{1}{n}$$ \hspace{1cm} (1.3)

stated in [4] and [9], Alzer proved in [1] that for all $n \geq 1$,

$$a(\Omega_{n+1})^{n/(n+1)} \leq \Omega_n \leq b(\Omega_{n+1})^{n/(n+1)}$$ \hspace{1cm} (1.4)

Communicated by Ali Hassan Mohamed Murid.
Received: May 4, 2012; Revised: September 12, 2012.
with the best possible constants \(a = 2/\sqrt{\pi} = 1.1283 \cdots \) and \(b = \sqrt{e} = 1.6487 \cdots \). An improvement of the double inequality (1.4) was given in [11]: for \(n \geq 4 \),

\[
(1.5) \quad \frac{k}{\sqrt{2\pi}} \leq \frac{\Omega_n}{(\Omega_{n+1})^{n/(n+1)}} \leq \frac{\sqrt{e}}{\sqrt{2\pi}}
\]

where \(k = (64 \cdot 720^{11/12} \cdot 2^{1/22})/(10395\pi^{5/11}) = 1.5714 \cdots \). Equality in the left-hand side of (1.5) occurs if and only if \(n = 11 \).

The following class of inequalities

\[
(1.6) \quad \sqrt{\frac{n+a}{2\pi}} \leq \frac{\Omega_{n-1}}{\Omega_n} \leq \sqrt{\frac{n+b}{2\pi}}
\]

was studied by Alzer [1] and Qiu [14] where \(a, b \) are real parameters. Later, the inequality (1.6) was recovered in [6]. Furthermore, Mortici established the following new sharp bounds

\[
(1.7) \quad \sqrt{\frac{n+\frac{1}{2}}{2\pi}} \leq \frac{\Omega_{n-1}}{\Omega_n} \leq \sqrt{\frac{n+\frac{1}{2}}{2\pi} + \frac{1}{16n\pi}}
\]

which improves the previous results of Alzer et al. in [11]. Therefore, Alzer proved in [1] that for \(n \geq 1 \),

\[
(1.8) \quad \left(1 + \frac{1}{n}\right)^{\alpha} \leq \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} \leq \left(1 + \frac{1}{n}\right)^{\beta}
\]

in which the best possible constants \(\alpha = 2 - \log_2 \pi \) and \(\beta = 1/2 \). Later, in [11], Mortici showed that for every \(n \geq 4 \),

\[
(1.9) \quad \left(1 + \frac{1}{n}\right)^{1/2 - 1/4n} \leq \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} \leq \left(1 + \frac{1}{n}\right)^{1/2}.
\]

Related references see [7, 8, 13, 15].

The aim of this paper is to establish some new inequalities involving the volume of the unit ball in \(\mathbb{R}^n \).

2. Lemmas

In order to prove the main results, following lemmas are useful.

Lemma 2.1. [10, p. 390] Let \(x_i \in \mathbb{R}^+ \), \(i = 1, 2, \ldots, n \) and \(\sum_{i=1}^n x_i = nx \), then

\[
(2.1) \quad \prod_{i=1}^n \Gamma(x_i) \geq (\Gamma(x))^n.
\]

Lemma 2.2. [2, Legendre] For every \(z \neq -1, -2, \ldots \), then

\[
(2.2) \quad 2^{2z-1}\Gamma(z)\Gamma(z+1/2) = \pi^{1/2}\Gamma(2z).
\]

Lemma 2.3. [4, p. 131] For every integer \(n \geq 1 \), the sequence \(\{ (\Omega_n)^{1/n} \}_{n \geq 1} \) is monotonically decreasing to zero.

Lemma 2.4. [12, p. 612] For every \(x \in [1, \infty) \), we have

\[
(2.3) \quad \sqrt{\pi} \left(\frac{x}{e}\right)^x \sqrt{2x+\alpha} < \Gamma(x+1) < \sqrt{\pi} \left(\frac{x}{e}\right)^x \sqrt{2x+\beta}
\]

where \(\alpha = 1/3 \) and \(\beta = \sqrt{391/30} - 2 = 0.3533 \cdots \).
3. Main results

In what follows, we always suppose \(\beta = \sqrt{391/30} - 2 = 0.3533 \ldots \).

Theorem 3.1. For all natural number \(n \), we have

\[
(3.1) \quad \Omega_n \leq \left(\Omega_1 \Omega_2 \cdots \Omega_{n-1} \right)^{1/(n-1)}.
\]

If \(n \) is odd integer, then

\[
(3.2) \quad (\Omega_1 \Omega_2 \cdots \Omega_n)^{1/n} \leq \Omega_{(n+1)/2}.
\]

Proof. Using Lemma 2.3, we easily prove inequality (3.1). Next, we only prove inequality (3.2). By virtue of Lemma 2.1, we get

\[
(3.3) \quad (\Omega_1 \Omega_2 \cdots \Omega_n)^{1/n} = \left(\frac{\pi^{1/2} \pi^{2/2} \cdots \pi^{n/2}}{(\Gamma(1/2 + 1) \Gamma(2/2 + 1) \cdots \Gamma(n/2 + 1))} \frac{\pi^{(n+1)/4}}{\pi^{(n+1)/4}} \right)^{1/n} \leq \frac{\Gamma((n+1)/4 + 1)}{\Gamma((n+1)/4)} = \Omega_{(n+1)/2}.
\]

Theorem 3.2. For every integer \(n > 1 \), we have

\[
(3.4) \quad \frac{(n+1) (n+1/2)}{(n+\beta)^2} < \frac{\Omega^2_n}{\Omega_{n-1} \Omega_{n+1}} < \frac{(n+1) (n+\beta)}{(n+1/2)^2}.
\]

Proof. Easy computation and simplification yield

\[
(3.5) \quad 2^n \Gamma((n+1)/2) \Gamma((n+2)/2) = \pi^{1/2} n!.
\]

Setting \(z = (n+1)/2 \) and \(z = (n+3)/2 \) in (2.2) of Lemma 2.2, we obtain

\[
2^n \Gamma((n+1)/2) \Gamma((n+2)/2) = \pi^{1/2} \Gamma(n+3) = \pi^{1/2} (n+2)!.
\]

Combining (3.4), (3.5) and (3.6) leads to

\[
(3.7) \quad \frac{\Omega^2_n}{\Omega_{n-1} \Omega_{n+1}} = \frac{\sqrt{\pi} (n+2)! \sqrt{\pi n!}}{2^{n} (n+4)/2 (\Gamma((n+2)/2))^3} = \frac{\pi(n+1)! n!}{2^{n+2} (n+2)! (\Gamma(n/2 + 1))^4}
\]

where we apply \(\Gamma((n+4)/2) = (n+2)/2 \Gamma((n+2)/2) \).

Using Lemma 2.4, we have

\[
(3.8) \quad \sqrt{\pi} \left(\frac{n}{2e} \right)^{n/2} \sqrt{n + 1/3} < \Gamma(n/2 + 1) < \sqrt{\pi} \left(\frac{n}{2e} \right)^{n/2} \sqrt{n + \beta}
\]

and

\[
(3.9) \quad \sqrt{\pi} \left(\frac{n}{e} \right)^n \sqrt{2n + 1/3} < n! < \sqrt{\pi} \left(\frac{n}{e} \right)^n \sqrt{2n + \beta}.
\]
Applying (3.8) and (3.9), we have

\[
\frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} > \frac{\pi \left(\sqrt{\frac{n}{e}} \right)^n \sqrt{2n + \frac{1}{3}}}{2^{2n+1} \left(\sqrt{\pi \left(\frac{n}{2e} \right)^{n/2} \sqrt{n+\beta}} \right)^4} = \frac{(n+1) \left(n + \frac{1}{6} \right)}{(n+\beta)^2}
\]

and

\[
\frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} < \frac{\pi \left(\sqrt{\frac{n}{e}} \right)^n \sqrt{2n + \beta}}{2^{2n+1} \left(\sqrt{\pi \left(\frac{n}{2e} \right)^{n/2} \sqrt{n+1/3}} \right)^4} = \frac{(n+1) \left(n + \frac{\beta}{2} \right)}{(n + \frac{1}{3})^2}.
\]

The proof of Theorem 3.2 is complete.

Noting simple inequalities

\[
\frac{(n+1) \left(n + \frac{1}{6} \right)}{(n+\beta)^2} > \frac{n+\frac{1}{6}}{n+\beta}
\]

and

\[
\frac{(n+1) \left(n + \frac{\beta}{2} \right)}{(n + \frac{1}{3})^2} < \frac{n+1}{n + \frac{1}{3}},
\]

we get the Corollary 3.1.

Corollary 3.1. For every integer \(n \geq 1 \), it holds

\[
\frac{n + \frac{1}{6}}{n + \beta} < \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} < \frac{n+1}{n + \frac{1}{3}}.
\]

Theorem 3.3. For every integer \(n \geq 1 \), it holds

\[
\frac{\sqrt{\pi}}{\sqrt{2\pi}} \frac{\left(\sqrt{\frac{n+\beta}{2}} \right)^{(2n+1)/(n+1)}}{\sqrt{(n+1) \left(n + \frac{\beta}{2} \right)}} < \frac{\Omega_n}{(\Omega_n)^{n/(n+1)}} \frac{\Gamma((n+1)/2)\Gamma((n+3)/2)}{\Gamma((n+1)/2)} = \pi^{1/2} \Gamma(n+2) = \pi^{1/2} (n+1)!.}
\]

Proof. Setting \(z = (n+2)/2 \) in (2.2) of Lemma 2.2, we get

\[
2^{n+1} \Gamma((n+2)/2)\Gamma((n+3)/2) = \pi^{1/2} \Gamma(n+2) = \pi^{1/2} (n+1)!.}
\]

Easy computation and simplification yield

\[
\frac{\Omega_n}{(\Omega_n)^{n/(n+1)}} = \frac{\pi^{n/2}}{\Gamma(n/2+1)} \frac{\Gamma((n+1)/2+1)}{(\pi^{(n+1)/2})^{n/(n+1)}}
\]

\[
= \frac{2^{n+1} (\Gamma((n+1)/2+1))^{n/(n+1)}}{\sqrt{\pi} (n+1)!}.
\]
Similarly to proof of Theorem 3.2, we have

\[
\frac{\Omega_n}{(\Omega_{n+1})^{n/(n+1)}} > \frac{2^{n+1} \left(\sqrt{\pi} \left(\frac{n+1}{2e} \right)^{(n+1)/2} \sqrt{n+1 + \frac{1}{2}} \right)^{(2n+1)/(n+1)}}{\sqrt{\pi} \left(\frac{n+1}{e} \right)^{n+1} \sqrt{2n+2 + \frac{1}{3}}}
\]

\[
= \frac{\sqrt{e}}{2^{n/2} \pi} \frac{\left(\sqrt{n+1 + \frac{1}{3}} \right)^{(2n+1)/(n+1)}}{(n+1) \left(n + 1 + \frac{1}{2} \right)}
\]

and

\[
\frac{\Omega_n}{(\Omega_{n+1})^{n/(n+1)}} < \frac{2^{n+1} \left(\sqrt{\pi} \left(\frac{n+1}{2e} \right)^{(n+1)/2} \sqrt{n+1 + \beta} \right)^{(2n+1)/(n+1)}}{\sqrt{\pi} \left(\frac{n+1}{e} \right)^{n+1} \sqrt{2n+2 + \frac{1}{3}}}
\]

\[
= \frac{\sqrt{e}}{2^{n/2} \pi} \frac{\left(\sqrt{n+1 + \beta} \right)^{(2n+1)/(n+1)}}{(n+1) \left(n + 1 + \frac{7}{6} \right)}
\]

The proof of Theorem 3.3 is complete.

Noting simple inequalities

\[
\frac{\sqrt{n+1 + \beta}}{(n+1) \left(n + \frac{7}{6} \right)} \leq \frac{(n+1 + \beta)^{(2n+2)/(2n+1)}}{(n+1) \left(n + 1 \right)} = \frac{n+1 + \beta}{n+1}
\]

and

\[
\frac{\sqrt{n+1 + \beta}}{(n+1) \left(n + 1 + \frac{1}{2} \right)} \geq \frac{\sqrt{n+1 + \beta}}{(n+1) \left(n + 1 + \frac{7}{6} \right)} \geq \frac{1}{2^{n/2} \sqrt{n+1 + \frac{1}{2}}}
\]

we easily get the Corollary 3.2.

Corollary 3.2. For every integer \(n \geq 1 \), we have

\[
\frac{\sqrt{e}}{2^{n+1/2} \sqrt{2n+2}} \frac{\Omega_n}{(\Omega_{n+1})^{n/(n+1)}} < \frac{\Omega_n}{(\Omega_{n+1})^{n/(n+1)}} < \frac{\sqrt{e}}{2^{n+1/2} \sqrt{2n+2}} \frac{n+1 + \beta}{n+1}
\]

Finally, we give a monotone result related to the volume of the unit ball in \(\mathbb{R}^n \).

Theorem 3.4. For every integer \(n \geq 3 \), the sequence \(\{ (\Omega_n)^{1/H_n} \}_{n \geq 3} \) is monotonically decreasing to zero, where \(H_n \) denotes the \(n \)-th harmonic number. Further, the sequence \(\{ (\Omega_n)^{1/H_n} \}_{n \geq 1} \) attains its maximum at \(n = 3 \).

Proof. By taking the logarithm, we only prove that

\[
\frac{\ln \Omega_n}{H_n} \geq \frac{\ln \Omega_{n+1}}{H_{n+1}}.
\]
For \(n \geq 5 \), using (1.7), we have
\[
\frac{\ln \Omega_n}{H_n} - \frac{\ln \Omega_{n+1}}{H_{n+1}} > \frac{\ln \sqrt{\frac{n+2}{2\pi}}}{H_{n+1}} > 0.
\]
Direct computation can yield
\[
\frac{\ln \Omega_1}{H_1} < \frac{\ln \Omega_2}{H_2} < \frac{\ln \Omega_3}{H_3} > \frac{\ln \Omega_4}{H_4} > \frac{\ln \Omega_5}{H_5}.
\]
Furthermore, by Stolz’s theorem, we get
\[
\lim_{n \to \infty} \left(\frac{\ln \Omega_n}{H_n} \right)^{\frac{1}{n}} = \exp \left\{ \lim_{n \to \infty} \frac{\ln \Omega_n}{H_n} \right\} = \exp \left\{ \lim_{n \to \infty} \frac{\ln \Omega_n - \ln \Omega_{n-1}}{H_n - H_{n-1}} \right\}
\]
\[
= \exp \left\{ \lim_{n \to \infty} n \ln \frac{\Omega_n}{\Omega_{n-1}} \right\} = 0.
\]
The proof of Theorem 3.4 is complete.

Remark 3.1. The sequence \((\Omega_n)^{1/H_n}\) can be rearranged as \(\{ [(\Omega_n)^{1/n}]^{1/H_n} \}\). Since \((\Omega_n)^{1/n}\) is decreasing to 0 and \(n/H_n\) can be easily proved to be increasing to \(\infty\), so \(\lim_{n \to \infty} (\Omega_n)^{1/H_n} = 0\) can be proved easily.

Remark 3.2. By the well-known software MATHEMATICA Version 7.0.0, we can show that
1. the double inequality (3.3) is better than (1.9),
2. the double inequality (3.13) and (1.5) are not included each other.

Acknowledgement. The author appreciate the referee for his helpful and valuable comments on this manuscript. The author was supported by Natural Science Foundation of Shandong Province (ZR2012AQ028), PhD research capital of Binzhou University under grant number 2013Y02, and by the Science Foundation of Binzhou University under grant BZXYL1303.

References

