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Abstract. This article reviews the estimation of Returns To Scale (RTS) in Data Envelop-
ment Analysis (DEA), presented by Golany and Yu and proposes a new method to do this
estimation. we show that the new method does not have the shortcoming of the previous
one. Furthermore, it is able to evaluate Returns To Scale (RTS) to the right and left of the
given unit in all conditions. This method is elaborated by an illustrative example.
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1. Introduction

Data Envelopment Analysis (DEA) is a technique based on mathematical programming for
the performance assessment and the evaluation of the efficiency of a set of homogeneous De-
cision Making Units (DMUs), each of which consumes multiple inputs to produce multiple
outputs. The CCR (Charnes, Cooper, Rhodes) [6] and the BCC (Banker, Charnes, Cooper)
[3] models are actually two basis DEA models. The latter is established by developing a
variable RTS version of the first one. One of the important subjects in DEA is the concept of
Returns To Scale (RTS), which is defined as the ratio of the proportional changes in outputs
over the proportional changes in inputs. Nowadays, RTS has allocated a wide contribution
of DEA literature to itself. First, Banker [2] introduced RTS estimation (Increasing RTS
(IRS), Decreasing RTS (DRS), Constant RTS (CRS)) of the CCR model. Banker et al. [3]
presented an approach, using the sign of the slope parameter of the BCC dual. However,
both of these techniques have considered the assumpation of unique optimal solution. But
in the presence of alternative optimal solutions, the characteristic of RTS is not guaranteed
to be unique. So far, some methods have been suggested to overcome this problem. Banker
and Thrall [5] presented a method by surveying all optimal solutions of BCC and CCR
models. See also Jahanshahloo and Soleimani-Damaneh [11] and Zarepisheh et al. [16].
It should be noted that a related issue to RTS is the Most Productive Scale Size (MPSS)
that was first introduced by Banker [2]. Some methods have been suggested to estimate
this notion [7,10]. There are a few review papers which elaborate different basic methods
in the RTS literature. See Banker et al. [4] for more details. Recently, Khodabakhshi et
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al. [13] examined estimating RTS in both stochastic and fuzzy data envelopment analysis.
Reviewing the customary methods, we could find out that: a) input and output oriented
models may give different results in their RTS findings; and b) the RTS estimated by means
of these methods holds only in the current position of the under-evaluation DMU. Focusing
on these two points, Golany and Yu [8] discussed the estimation of RTS to the right and left
neighborhood of the given DMU, and proposed a method based on solving two LP models
to do this task. Hadjicostas and Soteriou [9] have recently presented a more general defini-
tion of these two concepts in RTS from scale elasticity measure point of view. Two of the
suggested approaches to estimate the right and left RTS are Jahanshahloo et al. [12] and
Zarepisheh and Soleimani-damaneh [15]. The former one suggests an enhanced method by
focusing on Golany and Yu,s method (GY method, hereafter), and the latter presents a dual
simplex-based procedure, considering Hadjicostas and Soteriou,s definition of the right and
left RTS.

This paper suggests a new method based on solving two LP models, one in input orien-
tation and the other in output orientation, by regarding the concept of the right and left RTS
from GY point of view. This method, unlike GY, is feasible for all DMUs and could over-
come the problem of indeterminancy of RTS for some DMUs. In other words, it,s objective
is to provide an approach which seeks the precise classification of RTS around the DMU
being evaluated.

The structure of the paper is as follows: In Section 2 the GY method is reviewed, and
the new method is introduced in Section 3. A numerical example is presented in Section 4.
Finally, in Section 5, some conclusions are provided.

2. GY method

Assume we have a set of n DMUs, where DMU j : j = 1, . . . ,n consumes the inputs x j =
(x1 j, . . . ,xm j) to produce the outputs y j = (y1 j, . . . ,ys j), with the same m inputs and the
same s outputs in (possibly) different amounts. One of the purposes of DEA is evaluating
the efficiency of DMUs, which can be done by the CCR model or the BCC model of DEA.
We present the BCC model in the envelopment form in the input and output orientations for
DMUo(o ∈ 1, . . . ,n) as follows:
(input-oriented):

z = minθ − ε(
m

∑
i=1

s−i +
s

∑
r=1

s+
r )

s.t.
n

∑
j=1

λ jxi j + s−i = θxi0 i = 1, . . . ,m

n

∑
j=1

λ jyr j− s+
r = yr0 r = 1, . . . ,s

n

∑
j=1

λ j = 1

(λ j,s−i ,s+
r )≥ 0 ∀i,r, j.(2.1)
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and
(output-oriented):

z = maxϕ + ε(
m

∑
i=1

t−i +
s

∑
r=1

t+r )

s.t.
n

∑
j=1

µ jxi j + t−i = xi0 i = 1, . . . ,m

n

∑
j=1

µ jyr j− t+r = ϕyr0 r = 1, . . . ,s

n

∑
j=1

µ j = 1

(µ j, t−i , t+r )≥ 0 ∀i,r, j,(2.2)

where t−i and t+r are input and output slacks and 0 is a vector with all components equal
to zero. The term ε > 0 is also a non-Archimedean infinitesimal which is smaller than any
positive real number. (To determine an assurance value for ε > 0 see the approach suggested
in [1,14]).

DMU0 is an efficient DMU if z = 1 and the slacks are zero in all optimal solutions in
each of the above models.

The point which is emphasized in Golany and Yu [8] is the fact that the RTS is a local
feature, while it has been left unnoticed in most of the previous studies on DEA-based RTS.
So, they investigate the identification of RTS, based on the existence of solutions in the four
regions determined in the neighborhood of the unit under evaluation. They proposed the
two following models to do this task:

minβ − ε(
m

∑
i=1

s−i +
s

∑
r=1

s+
r )

s.t.
n

∑
j=1

λ jxi j + s−i = βxi0 i = 1, . . . ,m (3a)

n

∑
j=1

λ jyr j− s+
r = (1+δ )yr0 r = 1, . . . ,s (3b)

n

∑
j=1

λ j = 1 (3c)

(λ j,s−i ,s+
r )≥ 0 ∀i,r, j.(2.3)

and

maxα + ε(
m

∑
i=1

s−i +
s

∑
r=1

s+
r )

s.t.
n

∑
j=1

λ jxi j + s−i = (1−η)xi0 i = 1, . . . ,m

n

∑
j=1

λ jyr j− s+
r = αyr0 r = 1, . . . ,s
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n

∑
j=1

λ j = 1

(λ j,s−i ,s+
r )≥ 0 ∀i,r, j.(2.4)

where δ and η assume a positive small arbitrary value. From now on, the superscript ”∗ ”
indicates the optimal value. (GY algorithm):
Step 1: Solve (2.3) to determine the RTS to the right of DMU0:

1i. (1+δ ) > β ∗ > 1 =⇒ increasing RTS.
1ii. β ∗ ≤ 1 =⇒ DMU0 is BCC-inefficient.

1iii. (1+δ ) = β ∗ =⇒ constant RTS.
1iv. (1+δ ) < β ∗ =⇒ decreasing RTS.
1v. No feasible solution =⇒ there is no data to determine the RTS to the right of DMU0.

Step 2: Solve (2.4) to determine the RTS to the left of DMU0:
2i. 1 > α∗ > (1−η) =⇒ decreasing RTS.

2ii. α∗ ≥ 1 =⇒ DMU0 is BCC-inefficiency.
2iii. (1−η) = α∗ =⇒ constant RTS.
2iv. α∗ < (1−η) =⇒ increasing RTS.
2v. No feasible solution =⇒ there is no data to determine the RTS to the left of DMU0.

In fact, by solving Models (2.3) and (2.4), we reach some projection in the immediate
neighborhood to the right and left of DMU0.

In order to comprehend this issue, consider a set of 6 hypothetical DMUs in Figure 1. As
an example, after solving Models (2.3) and (2.4) for DMUC we reach the points (β ∗xc,(1+
δ )yc) and ((1−η)xc,α

∗yc) in the right and left neighborhood of DMUC, respectively (It is
shown with ellipsis). As it is clear in Figures 1 and 3, the paths followed by GY models lie
outside the PPS. This property causes GY method to fail for some frontier DMUs. To get
the point better, the infeasibility of Models (2.3) and (2.4) have been shown in Figure 3 for
DMUD and DMUA, respectively.

3. The new method

As noted in GY method, in order to estimate RTS more precisely, it is fair to be examined
locally. For doing so, we find some certain points along the frontier in the neighboring areas
around the DMU; and then, comparing the performance of these obtained points to that of
the DMU, we will be able to determine the RTS on its right and left sides. In this section we
try a new method, based on solving two LP models, in order to reach the above-mentioned
goal.

In our proposed approach, the two following models are used to estimate the right and
left RTS, respectively:

maxβ̂ + ε(
m

∑
i=1

s−i +
s

∑
r=1

s+
r )

s.t.
n

∑
j=1

λ jxi j + s−i = (1+ δ̂ )xi0 i = 1, . . . ,m

n

∑
j=1

λ jyr j− s+
r = β̂yr0 r = 1, . . . ,s
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n

∑
j=1

λ j = 1

(λ j,s−i ,s+
r )≥ 0 ∀i,r, j.(3.1)

and

minα̂− ε(
m

∑
i=1

s−i +
s

∑
r=1

s+
r )

s.t.
n

∑
j=1

λ jxi j + s−i = α̂xi0 i = 1, . . . ,m

n

∑
j=1

λ jyr j− s+
r = (1− η̂)yr0 r = 1, . . . ,s

n

∑
j=1

λ j = 1

(λ j,s−i ,s+
r )≥ 0 ∀i,r, j.(3.2)

where δ̂ and η̂ assume a positive small arbitrary value. Now, by using β̂ ∗ and αˆ∗ as the
optimal values of objective function of (3.1) and (3.2) respectively, we present the following
procedure to estimate RTS of all BCC-efficient DMUs.
(The procedure)
Step 1. Solve (3.1) to estimate right RTS of DM0:

1-1). If (1+ δ̂ ) > β̂ ∗ ≥ 1 =⇒ decreasing RTS.
1-2). If (1+ δ̂ ) < β̂ ∗ =⇒ increasing RTS .
1-3). If (1+ δ̂ ) = β̂ ∗ =⇒ constant RTS.

Step 2. Solve (3.2) to estimate left RTS of DMU0:
2-1). If (1− η̂) > αˆ∗ =⇒ decreasing RTS.
2-2). If (1− η̂) < αˆ∗ ≤ 1 =⇒ increasing RTS.
2-3). If (1− η̂) = αˆ∗ =⇒ constant RTS.
In Figure 2 the paths taken by Models (3.1) and (3.2) are indicated on the diagram. For

example by solving model (3.1), the projection of the point ((1+ δ̂ )Xc, Yc) is obtained on
the frontier, which is actually the optimal solution to this model (the point ((1+ δ̂ )Xc, β̂ ∗Yc)).

Lemma 3.1. Models (3.1) and (3.2) are always feasible.

In what follows in this part, we prove that where GY models are feasible, the solution
offered by GY is also accessible to our method; and where ever GY method fails, by solving
the new method, we can reach the certain neighboring points. So the problem of indetermi-
nancy of RTS for these DMUs is dealt with.

Theorem 3.1. The optimal solution of Model (2.3) and Model (2.4) is an optimal solution
for Model (3.1) and Model (3.2) respectively and vice versa.

Proof. We just prove that the optimal solution of Model (2.3) is an optimal solution for
Model (3.1); the other cases can be proved similarly.

Suppose, we solve Model (2.3) for DMU0, considering the arbitrary small positive value
assigned to δ and obtain the optimal solution (β ∗,δ ,s−∗i ,s+∗

r ,λ ∗j ). By putting this solution
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in (3a) and (3b) we have:
n

∑
j=1

λ
∗
j xi j + s−∗i = β

∗xi0 i = 1, . . . ,m (I)

n

∑
j=1

λ
∗
j yr j− s+∗

r = (1+δ )yr0 r = 1, . . . ,s (II)

Considering β ∗ > 1 , (1 + δ ) ≥ 1 and (s−∗i ,s+∗
r ,λ ∗j ) ≥ 0 , the point (β ∗,δ ,s−∗i ,s+∗

r ,λ ∗j )
can be a feasible solution for Model (3.1) , in which β ∗ plays the role of (1+ δ̂ ) and (1+δ )
plays the role of β̂ in this model. By contradiction, we suppose that the above-mentioned
solution is not an optimal solution for Model (3.1), so:
∃β̃ ≥ 1 s.t. β̃ > β̂ = (1+δ )
and, in (II) we have:
∑

n
j=1 λ ∗j yr j + s+∗

r = (1+δ )yr0 < β̃yr0 r = 1, . . . ,s
=⇒ ∑

n
j=1 λ ∗j yr j + s+∗

r + s̃+
r = β̃yr0 r = 1, . . . ,s

Therefore, the solution (β̃ ,δ ,s−∗i ,s+∗
r + s̃+

r ,λ ∗j ) is a feasible solution for Model (2.3) ,
and after putting this solution in the objective function we have:
β ∗− ε(∑m

i=1 s−∗i +∑
s
r=1 s+∗

r ) > β ∗− ε(∑m
i=1 s−∗i +∑

s
r=1(s

+∗
r + s̃+

r ))
which contradicts the assumption.

Theorem 3.2. Assume that GY models are feasible for DMU0, then the type of RTS esti-
mated by GY method for DMU0 is the same as that estimated by the new method.

Proof. Here, we prove one of the cases, and the others can be similarly proved.
Suppose that by using GY method, DMU0 has right IRS and (β ∗,δ ,s−∗i ,s+∗

r ,λ ∗j ) is the
optimal solution for Model (2.3); so, considering GY algorithm, we have (1+δ ) > β ∗ > 1.
By contradiction, we suppose that DMU0 has right NIRS by the new method. According
to the above theorem, this point is an optimal solution for Model (3.1) and, according to
the procedure in Section 4, we have (1 + δ ) ≤ β ∗ , which contradicts the assumption and
completes the proof.

As mentioned in GY algorithm, for a special DMUs, at least one of the GY models
could be infeasible, which causes the GY method to fail, and not to be capable of providing
precise information about RTS behaviour. It should be noted that, Jahanshahloo et al. [12],
by focusing on the point that feasibility or infeasibility of GY models depend on the values
assigned to δ and η , present a method to restrict the values of these two parameters. Their
enhanced algorithm requires to determine an assurance interval for the feasibility of GY
models, a task which is done by solving two auxiliary LP models for each DMU. Both of
the new method and enhanced approach provide a remedy to the infeasibility problem of GY
models for some efficient DMUs. However, the latter method is only able to determine the
general RTS for these DMUs, while by using the new method not only could we overcome
the disadvantages of GY method, but we will be also able to determine the type of the right
and left RTS for each DMU particularly.

4. Illustrative example

In this part, we consider an example that has been presented by Jahanshahloo et al. [12];
but before doing so, we have the following definition.
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Definition 4.1. The general RTS of a DMU is DRS (IRS) if both RTS to the left and RTS to
the right are DRS (IRS). Otherwise, its general RTS is CRS.

Example 4.1. We consider a group of 12 DMUs, with two inputs and two outputs. The data
for these DMUs are given in Table 1. The results obtained from GY method and the new
method are given in Table 2 and Table 3, respectively.

Table 1. Data
DMU A B C D E F G H I J K L
Input 6 7 6 7 5 4 5 6 6 8 5 9

4 5 5 4 5 6 8 7 6 8 7 6
Out put 6 4 3 5 3 3 5 3 4 6 5 9

2 3 3 4 2 3 6 5 5 6 5 3

Table 2. Results obtained after using the GY method with ε = δ = η = 0.001

DMU β ∗ rightRT S α∗ le f tRT S
A 1.0010 CRS In f eas ?
B 0.8680 Ine f f 1.4011 Ine f f
C 0.9389 Ine f f 1.3297 Ine f f
D 1.0027 DRS In f eas ?
E 1.0000 Ine f f In f eas ?
F 1.0004 IRS In f eas ?
G In f eas ? 0.0975 IRS
H 0.9235 Ine f f 0.0993 Ine f f
I 1.0002 DRS 0.9976 IRS
J In f eas ? 0.9993 DRS
K 1.0010 CRS 0.9976 IRS
L In f eas ? 0.9990 CRS

Table 3. Results obtained after using the new method with ε = 0.001

DMU β̂ ∗ rightRT S α̂∗ le f tRT S
A 1.0010 CRS 1.0000 IRS
B 1.4028 Ine f f 0.8678 Ine f f
C 1.3370 Ine f f 0.9387 Ine f f
D 1.0004 DRS 1.0000 IRS
E 1.2613 Ine f f 1.0000 IRS
F 1.0027 IRS 1.0000 IRS
G 1.0000 DRS 0.9996 IRS
H 1.1007 Ine f f 0.9227 Ine f f
I 1.0006 DRS 0.9996 IRS
J 1.0000 DRS 0.9985 DRS
K 1.0010 CRS 0.9996 IRS
L 1.0000 DRS 0.9990 CRS

In Table 4, we just show results (right RTS (RRTS), left RTS (LRTS), general RTS
(GRTS)) obtained after using GY method, the enhanced procedure (Jahanshahloo et al.
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[11]) and our method for efficient DMUs .

Table 4. Results obtained after using different methods for efficient DMUs

GY method T he enhanced method T he new method
DMU RRT S LRT S GRT S RRT S LRT S GRT S RRT S LRT S GRT S

A CRS ? ? CRS ? CRS CRS IRS CRS
D DRS ? ? DRS ? CRS DRS IRS CRS
F IRS ? ? IRS IRS IRS IRS IRS IRS
G ? IRS ? ? IRS CRS DRS IRS CRS
I DRS IRS CRS DRS IRS CRS DRS IRS CRS
J ? DRS ? DRS DRS DRS DRS DRS DRS
K CRS IRS CRS CRS IRS CRS CRS IRS CRS
L ? CRS ? ? CRS CRS DRS CRS CRS

As it can been seen in Table 2, the Model (2.3) and (2.4) are infeasible for DMUs G, J,
L and DMUs A, D, E, respectively. In Table 4, the enhanced procedure determines only the
general RTS for these DMUs, while by using the new method, we will be able to eliminate
the indeterminancy of RTS and determine RTS for all efficient DMUs particularly.

5. Conclusion

Determining the identification of RTS for a DMU can be used to recognize the optimal size
of the unit. For this, we need precise information. So Golany and Yu introduced the concept
of the right and left RTS, and suggested an algorithm to estimate these two concepts based
on solving two LP models. An important advantage of their method is that RTS behavior
is investigated locally. However, this method fails when at least one of the models is in-
feasible. Here in this paper, we present a new algorithm based on two LP models in input
and output orientations. In fact GY and the new method use different processes to reach
the same gold, which is to observe the RTS behavior in two specified directions around the
DMU under evaluation. The superiority of the new method compared to the previous one is
that its models are always feasible for all DMUs. This advantage derives from the property
of paths followed by the models used in the new method.

Acknowledgement. Mohsen Rostamy-Malkhalifeh is the corresponding author of the arti-
cle.
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