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Abstract. To study the linearization problem of dynamic system on measure chains (time
scales), the authors in the previous work assumed that linear system x∆ = A(t)x should pos-
sess exponential dichotomy. In this paper, the assumption is weakened and the setting on
the whole linear part x∆ = A(t)x need not to be hyperbolic. We only need assume partially
hyperbolic linear part. More specifically, if system x∆ = A(t)x is rewritten as two subsys-

tems
{

x∆
1 = A1(t)x1,

x∆
2 = A2(t)x2

, it requires that the first subsystem x∆
1 = A1(t)x1 has exponential

dichotomy, while there is no requirement on the other linear subsystem x∆
2 = A2(t)x2. That

is, the whole linear system x∆ = A(t)x need not to possess exponential dichotomy. The
previous result is improved in this paper.
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1. Introduction and motivation

In order to unify discrete and continuous dynamic systems, Hilger [11] introduced the cal-
culus on measure chains in 1990. In all subsequent considerations we deal with a mea-
sure chain (T,�,µ), i.e. a conditionally complete totally ordered set (T,�) (see [11], Ax-
iom [2]) with growth calibration µ : T2→R (see [11], Axiom [26]). The most intuitive and
relevant examples of measure chains are time scales, a time scale is an arbitrary nonempty
closed subset of the real numbers. Thus, the real numbers R and the integers Z are exam-
ples of time scales, as are [0,1]∪ [2,3] and Cantor set, while the rational numbers Q, the
complex numbers C, and the open interval between 0 and 1, are not time scales. Recently,
the dynamic equations on measure chains have been extensively studied. Many basic results
were obtained such as oscillation, initial value problem, bounded value problem, exponen-
tial dichotomy and stability theory. For more details, e.g., see the monographs [2] and the
references [3, 5, 15, 16, 20, 22, 24, 26–31], [1, 4, 8, 17, 23].

Another interesting field of research is the linearization problem. A great contribution to
the linearization problem for autonomous differential equations (T = R) and autonomous
difference equations (T = Z) is the famous Hartman-Grobman theorem (see Hartman [9,10]
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and Grobman [6,7]). Then Palmer successfully generalized the standard Hartman-Grobman
theorem to non-autonomous cases (T = R, see Palmer [20]; T = Z, see Kirchgraber and
Palmer [14]). To weaken the conditions of Palmer’s linearization theorem, some improved
linearization results have been reported in [13, 21].

However, there are few papers considering the topological linearization on measure
chains. Hilger [12] managed to generalize the Hartman-Grobman theorem to non-autonomous
dynamic equations on measure chains. Hilger proved his interesting result in a very general
form. In order to shorten Hilger’s proofs and obtain some easily verifiable results, a new
analytical method is given in Xia et al. [25]. By introducing the concept of topological
equivalence on measure chains, Xia et al. [25] obtained some sufficient conditions which
guarantee the existence of a equivalent function H(t,x) sending the solutions of nonlinear
system x∆ = A(t)x + f (t,x) onto those of linear system x∆ = A(t)x. Recently, Pötzche [19]
successfully extended these results and studied the topological decoupling under parameter
variation. It should be noted that the results in Xia et al. [25] required that linear sys-
tem x∆ = A(t)x should possess exponential dichotomy. A natural question arises: shall we
reduce this assumption? More specifically, if system x∆ = A(t)x is rewritten as two subsys-

tems

{
x∆

1 = A1(t)x1,

x∆
2 = A2(t)x2

, is it possible that the first subsystem x∆
1 = A1(t)x1 is required

to possess exponential dichotomy, while there is no requirement of the other linear subsys-
tem x∆

2 = A2(t)x2? Based on this conjecture and motivated by above mentioned works, we
revisit the topological conjugacy problem on measure chains and weaken the conditions in
Xia et al. [25].

2. Notations, definitions and lemmas

In this section, we shall introduce some notations and basic terminology on measure chains.
For further details, see the pioneering paper [11] and the monograph [2]. Let χ be a K-
vector space with the norm ‖ · ‖, where K = R or K = C. L (χ1,χ2) stands for the linear
space of continuous homomorphisms with the norm ‖T‖ := sup‖x‖=1 ‖T x‖ for any T ∈
L (χ1,χ2); Iχ1 is the identity mapping on χ1. Additionally, write L (χ) := L (χ,χ) and
N (T ) = T−1({0}) is the nullspace and R(T ) := T χ the range of T ∈ L (χ). We also
briefly introduce some notions, which are specific for the calculus on measure chains. In
particular, T+

τ and T−τ are the T-intervals {t ∈ T : τ � t} and {t ∈ T : t � τ}, respectively,
for any τ ∈T. Crd(T,χ) are the rd-continuous mappings from T into χ and C +

rd R(T,R) :=
{a ∈ Crd(T,R) : 1 + µ∗(t)a(t) > 0 for t ∈ T} is the linear space of positively regressive
functions with the algebraic operations

(a⊕b)(t) := a(t)+b(t)+ µ
∗(t)a(t)b(t), (α�a)(t) := lim

h↘µ∗(t)

(1+ha(t))α −1
h

for t ∈ T

for a,b ∈ C +
rd R(T,R) and reals α ∈ R. With fixed τ ∈ T and c,d ∈ C +

rd R(T,R) we define
the three linear space

B+
τ,c(χ) :=

{
λ ∈ Crd(T+

τ ,χ) : sup
τ�t
‖λ (t)‖e	c(t,τ) < ∞

}
,

B−
τ,d(χ) :=

{
λ ∈ Crd(T−τ ,χ) : sup

t�τ

‖λ (t)‖e	d(t,τ) < ∞

}
,
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B±
τ,c,d(χ) =

λ ∈ Crd(T,χ)
∣∣∣∃τ ∈ T :

sup
τ�t
‖λ (t)‖e	c(t,τ) < ∞

sup
t�τ

‖λ (t)‖e	d(t,τ) < ∞


of so-called c+-quasibounded and d−-quasibounded mappings, which are immediately seen
to be Banach spaces with regard to the norms

‖λ‖+τ,c := sup
τ�t
‖λ (t)‖e	c(t,τ), ‖λ‖−

τ,d := sup
t�τ

‖λ (t)‖e	d(t,τ),

‖λ‖±
τ,c,d = max{

∥∥λ |T+
τ

∥∥+
τ,c,

∥∥λ |T−τ
∥∥−

τ,d}
respectively, where ec(t,τ) is the real exponential function on T. Throughout this paper, we
use the abbreviation bb− ac := inf

t∈T
(b(t)− a(t)) and introduce the notations a C b :⇔ 0 <

bb−ac, aEb :⇔ 0≤ bb−ac, where two positively regressive functions a,b ∈ C +
rd R(T,R)

are denoted as growth rates, if sup
t∈T

µ∗(t)a(t) < ∞ and sup
t∈T

µ∗(t)b(t) < ∞, respectively. Then

we obtain the limits

lim
t→+∞

ea	b(t,τ) = 0, lim
t→−∞

eb	a(t,τ) = 0,

for growth rates aCb and on a measure chain, which is unbounded above resp. below.

Definition 2.1. (see [11]) A mapping φ : T→ χ is said to be differentiable (in a point
t0 ∈ T), if there exists a unique derivative φ ∆(t0) ∈ χ , such that for any ε > 0 the estimate

‖φ(σ(t0))−φ(t)−µ(σ(t0), t)φ ∆(t0)‖ ≤ ε|µ(σ(t0), t)| for t ∈U

holds in a T-neighborhood U of t0. The Cauchy integral of φ is denoted as
∫ t

τ
φ(s)∆s for

τ, t ∈ T, provided it exists.

Now consider the following system

(2.1) x∆ = A(t)x,

where A ∈ Crd(T,L (χ)), (L . Let ΦA(t,τ) ∈ L (χ) denotes the transition operator of
(2.1), i.e. the solution of the corresponding operator-valued initial value problem X∆ =
A(t)X , X(τ) = I for τ, t ∈ T, t � τ . A projection-valued mapping P : T→ L (χ) is an
invariant projector of (2.1), if P(t)ΦA(t,s) = ΦA(t,s)P(s) is fulfilled for s� t, s, t ∈ T. An
invariant projector P is denoted as regular, if

Iχ + µ
∗(t)A(t)|R(P(t))R(P(t))→R(P(ρ+(t))) is bijective for all t ∈ T.

This regularity condition enables us to deal with noninvertible equations. For this reason,
Pötzsche [20] defined an extended transition operator ΦA(t,s) ∈L (χ) as follows:

ΦA(t,s) =
{

[ΦA(s, t)]−1, for t ≺ s,
ΦA(t,s)], for t � s.

Clearly, [I−P(t)]ΦA(t,s)= ΦA(t,s)[I−P(s)] and ΦA(t,s)−1 = ΦA(s, t). Moreover, ΦA(t,τ)ξ
solves the initial value problem x∆ = A(t)x, x(τ) = ξ for τ, t ∈ T, ξ ∈ χ .

Definition 2.2. (see [20]) Let P : T→ L (χ) be an regular invariant projector of (2.1).
Then system (2.1) is said to possess an exponential dichotomy, if the estimates

(2.2)
{
‖ΦA(t,s)P(s)‖ ≤ K1ea(t,s) for s� t, s, t ∈ T,
‖ΦA(t,s)[I−P(s)]‖ ≤ K2eb(t,s) for t � s, s, t ∈ T
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hold for real constants K1,K2 ≥ 1 and growth rates a,b ∈ C +
rd R(T,R), aCb.

Now we introduce the concept of topological equivalence on measure chains from [25].
Considering the two dynamic systems

(2.3) x∆ = f (t,x),

(2.4) y∆ = g(t,y).

Definition 2.3. (see [25]) A continuous function H : T×χ → χ is said to be topologically
equivalent between (2.3) and (2.4), if the following conditions hold:

(i) for each fixed t, H(t, ·) is a homeomorphism of χ into χ;
(ii) H(t,x)− x is (c,d)-quasibounded, uniformly with respect to t;

(iii) assume that G(t, ·) = H−1(t, ·) has property ii) also;
(iv) if x(t) is a solution of system (2.3), then H(t,x(t)) is a solution of system (2.4); if

y(t) is a solution of system (2.4), then G(t,y(t)) is a solution of system (2.3).

If such a mapping H exists, then system (2.3) and (2.4) are called topologically conju-
gated.

Lemma 2.1. (see [20, 25]) For τ, t, t1, t2 ∈ T, t1 � t2 and a,b ∈ C +
rd R(T,R),

∫ t2

t1
ea(t,ρ+(s))eb(s,τ)∆s≤


ea(t,τ)
bb−ac [eb	a(t2,τ)− eb	a(t1,τ)], if aCb,

ea(t,τ)
ba−bc [eb	a(t1,τ)− eb	a(t2,τ)], if bCa.

Consider the inhomogeneous equation

(2.5) x∆ = A(t)x+ r(t).

Lemma 2.2. (see [20, 25]) If linear system (2.1) possesses an exponential dichotomy with
the estimates (2.2), then for r ∈ B±c,d(χ), system (2.5) exists exactly one solution λ∗ ∈
B±c,d(χ), which can be written as follows

λ∗(t) =
∫ t

−∞

ΦA(t,ρ+(s))P(ρ+(s))r(s)∆s−
∫ +∞

t
ΦA(t,ρ+(s))[Iχ −P(ρ+(s))]r(s)∆s.

3. Statement of the main result

Consider the nonautonomous linear system

(3.1)

{
x∆

1 = A1(t)x1,

x∆
2 = A2(t)x2,

and the nonlinear system

(3.2)

{
x∆

1 = A1(t)x1 + f (t,x1,x2),

x∆
2 = A2(t)x2,

where x1 ∈ χn, x2 ∈ χm, A1 ∈ Crd(T,L (χn)), A2 ∈ Crd(T,L (χm)), where n is the dimen-
sion of vector space χn. Now we are ready to state our main results.
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Theorem 3.1. For any τ ∈ T, c,d ∈ C +
rd (T,R), aC cCb, aCd Cb, suppose the following

conditions hold:
(H1) The linear subsystem x∆

1 = A1(t)x1 has exponential dichotomy on T, that is, x∆
1 =

A1(t)x1 has a fundamental matrix ΦA1(t) satisfying (2.2);
(H2) f : T× χn× χm→ χn+m is rd-continuous and there exist positive constants κ and

γ such that:

‖ f (t,x1,x2)‖±τ,c,d ≤ κ, ‖ f (t,x1,x2)− f (t,y1,y2)‖ ≤ γ[‖x1− y1‖+‖x2− y2‖] for t ∈ T;

(H3) γC2(c,d) < 1, where C2(c,d) = max
{

C1(c)+ K1
bd−ac , C1(d)+ K2

bb−cc

}
> 0, C1(c) =

K1
bc−ac +

K2
bb−cc > 0, C1(d) = K2

bd−ac +
K1
bb−dc > 0.

Then we have the following conclusions:
(I) system (3.2) and its linear part (3.1) are topologically conjugated;
(II) the equivalent function H(t,x)(x = (x1,x2)T ) satisfies ‖H(t,x)−x‖±

τ,c,d ≤ κC2(c,d),
uniformly respect to t;

(III) letting G(t, ·) = H−1(t, ·), then G(t, ·) also has the property (II).

Remark 3.1. Condition (H1) only requires that the first linear subsystem x∆
1 = A1(t)x1 has

exponential dichotomy. However, there is no requirement of the other linear subsystem
x∆

2 = A2(t)x2. It is assumed that the whole linear system x∆ = A(t)x possesses exponential
dichotomy in [25]. So we improve the main results in [25].

4. Preliminary results for proof

The proof of Theorem 3.1 is long and complicated. So we divide the proof into seven
preliminary results. To prove Theorem 3.1, it is imperative to prove seven propositions in
this section. Throughout this section, we always assume that the assumptions in Theorem
3.1 are satisfied.

Assume that ΦA1(t,τ) denotes a fundamental matrix of x∆
1 = A1(t)x,

[
X1(t,τ,x10,x20)
X2(t,τ,x10,x20)

]
is a solution of system (3.2) satisfying the initial condition

[
X1(τ)
X2(τ)

]
=
[

x10
x20

]
, and[

Y1(t,τ,y10,y20)
Y2(t,τ,y10,y20)

]
is a solution of (3.1) satisfying initial condition

[
Y1(τ)
Y2(τ)

]
=
[

y10
y20

]
.

Proposition 4.1. For any fixed (σ ,ξ ,η), it follows that system

(4.1) z∆ = A1(t)z− f
(
t,X1(t,σ ,ξ ,η),X2(t,σ ,ξ ,η)

)
has a unique (c,d)-quasibounded solution h(t,(σ ,ξ ,η)) and it satisfies

‖h(·,(σ ,ξ ,η))‖±
τ,c,d ≤ κC2(c,d),

where C2(c,d) defined in Theorem 3.1.

Proof. For any fixed (σ ,ξ ,η), define

h(t,(σ ,ξ ,η)) =−
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f
(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
∆s

+
∫ +∞

t
ΦA1(t,ρ+(s))[Iχ −P(ρ+(s))] f

(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
∆s.(4.2)
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By direct differentiation, it is easily shown that h(t,(σ ,ξ ,η)) is a solution of (4.1). It
follows from (4.2) and condition (H2) that

‖h(t,(σ ,ξ ,η))‖ ≤ K1

∫ t

−∞

ea(t,ρ+(s))‖ f
(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
‖∆s

+K2

∫ +∞

t
eb(t,ρ+(s))‖ f

(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
‖∆s.(4.3)

For fixed τ ∈ T, without losing of generality, first we consider (4.3) on T+
τ , we have

‖h(t,(σ ,ξ ,η))‖ ≤ K1

∫
τ

−∞

ea(t,ρ+(s))‖ f
(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
‖∆s

+K1

∫ t

τ

ea(t,ρ+(s))‖ f
(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
‖∆s

+K2

∫ −∞

t
eb(t,ρ+(s))‖ f

(
s,X1(s,σ ,ξ ,η),X2(s,σ ,ξ ,η)

)
‖∆s

≤ K1

∫
τ

+∞

ea(t,ρ+(s))ed(s,τ)∆s‖ f
(
·,X1(·,σ ,ξ ,η),X2(·,σ ,ξ ,η)

)
‖−

τ,d

+K1

∫ t

τ

ea(t,ρ+(s))ec(s,τ)∆s‖ f
(
·,X1(·,σ ,ξ ,η),X2(·,σ ,ξ ,η)

)
‖+τ,c

+K2

∫ +∞

t
eb(t,ρ+(s))ec(s,τ)∆s‖ f

(
·,X1(·,σ ,ξ ,η),X2(·,σ ,ξ ,η)

)
‖+τ,c

≤
[
K1

∫
τ

−∞

ea(t,ρ+(s))ed(s,τ)∆s+K1

∫ t

τ

ea(t,ρ+(s))ec(s,τ)∆s

+K2

∫ +∞

t
eb(t,ρ+(s))ec(s,τ)∆s

]
‖ f
(
·,X1(·,σ ,ξ ,η),X2(·,σ ,ξ ,η)

)
‖±

τ,c,d

≤
[( K1

bd−ac
− K2

bc−ac

)
ea(t,τ)+C1(c)ec(t,τ)

]
κ

≤
[(

C1(c)+
K1

bd−ac

)
ec(t,τ)− K1

bc−ac
ea(t,τ)

]
κ for allτ � t,(4.4)

which implies

‖h(t,(σ ,ξ ,η))‖e	c(t,τ)≤
[(

C1(c)+
K1

bd−ac

)
− K2

bc−ac
ea	c(t,τ)

]
κ

≤ κC2(c,d) for all τ � t.(4.5)

Now we consider (4.3) on T−τ , similar to the above discussion, we have

‖h(t,(σ ,ξ ,η))‖ ≤ κ

[(
C1(d)+

K2

bb− cc

)
− K2

bb−dc
eb(t,τ)

]
for all t ∈ T−τ

which implies

‖h(t,(σ ,ξ ,η))‖e	d(t,τ)≤ κ

[(
C1(d)+

K2

bb− cc

)
− K2

bb−dc
eb	d(t,τ)

]
κ

≤ κC2(c,d) for all t � τ.(4.6)

Take the supremum, it follows from (4.5) and (4.6) that

‖h(·,(σ ,ξ ,η))‖±
τ,c,d ≤ κC2(c,d) for all t ∈ T.
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This shows that h(t,(σ ,ξ ,η)) is a (c,d)-quasibounded solution of (4.1).

Proposition 4.2. For any fixed (σ ,ξ ,η), system

(4.7) z∆ = A1(t)z+ f
(
t,Y1(t,σ ,ξ ,η)+ z,Y2(t,σ ,ξ ,η)

)
has a unique (c,d)-quasibounded solution g(t,(σ ,ξ ,η)) with ‖g(·,(σ ,ξ ,η))‖±

τ,c,d ≤ κC2(c,d).

Proof. For convenience, in what follows, f
(
s,Y1(s,σ ,ξ ,η)+ z(s),Y2(s,σ ,ξ ,η)

)
is briefly

denoted by f z
Y (s). Let

B = {z(t)| z(t) be a (c,d)-quasibounded function with ‖z‖±
τ,c,d ≤ κC2(c,d)}.

For any z ∈ B, we define map T as follows

T z(t) =
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z
Y (s)−

∫ +∞

t
ΦA1(t,ρ+(s))[Iχ −P(ρ+(s))] f z

Y (s)∆s.

(4.8)

Similar to the computation in Proposition 4.1, it is easy to derive that ‖T z‖±
τ,c,d ≤ κC2(c,d)

for all t ∈ T. Therefore, T is a self mapping, i.e., T : B→ B.
Now we shall show that T is a contraction mapping. In fact, for any z(t), z̃(t) ∈ B, it

follows from (4.8) and condition (H2) that

‖T z(t)−T z̃(t)‖

≤ K1

∫ t

−∞

ea(t,ρ+(s))‖ f z
Y (s)− f z̃

Y (s)‖∆s+K2

∫ +∞

t
eb(t,ρ+(s))‖ f z

Y (s)− f z̃
Y (s)‖∆s

≤ K1

∫ t

−∞

ea(t,ρ+(s))γ‖z(s)−z̃(s)‖∆s+K2

∫ +∞

t
eb(t,ρ+(s))γ‖z(s)−z̃(s)‖∆s.(4.9)

Similar to the calculation of (4.5) and (4.6), it follows from (4.9) that

‖T z−T z̃‖±
τ,c,d ≤ γC2(c,d)‖z− z̃‖±

τ,c,d for all t ∈ T.

Condition (H3) implies γC2(c,d) < 1. Thus the map T has a unique fixed point z0(t), that
is, z0(t) satisfies the following

z0(t) =
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z0
Y (s)∆s

−
∫ +∞

t
ΦA1(t,ρ+(s))[Iχ −P(ρ+(s))] f z0

Y (s)∆s.(4.10)

By direct differentiating on (4.10), it is not difficult to show that z0(t) is a solution of (4.7).
Furthermore, z0(t) is (c,d)-quasibounded solution of (4.7) with ‖z0‖±τ,c,d ≤ κC2(c,d).

Now we are going to show that the (c,d)-quasibounded solution z0(t) is unique. For this
purpose, we assume that there is another (c,d)-quasibounded solution z1(t) of (4.7). For
any z1(τ) = z0, by variation of constants, z1(t) can be written as follows

(4.11) z1(t) = ΦA1(t,τ)z0 +
∫ t

τ

ΦA1(t,ρ+(s)) f z1
Y (s)∆s,

where f z1
Y (s) = f

(
s,Y1(s,σ ,ξ ,η)+z1(s),Y2(s,σ ,ξ ,η)

)
. By using I = P+(I−P), it follows

from (4.11) that

z1(t) = ΦA1(t,τ)z0 +
∫ t

τ

ΦA1(t,ρ+(s))
[
P(ρ+(s))+(I−P(ρ+(s)))

]
f z1
Y (s)∆s
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= ΦA1(t,τ)z0 +
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s

−
∫

τ

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s

+
∫ +∞

τ

ΦA1(t,ρ+(s))[I−P(ρ+(s))] f z1
Y (s)∆s

−
∫ +∞

t
ΦA1(t,ρ+(s))[I−P(ρ+(s))] f z1

Y (s)∆s

= ΦA1(t,τ)z0−ΦA1(t,τ)
∫

τ

−∞

ΦA1(τ,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s

+ΦA1(t,τ)
∫ +∞

τ

ΦA1(τ,ρ+(s))[I−P(ρ+(s))] f z1
Y (s)∆s

+
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s

−
∫ +∞

t
ΦA1(t,ρ+(s))[I−P(ρ+(s))] f z1

Y (s)∆s.(4.12)

Set
z1

0 :=
∫

τ

−∞

ΦA1(τ,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s,

z2
0 :=

∫ +∞

τ

ΦA1(τ,ρ+(s))[I−P(ρ+(s))] f z1
Y (s)∆s.

It is easy to prove that z1
0 and z2

0 are convergent. In fact, simple computation shows that

‖z1
0‖+τ,c,d ≤

κK1

bc−ac
, and ‖z2

0‖+τ,c,d ≤
κK2

bb−dc
.

Thus, (4.12) can be rewritten as

(4.13)
z1(t) = ΦA1(t,τ)[z0 + z1

0 + z2
0]+

∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s

−
∫ +∞

t
ΦA1(t,ρ+(s))[I−P(ρ+(s))] f z1

Y (s)∆s.

Now we observe that the left side of (4.13) (i.e. z1(t)) is (c,d)-quasibounded due to our
assumption; the sum between the second term and the third term on the right side of
(4.13) is also (c,d)-quasibounded by similar computation to h(t,(σ ,ξ ,η)) in (4.2) (less
than C2(c,d)). So a consequent conclusion is that the first term on the right side of (4.13)
ΦA1(t,τ)[z0 +z1

0 +z2
0] is (c,d)-quasibounded. It is easy to see that ΦA1(t,τ)[z0 +z1

0 +z2
0] is a

solution of subsystem x∆
1 = A1(t)x1. Notice that the linear system x∆

1 = A1(t)x1 has no non-
trivial (c,d)-quasibounded solution. Therefore, ΦA1(t,τ)[z0 + z1

0 + z2
0] ≡ 0. Consequently,

it follows from (4.13) that the another (c,d)-quasibounded solution z1(t) can be uniquely
represented as

z1(t) =
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s)) f z1
Y (s)∆s−

∫ +∞

t
ΦA1(t,ρ+(s))[I−P(ρ+(s))] f z1

Y (s)∆s.

(4.14)

It follows from condition (H1)-(H2), (4.10) and (4.14) that

‖z1(t)− z0(t)‖ ≤ K1

∫ t

−∞

ea(t,ρ+(s))γ‖z1(s)− z0(s)‖∆s
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+K2

∫ +∞

t
eb(t,ρ+(s))γ‖z1(s)− z0(s)‖∆s.

Similar to the calculation of (4.5) and (4.6), we have

‖z1− z0‖±τ,c,d ≤ γC2(c,d)‖z1− z0‖±τ,c,d .

Because of γC2(c,d) < 1, z1(t) ≡ z0(t). This implies that the (c,d)-quasibounded solution
of (4.7) is unique, which is of course dependent on (σ ,ξ ,η). We may name it g(t,(σ ,ξ ,η)).
From the above proof, it is easy to see that ‖g(·,(σ ,ξ ,η))‖±

τ,c,d ≤ κC2(c,d).

Proposition 4.3. Let x(t) = (x1(t),x2(t))T be any solution of system (3.1). Then system

(4.15) z∆ = A1(t)z+ f
(
t,x1(t)+ z,x2(t)

)
− f
(
t,x1(t),x2(t)

)
,

has a unique (c,d)-quasibounded solution z≡ 0.

Proof. Obviously, z≡ 0 is a (c,d)-quasibounded solution of (4.15). Now we shall show that
the (c,d)-quasibounded solution is unique. Or else, if there is another (c,d)-quasibounded
solution z1(t). Then by similar arguments to (4.14), z1(t) can be uniquely represented as
follows

z1(t) =
∫ t

−∞

ΦA1(t,ρ+(s))P(ρ+(s))[ f
(
s,x1(s)+ z1(s),x2(s)

)
− f
(
s,x1(s),x2(s)

)
]∆s

−
∫ +∞

t
ΦA1(t,ρ+(s))[I−P(ρ+(s))][ f

(
s,x1(s)+ z1(s),x2(s)

)
− f
(
s,x1(s),x2(s)

)
]∆s.

By condition (H1)-(H2), we have

(4.16) ‖z1(t)‖ ≤ K1

∫ t

−∞

ea(t,ρ+(s))γ‖z1(s)‖∆s+K2

∫ +∞

t
eb(t,ρ+(s))γ‖z1(s)‖∆s.

Similar to the calculation of (4.5) and (4.6), it follows from (4.16) that

‖z1‖±τ,c,d ≤ γC2(c,d)‖z1‖±τ,c,d for all t ∈ T.

Since γC2(c,d) < 1, z1(t)≡ 0. This completes the proof of Proposition 4.3.
Now we introduce two functions as follows

H(t,x) =
[

H1(t,x1,x2)
H2(t,x1,x2)

]
=
[

x1 +h(t,(t,x1,x2))
x2

]
, x =

[
x1
x2

]
,(4.17)

(4.18) G(t,y) =
[

G1(t,y1,y2)
G2(t,y1,y2)

]
=
[

y1 +g(t,(t,y1,y2))
y2

]
, y =

[
y1
y2

]
.

Proposition 4.4. For any fixed (τ,x10,x20),[
H1
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
H2
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

) ]
is a solution of linear system (3.1).

Proof. To prove Proposition 4.4, we substitute
(
t,X1(t,σ ,ξ ,η),X2(t,σ ,ξ ,η)

)
into (σ ,ξ ,η)

of (4.1) in Proposition 4.1. Since system (4.1) is not changed, the (c,d)-quasibounded so-
lution of system (4.1) is unique. Therefore, by the uniqueness, we have

h
(
t,(t,X1(t,τ,x10,x20),X2(t,τ,x10,x20))

)
= h(t,(τ,x10,x20)).
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Then, it follows from (4.17) that

H1
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
= X1(t,τ,x10,x20)+h

(
t,
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

))
= X1(t,τ,x10,x20)+h(t,(τ,x10,x20)).(4.19)

For convenience, H1
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
is denoted briefly by H1(t).

Note that
[

X1(t,τ,x10,x20)
X2(t,τ,x10,x20)

]
, h
(
t,(τ,x10,x20)

)
are solutions of system (3.2) and (4.1),

respectively. Differentiating on (4.19), we obtain

H∆
1 (t) = A1(t)X1(t,τ,x10,x20)+ f

(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
+A1(t)h(t,(τ,x10,x20))− f

(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
= A1(t)H1(t),

which implies that H1(t) is a solution of x∆
1 (t) = A1(t)x1(t).

On the other hand, let ΦA2(t) be a fundamental matrix of x∆
2 = A2(t)x2, and then

(4.20) H2
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
= X2(t,τ,x10,x20) = ΦA2(t,τ)x20.

For convenience, H2
(
t,X1(t,τ,x10,x20),X2(t,τ,x10,x20)

)
is denoted briefly by H2(t). Dif-

ferentiating on (4.20), we deduce that

H∆
2 (t) = A2(t)ΦA2(t,τ)x20 = A2(t)H2(t).

which implies that H2(t) is a solution of x∆
2 (t) = A2(t)x2(t). Thus, H(t) =

[
H1(t)
H2(t)

]
is a

solution of linear system (3.1)
{

x∆
1 = A1(t)x1

x∆
2 = A2(t)x2

.

Proposition 4.5. For any fixed (τ,y10,y20),[
G1
(
t,Y1(t,τ,y10,y20),Y2(t,τ,y10,y20)

)
G2
(
t,Y1(t,τ,y10,y20),Y2(t,τ,y10,y20)

) ]
is a solution of nonlinear system (3.2).

The proof of Proposition 4.5 is similar to that of Proposition 4.4, we omit it here.

Proposition 4.6. For any fixed t ∈ T, y1 ∈ χn, y2 ∈ χm, then following equality always
holds: [

H1
(
t,G1(t,y1,y2),G2(t,y1,y2)

)
H2
(
t,G1(t,y1,y2),G2(t,y1,y2)

) ]=
[

y1
y2

]
.

Proof. Let y(t) =
[

y1(t)
y2(t)

]
be any solution of linear system (3.1). From Proposition 4.5,

we conclude that G(t,y(t)) =
[

G1
(
t,y1(t),y2(t)

)
G2
(
t,y1(t),y2(t)

) ] is a solution of nonlinear system (3.2).

On the other hand, in view of Proposition 4.5, it is easy to see that

H(t,G(t,y(t))) =
[

H1
(
t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t))

)
H2
(
t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t))

) ]
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is another solution of linear system (3.1). For the sake of convenience, denote this solution

H(t,G(t,y(t))) as y(t) =
[

y1(t)
y2(t)

]
. Let

I(t) =
[

I1(t)
I2(t)

]
= y(t)− y(t) =

[
y1(t)− y1(t)
y2(t)− y2(t)

]
.

To prove this proposition, we need show that I(t) ≡ 0. To this end, it suffices to prove that
I1(t)≡ 0 and I2(t)≡ 0. Firstly we show that I1(t) = y1(t)−y1(t) = 0. In fact, differentiating
it, we have

I∆
1 (t) = y∆

1 (t)− y∆
1 (t) = A1(t)y(t)−A1(t)y(t) = A1(t)I1(t),

which implies I1(t) is a solution of linear subsystem x∆
1 (t) = A1(t)x1(t). Moreover, it follows

from (4.17) and (4.18) that

(4.21)

‖I1(t)‖ = ‖y1(t)− y1(t)‖
= ‖H1

(
t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t))

)
− y1(t)‖

≤ ‖H1
(
t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t))

)
−G1

(
t,y1(t),y2(t)

)
‖

+‖G1
(
t,y1(t),y2(t)

)
− y1(t)‖

= ‖h
(
t,(t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t)))

)
‖

+‖g
(
t,(t,y1(t),y2(t))

)
‖.

By using Proposition 4.1 and 4.2, from (4.18), we have

‖I1‖±τ,c,d ≤ ‖h
(
·,(·,G1(·,y1(·),y2(·)),G2(·,y1(·),y2(·)))

)
‖±

τ,c,d
+‖g

(
·,(·,y1(·),y2(·))

)
‖±

τ,c,d
≤ 2κC2(c,d)+2κC2(c,d) = 4κC2(c,d).

This means I1(t) is a (c,d)-quasibounded solution of linear subsystem x∆
1 = A1(t)x1, but

x∆ = A(t)x has not nontrivial (c,d)-quasibounded solution on T. Therefore I1(t) ≡ 0, i.e.,
y1(t) = y1(t).

Now we show that I2(t)≡ 0. In fact, by the second equality of (4.17), we see that

y2(t) = H2
(
t,G1(t,y1(t),y2(t)),G2(t,y1(t),y2(t))

)
= G2(t,y1(t),y2(t)) = y2(t).

Thus, I(t)≡ 0, that is,

y(t) =
[

y1(t)
y2(t)

]
=
[

y1(t)
y2(t)

]
= y(t), or H(t,G(t,y(t)))≡ y(t).

Since y(t) is an arbitary solution of linear system (3.1), the proof of Proposition 4.6.

Proposition 4.7. For any fixed t ∈ T, x1 ∈ χn, x2 ∈ χm, then following equality always
holds: [

G1
(
t,H1(t,x1,x2),H2(t,x1,x2)

)
G2
(
t,H1(t,x1,x2),H2(t,x1,x2)

) ]=
[

x1
x2

]
.

The proof is similar to Proposition 4.6, we omit here.
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5. Proof of main results

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Note that x =
[

x1
x2

]
, y =

[
y1
y2

]
, H(t,x) =

[
H1(t,x)
H2(t,x)

]
,

G(t,y) =
[

G1(t,y)
G2(t,y)

]
. To prove H(t,x) is a equivalent function of linear system (3.1)

into nonlinear system (3.2), we are going to show that H(t, ·) and G(t, ·) satisfy the four
conditions of Definition 2.3.

Proof of condition (i): For any fixed t ∈ T, it follows from Propositions 4.6 and 4.7 that
H(t, ·) is a bijective mapping of χn+m into itself and H−1(t, ·) = G(t, ·).

Proof of condition (ii): From (4.17) and Proposition 4.1, it is not difficult to derive that
‖H(t,x)− x‖±

τ,c,d = ‖h(t,(t,x))‖±
τ,c,d ≤ κC2(c,d), κC2(c,d) is a constant.

Proof of condition (iii): From (4.18) and Proposition 4.2, it is not difficult to derive that
‖G(t,y)− y‖±

τ,c,d = ‖g(t,(t,y))‖±
τ,c,d ≤ κC2(c,d).

Using Propositions 4.4 and 4.5, it is easy to show that condition (iv) is also true.
This completes the proof of Theorem 3.1.
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