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Abstract. This paper studies the PHI-four equation that arises in Quantum Mechanics. The
topological 1-soliton solution or kink solution is obtained by the ansatz method. The bifur-
cation analysis is then subsequently carried out and several other solutions are retrieved
from the analysis. These solutions include the solitary wave solutions, periodic waves and
periodic singular waves. The constraint conditions also fall out from the analysis that must
exist in order for the soliton solutions to exist. Thus various previous list of solutions for
this equation are expanded.
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1. Introduction

The PHI-four equation is a very important nonlinear evolution equation (NLEE) in the area
of Mathematical Physics, in particular Quantum Mechanics. This equation was studied ex-
tensively by several Mathematical Physicists across the globe. It is about time to take a look
at this equation from a different perspective in order to extract several other solutions. In
order to stay focussed, this paper will concentrate on the ansatz method and the bifurcation
analysis to reveal the several other solutions. The integrability studies of these NLEEs is
a big deal in this area of Physics and Mathematics [1-25]. However, one must exercise
extreme caution in carrying out the integration of these NLEEs as pointed out in 2009 [4].
Without this cautionary approach, the results would be flawed.

The ansatz approach will be first used to carry out the integration of the PHI-four equa-
tion. This will reveal a topological 1-solition solution that is also known as the kink solution.
This will lead to a couplre of constraint conditions that must remain valid in order for the
kink solution to exist. Subsequently, the paper will address the bifurcation analysis of the
problem where the phase portraits of this equation of study will be obtained. Addition-
ally by the traveling wave approach, several other solutions will be obtained. They are the
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cnoidal waves, snoidal waves, solitary waves, periodic waves, singular periodic waves and
others.

2. Topological 1-Soliton Solution Or Kink Solution

The PHI-four equation that is going to be studied in this paper is given by

(2.1) utt − k2uxx = au+bu3

where in (2.1), the dependent variable is u(x, t) while the spatial and temporal independent
variables are x and t respectively. The other parameters k, a and b are all real-valued con-
stants. In order to extract the topological 1-soliton solution of this equation, it is necessary
to bear in mind that the solitons are the outcome of a delicate balance between dispersion
and nonlinearity. This leads to the balancing principle that will be applied to obtain the
soliton solution. In order to get started, the 1-soliton solution ansatz is taken to be [6–12,
21]:

(2.2) u(x, t) = A tanhp τ

where

(2.3) τ = B(x− vt)

Here in (2.2) and (2.3), the parameters A and B are known as free parameters of the soliton
or the kink and v is the velocity of the soliton. The value of the unknown exponent p will
fall out during the course of derivation of the soliton solution. Substituting (2.2) into (2.1)
and simplifying leads to

p(p−1)AB2 (
v2− k2) tanhp−2 τ−2p2AB2 (

v2− k2) tanhp τ

+ p(p+1)AB2 (
v2− k2) tanhp+2 τ = aA tanhp τ +bA3 tanh3p τ(2.4)

By the balancing principle, equation the exponents 3p and p+2, gives

(2.5) 3p = p+2

which gives

(2.6) p = 1

This shows that the first term on the left hand side gets knocked off. From the remaining
terms, the linearly independent functions are tanhp+ j τ for j = 0,2. Therefore, setting its
respective coefficients to zero, yields

(2.7) A =
√
−a

b
and

(2.8) B =
√
− a

2(v2− k2)

These values of the free parameters immediately pose the constraint conditions

(2.9) ab < 0

and

(2.10) a
(
v2− k2) < 0
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respectively. Thus, finally, the 1-soliton solution to the PHI-four equation is given by

(2.11) u(x, t) = A tanh[B(x− vt)]

with the free parameters given by (2.7) and (2.8). This kink solution will hold as long as the
constraint conditions given by (2.9) and (2.10) remains valid.

3. Bifurcation analysis

In this section, the Phi-four equation will be rewritten as

(3.1) utt −αuxx−λu+βu3 = 0.

In this section, the aim is to study the traveling wave solutions and their relations for
Eq. (3.1) by using the bifurcation method and qualitative theory of dynamical systems [15–
20]. Through some special phase orbits, we obtain many smooth periodic wave solutions
and periodic blow-up solutions. Their limits contain kink profile solitary wave solutions,
unbounded wave solutions, periodic blow-up solutions and solitary wave solutions.

3.1. Phase portraits and qualitative analysis

We assume that the traveling wave solutions of (3.1) is of the form

(3.2) u(x, t) = ϕ(ξ ), ξ = x− ct,

we have

(3.3) (c2−α)ϕ ′′−λϕ +βϕ3 = 0.

To relate conveniently, let

(3.4) η =
β

c2−α
,

and

(3.5) µ =
λ

c2−α
.

Letting ϕ ′ = y, then we get the following planar system

(3.6)

{
dϕ
dξ = y,
dy
dξ =−ηϕ3 + µϕ .

Obviously, the above system (3.6) is a Hamiltonian system with Hamiltonian function

(3.7) H(ϕ,y) = y2 +
1
2

ηϕ4−µϕ2.

In order to investigate the phase portrait of (3.6), set

(3.8) f (ϕ) =−ηϕ3 + µϕ .

Obviously, f (ϕ) has three zero points, ϕ−, ϕ0 and ϕ+, which are given as follows

(3.9) ϕ− =−
√

µ
η

, ϕ0 = 0, ϕ+ =
√

µ
η

.

Letting (ϕi,0) be one of the singular points of system (3.6), then the characteristic values of
the linearized system of system (3.6) at the singular points (ϕi,0) are

(3.10) λ± =±
√

f ′(ϕi).
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From the qualitative theory of dynamical systems, we know that
(1) If f ′(ϕi) > 0, (ϕi,0) is a saddle point.
(2) If f ′(ϕi) < 0, (ϕi,0) is a center point.
(3) If f ′(ϕi) = 0, (ϕi,0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (3.6) in Figure 1.

Figure 1. The phase portraits of system (3.6), (a) η < 0, µ < 0, (b) η > 0, µ > 0

Let

(3.11) H(ϕ,y) = h,

where h is Hamiltonian.
Next, we consider the relations between the orbits of (3.6) and the Hamiltonian h.
Set

(3.12) h∗ = |H(ϕ+,0)|= |H(ϕ−,0)|= µ2

2|η | .

According to Figure 1, we get the following propositions.

Proposition 3.1. Suppose that η < 0 and µ < 0, we have
(1) When h < 0 or h > h∗, system (3.6) does not any closed orbit.
(2) When 0 < h < h∗, system (3.6) has three periodic orbits Γ1, Γ2 and Γ3.
(3) When h = 0, system (3.6) has two periodic orbits Γ4 and Γ5.
(4) When h = h∗, system (3.6) has two heteroclonic orbits Γ6 and Γ7.

Proposition 3.2. Suppose that η > 0 and µ > 0, we have
(1) When h 6−h∗, system (3.6) does not any closed orbit.
(2) When −h∗ < h < 0, system (3.6) has two periodic orbits Γ8 and Γ9.
(3) When h = 0, system (3.6) has two homoclinic orbits Γ10 and Γ11.
(4) When h > 0, system (3.6) has a periodic orbit Γ12.

From the qualitative theory of dynamical systems, we know that a smooth solitary wave
solution of a partial differential system corresponds to a smooth homoclinic orbit of a travel-
ing wave equation. A smooth kink wave solution or a unbounded wave solution corresponds
to a smooth heteroclinic orbit of a traveling wave equation. Similarly, a periodic orbit of
a traveling wave equation corresponds to a periodic traveling wave solution of a partial
differential system. According to above analysis, we have the following propositions.
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Proposition 3.3. If η < 0 and µ < 0, we have
(1) When 0 < h < h∗, (3.1) has two periodic wave solutions (corresponding to the

periodic orbit Γ2 in Fig. 1) and two periodic blow-up wave solutions(corresponding
to the periodic orbits Γ1 and Γ3 in Figure 1).

(2) When h = 0, (3.1) has periodic blow-up wave solutions(corresponding to the peri-
odic orbits Γ4 and Γ5 in Figure 1).

(3) When h = h∗, (3.1) has two kink profile solitary wave solutions and two unbounded
wave solutions (corresponding to the heteroclinic orbits Γ6 and Γ7 in Figure 1).

Proposition 3.4. If η > 0 and µ > 0, we have
(1) When −h∗ < h < 0, (3.1) has two periodic wave solutions(corresponding to the

periodic orbits Γ8 and Γ9 in Figure 1).
(2) When h = 0, (3.1) has two solitary wave solutions(corresponding to the homoclinic

orbits Γ10 and Γ11 in Figure 1).
(3) When h > 0, (3.1) has two periodic wave solutions(corresponding to the periodic

orbit Γ12 in Figure 1).

3.2. Traveling wave solutions and their relations

Firstly, we will obtain the explicit expressions of traveling wave solutions for the (3.1) when
η < 0 and µ < 0.
(1) From the phase portrait, we note that there are three periodic orbits Γ1, Γ2 and Γ3 passing
the points (ϕ1,0),(ϕ2,0), (ϕ3,0) and (ϕ4,0). In (ϕ,y)-plane the expressions of the orbits
are given as

(3.13) y =±
√
−η

2

√
(ϕ−ϕ1)(ϕ−ϕ2)(ϕ−ϕ3)(ϕ−ϕ4),

where ϕ1 =−
√

µ−
√

µ2+2ηh
η , ϕ2 =−

√
µ+
√

µ2+2ηh
η , ϕ3 =

√
µ+
√

µ2+2ηh
η , ϕ4 =

√
µ−
√

µ2+2ηh
η

and 0 < h < h∗.
Substituting (3.13) into dϕ/dξ = y and integrating them along Γ1, Γ2 and Γ3, we have

(3.14) ±
∫ ∞

ϕ

1√
(s−ϕ1)(s−ϕ2)(s−ϕ3)(s−ϕ4)

ds =
√
−η

2

∫ ξ

0
ds,

(3.15) ±
∫ ϕ

0

1√
(s−ϕ1)(s−ϕ2)(s−ϕ3)(s−ϕ4)

ds =
√
−η

2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.16) ϕ =± ϕ4

sn
(

ϕ4

√
−η

2 ξ , ϕ3
ϕ4

) ,

(3.17) ϕ =±ϕ3sn
(

ϕ4

√
−η

2
ξ ,

ϕ3

ϕ4

)
.

Noting that (3.2), we get the following periodic wave solutions

(3.18) u1(x, t) =± ϕ4

sn
(

ϕ4

√
−η

2 (x− ct), ϕ3
ϕ4

) ,
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and

(3.19) u2(x, t) =±ϕ3sn
(

ϕ4

√
−η

2
(x− ct),

ϕ3

ϕ4

)
.

(2) From the phase portrait, we note that there are two special orbits Γ4 and Γ5, which have
the same hamiltonian with that of the center point (0,0). In (ϕ,y)-plane the expressions of
the orbits are given as

(3.20) y =±
√
−η

2
ϕ

√
(ϕ−ϕ5)(ϕ−ϕ6),

where ϕ5 =−
√

2µ/η and ϕ6 =
√

2η/µ .
Substituting (3.20) into dϕ/dξ = y and integrating them along the two orbits Γ4 and Γ5,

it follows that

(3.21) ±
∫ +∞

ϕ

1
s
√

(s−ϕ5)(s−ϕ6)
ds =

√
−η

2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.22) ϕ =±
√

2µ
η

csc
√−µξ .

Noting that (3.2), we get the following periodic blow-up wave solutions

(3.23) u3(x, t) =±
√

2µ
η

csc
√−µ(x− ct).

(3) From the phase portrait, we see that there are two heterclinic orbits Γ6 and Γ7 connected
at saddle points (ϕ−,0) and(ϕ+,0). In (ϕ,y)-plane the expressions of the heterclinic orbits
are given as

(3.24) y =±
√
−η

2

√
(ϕ−ϕ−)2(ϕ−ϕ+)2.

Substituting (3.24) into dϕ/dξ = y and integrating them along the heterclinic orbits Γ6
and Γ7, it follows that

(3.25) ±
∫ ϕ

0

1
(s−ϕ−)(ϕ+− s)

ds =
√
−η

2

∫ ξ

0
ds,

(3.26) ±
∫ +∞

ϕ

1
(s−ϕ−)(s−ϕ+)

ds =
√
−η

2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.27) ϕ =±
√

µ
η

tanh
√
−µ

2
ξ ,

(3.28) ϕ =±
√

µ
η

coth
√
−µ

2
ξ .
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Noting that (3.2), we get the following kink profile solitary wave solutions

(3.29) u4(x, t) =±
√

µ
η

tanh
√
−µ

2
(x− ct),

and unbounded wave solutions

(3.30) u5(x, t) =±
√

µ
η

coth
√
−µ

2
(x− ct).

Secondly, we will obtain the explicit expressions of traveling wave solutions for the (3.1)
when η > 0 and µ > 0.
(1) From the phase portrait, we see that there are two closed orbits Γ8 and Γ9 passing the
points (ϕ7,0), (ϕ8,0), (ϕ9,0) and (ϕ10,0). In (ϕ ,y)-plane the expressions of the closed
orbits are given as

(3.31) y =±
√

η
2

√
(ϕ−ϕ7)(ϕ−ϕ8)(ϕ−ϕ9)(ϕ10−ϕ),

where ϕ7 =−
√

µ+
√

µ2+2ηh
η , ϕ8 =−

√
µ−
√

µ2+2ηh
η , ϕ9 =

√
µ−
√

µ2+2ηh
η , ϕ10 =

√
µ+
√

µ2+2ηh
η

and −h∗ < h < 0.
Substituting (3.31) into dϕ/dξ = y and integrating them along Γ8 and Γ9, we have

(3.32) ±
∫ ϕ

ϕ7

1√
(ϕ10− s)(ϕ9− s)(ϕ8− s)(s−ϕ7)

ds =
√

η
2

∫ ξ

0
ds,

(3.33) ±
∫ ϕ

ϕ10

1√
(s−ϕ7)(s−ϕ8)(s−ϕ9)(ϕ10− s)

ds =
√

η
2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.34) ϕ =
(ϕ10−ϕ8)ϕ7 +(ϕ8−ϕ7)ϕ10

(
sn

(
ω

√
η
2 ξ ,κ

))2

ϕ10−ϕ8 +(ϕ8−ϕ7)
(

sn
(

ω
√

η
2 ξ ,κ

))2 ,

(3.35) ϕ =

√√√√√ϕ2
10− (ϕ2

10−ϕ2
9 )


sn


ϕ10

√
η
2

ξ ,

√
ϕ2

10−ϕ2
9

ϕ10







2

,

where ω =
√

(ϕ10−ϕ8)(ϕ9−ϕ7)
2 and κ =

√
(ϕ10−ϕ9)(ϕ8−ϕ7)
(ϕ10−ϕ8)(ϕ9−ϕ7) .

Noting that (3.2), we get the following periodic wave solutions

(3.36) u6(x, t) =

(
(ϕ10−ϕ8)ϕ7 +(ϕ8−ϕ7)ϕ10

(
sn

(
ω

√
η
2 (x− ct),κ

))2
)

ϕ10−ϕ8 +(ϕ8−ϕ7)
(

sn
(

ω
√

η
2 (x− ct),κ

))2 ,
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and

(3.37) u7(x, t) =

√√√√√ϕ2
10− (ϕ2

10−ϕ2
9 )


sn


ϕ10

√
η
2

(x− ct),

√
ϕ2

10−ϕ2
9

ϕ10







2

.

(2) From the phase portrait, we see that there are two symmetric homoclinic orbits Γ10 and
Γ11 connected at the saddle point (0,0). In (ϕ,y)-plane the expressions of the homoclinic
orbits are given as

(3.38) y =±
√

η
2

ϕ
√

(ϕ−ϕ11)(ϕ12−ϕ),

where ϕ11 =−
√

2µ/η and ϕ12 =
√

2µ/η .
Substituting (3.38) into dϕ/dξ = y and integrating them along the orbits Γ10 and Γ11, we

have

(3.39) ±
∫ ϕ

ϕ11

1
s
√

(s−ϕ11)(ϕ12− s)
ds =

√
η
2

∫ ξ

0
ds,

(3.40) ±
∫ ϕ

ϕ12

1
s
√

(s−ϕ11)(ϕ12− s)
ds =

√
η
2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.41) ϕ =−
√

2µ
η

sech
√

µξ ,

and

(3.42) ϕ =

√
2µ
η

sech
√

µξ .

Noting that (3.2), we get the following solitary wave solutions

(3.43) u8(x, t) =−
√

2µ
η

sech
√

µ(x− ct),

and

(3.44) u9(x, t) =

√
2µ
η

sech
√

µ(x− ct).

(3) From the phase portrait, we see that there are a closed orbit Γ12 passing the points
(ϕ13,0) and (ϕ14,0). In (ϕ,y)-plane the expressions of the closed orbits are given as

(3.45) y =±
√

η
2

√
(ϕ14−ϕ)(ϕ−ϕ13)(ϕ− c1)(ϕ− c1),

where ϕ13 =−
√

µ+
√

µ2−2ηh
η , ϕ14 =

√
µ+
√

µ2−2ηh
η , c1 = i

√
µ−
√

µ2−2ηh
η , c1 =−i

√
µ−
√

µ2−2ηh
η

and h > 0.
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Substituting (3.45) into dϕ/dξ = y and integrating them along the orbit Γ12, we have

(3.46) ±
∫ ϕ

ϕ13

1√
(ϕ14− s)(s−ϕ13)(s− c1)(s− c1)

ds =
√

η
2

∫ ξ

0
ds,

(3.47) ±
∫ ϕ14

ϕ

1√
(ϕ14− s)(s−ϕ13)(s− c1)(s− c1)

ds =
√

η
2

∫ ξ

0
ds.

Completing above integrals we obtain

(3.48) ϕ = ϕ13cn
(√

µξ ,−ϕ13

√
η
2µ

)
,

and

(3.49) ϕ = ϕ14cn
(√

µξ ,ϕ14

√
η
2µ

)
.

Noting that (3.2), we get the following periodic wave solutions

(3.50) u10(x, t) = ϕ13cn
(√

µ(x− ct),−ϕ13

√
η
2µ

)
,

and

(3.51) u11(x, t) = ϕ14cn
(√

µ(x− ct),ϕ14

√
η
2µ

)
.
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Figure 2. The imaginary part of the periodic wave solution u2+ (x, t) evolute into the kink wave solutions u4+ (x, t) at t = 0 with

the conditions (3.52). (a) h = 0.008; (b) h = 0.12; (c) h = 0.125.

Thirdly, we will give that relations of the traveling wave solutions.

(1) Letting h → h∗−, it follows that ϕ4 →
√

µ/η , ϕ3 →
√

µ/η , ϕ3/ϕ4 → 1 and
sn(
√−µ(x− ct),1) = tanh

√−µ(x− ct). Therefore, we obtain u1(x, t)→ u5(x, t)
and u2(x, t)→ u4(x, t).

(2) Letting h→ 0+, it follows that ϕ4→
√

2µ/η , ϕ3→ 0, ϕ3/ϕ4→ 0 and sn(
√−µ(x−

ct),0) = sin
√−µ(x− ct). Therefore, we obtain u1(x, t)→ u3(x, t).

(3) Letting h→ 0−, it follows that ϕ10 →
√

2µ/η , ϕ9 → 0, ϕ8 → 0, ϕ7 →−
√

2µ/η ,
ω →

√
µ/2η , k → 1 and sn(

√
µ/2(x− ct),1) = tanh

√
µ/2(x− ct). Therefore,

we obtain u6(x, t)→ u8(x, t).
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(4) Letting h→ 0−, it follows that ϕ10 →
√

2µ/η , ϕ9 → 0, ϕ8 → 0, ϕ7 →−
√

2µ/η ,√
ϕ2

10−ϕ2
9

ϕ10
→ 1 and sn(

√µ(x− ct),1) = tanh
√µ(x− ct). Therefore, we obtain

u7(x, t)→ u9(x, t).
(5) Letting h→ 0+, it follows that ϕ14 →

√
2µ/η , ϕ13 →−

√
2µ/η ,−ϕ13

√
η/2µ →

1, ϕ14
√

η/2µ → 1 and cn(
√µ(x−ct),1) = sech

√µ(x−ct). Therefore, we obtain
u10(x, t)→ u8(x, t) and u11(x, t)→ u9(x, t).

Finally, we will show that the periodic wave solutions u2+(x, t) evolute into the kink
profile solitary wave solutions u4+(x, t) when the Hamiltonian h → h∗− (corresponding to
the changes of phase orbits of Figure 1 as h varies). We take some suitable choices of the
parameters, such as

(3.52) α = 2, β =−2, c = 2, λ =−1,

as an illustrative sample and draw their plots (see Figure 2).

4. Conclusions

This paper studies the PHI-four equation by the aid of ansatz method and bifurcation anal-
ysis. These approaches allowed to reveal several solution of this equation. They are cnoidal
waves, snoidal waves, solitary waves, kinks, periodic waves, periodic singular waves and
others. The constraint conditions imposes the restrictions on the choice of the parameters
and coefficients of the governing equations. There are several other NLEES where, partic-
ularly, the bifurcation method, can be applied to obtain these interesting solutions to them.
The results of these research will be available in due course of time.
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