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Abstract. We present an operator version of the Karamata inequality. More precisely, we
prove that if A is a selfadjoint element of a unital C∗-algebra A , ρ is a state on A , the
functions f ,g are continuous on the spectrum σ(A) of A such that 0 < m1 ≤ f (s) ≤ M1,
0 < m2 ≤ g(s)≤M2 for all s ∈ σ(A) and K =

(√
m1m2 +

√
M1M2

)
/
(√

m1M2 +
√

M1m2
)
,

then

K−2 ≤ ρ( f (A)g(A))
ρ( f (A))ρ(g(A))

≤ K2.

We also give some applications.
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1. Introduction

The classical Karamata inequality [5] states that if f ,g are integrable real functions on [0,1]
such that 0 < m1 ≤ f ≤M1 and 0 < m2 ≤ g≤M2, then

(1.1)
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤
∫ 1

0 f (t)g(t)dt∫ 1
0 f (t)dt

∫ 1
0 g(t)dt

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

The right hand constant is greater than or equal to 1. This may be regarded as a multi-
plicative converse inequality to the integral analogue of Čebyšev’s inequality. The addi-
tive version is known as the Grüss inequality [3] asserting that if f and g are integrable
real functions on [0,1] such that m1 ≤ f ≤ M1 and m2 ≤ g ≤ M2 for some real constants
m1,M1,m2,M2, then

(1.2)
∣∣∣∣∫ 1

0
f (t)g(t)dt−

∫ 1

0
f (t)dt

∫ 1

0
g(t)dt

∣∣∣∣≤ 1
4
(M1−m1)(M2−m2) ;
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and that the constant 1/4 is the best possible, see [1,4,6,8,9]. The following discrete version
of (1.1) was given by Lupaş [7] for positive linear functionals including the integral form of
Karamata’s inequality, see also [10]:

Theorem 1.1 (Lupaş). Suppose that X is a real linear space of real functions defined on
a bounded interval [a,b] such that the constant function e(x) = 1 belongs to it. If f ,g ∈ X
are such that 0 < m1 ≤ f ≤M1 and 0 < m2 ≤ g≤M2 for all x ∈ [a,b] and F : X → R is a
positive linear functional with F(e) = 1, then(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤ F( f )F(g)
F( f g)

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

In this note, we present an operator version of the Karamata inequality.

2. Main result

We start this section with the following useful lemma.

Lemma 2.1. Let A be a selfadjoint element of a unital C∗-algebra A and ρ be a state on A .
Let f ,g be continuous functions on the spectrum σ(A) of A such that 0 < m1 ≤ f (s)≤M1,
0 < m2 ≤ g(s)≤M2 for all s ∈ σ(A) and let D( f ) = M1−ρ( f (A)) and d( f ) = ρ( f (A))−
m1. Then

m1M2D( f )+M1m2d( f )
M2D( f )+m2d( f )

≤ ρ( f (A)g(A))
ρ(g(A))

≤ M1M2d( f )+m1m2D( f )
M2d( f )+m2D( f )

.

Proof. For all s, t ∈ σ(A) we have

(2.1) (M1− f (s))( f (t)−m1)(M2g(t)−m2g(s))≥ 0,

(2.2) (M1− f (s))( f (t)−m1)(M2g(s)−m2g(t))≥ 0.

(2.1) is equivalent with

M1M2 f (t)g(t)−M1m2 f (t)g(s)−m1M1M2g(t)+m1m2M1g(s)(2.3)

−M2 f (s) f (t)g(t)+m2 f (s)g(s) f (t)+m1M2 f (s)g(t)−m1m2 f (s)g(s)≥ 0.

Using the continuous functional calculus and the positivity of the state ρ it follows from
(2.3) that

M1M2 f (t)g(t)−M1m2 f (t)ρ(g(A))−m1M1M2g(t)+m1m2M1ρ(g(A))

−M2ρ( f (A)) f (t)g(t)+m2ρ( f (A)g(A)) f (t)+m1M2ρ( f (A))g(t)

−m1m2ρ( f (A)g(A))≥ 0.(2.4)

By the same technique we get from (2.4) that

M1M2ρ( f (A)g(A))−M1m2ρ( f (A))ρ(g(A))−m1M1M2ρ(g(A))

+m1m2M1ρ(g(A))−M2ρ( f (A))ρ( f (A)g(A))+m2ρ( f (A)g(A))ρ( f (A))

+m1M2ρ( f (A))ρ(g(A))−m1m2ρ( f (A)g(A))≥ 0,(2.5)

or equivalently

(M1M2−m1m2)ρ( f (A)g(A))+(m1M2−m2M1)ρ( f (A))ρ(g(A))

≥ (M2−m2)ρ( f (A))ρ( f (A)g(A))+m1M1(M2−m2)ρ(g(A)),
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that is,
m1M2D( f )+M1m2d( f )

M2D( f )+m2d( f )
≤ ρ( f (A)g(A))

ρ(g(A))
.

Similarly, from (2.2) it follows that

(M1M2−m1m2)ρ( f (A))ρ(g(A))+(m1M2−m2M1)ρ( f (A)g(A))

≥ (M2−m2)ρ( f (A))ρ( f (A)g(A))+m1M1(M2−m2)ρ(g(A)),

that is,
ρ( f (A)g(A))

ρ(g(A))
≤ M1M2d( f )+m1m2D( f )

M2d( f )+m2D( f )
.

Theorem 2.1. Let A be a selfadjoint element of a unital C∗-algebra A and ρ be a state on
A . Let f ,g be continuous functions on the spectrum σ(A) of A such that 0 < m1 ≤ f (s)≤
M1, 0 < m2 ≤ g(s)≤M2 for all s ∈ σ(A). If

K =
√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

,

then

K−2 ≤ ρ( f (A)g(A))
ρ( f (A))ρ(g(A))

≤ K2.

Proof. Let us define functions m,M : [m1,M1]→ [0,∞) by

m(t) =
(M1m2−m1M2)t +m1M1(M2−m2)

(M1M2−m1m2)t− (M2−m2)t2 ,

M(t) =
(M1M2−m1m2)t−m1M1(M2−m2)

(M2−m2)t2 +(m2M1−m1M2)t
.

If f or g is a constant function, then K = 1. Let us assume that mi 6= Mi, i = 1,2. If

t1 =
√

m1M1(
√

m1m2 +
√

M1M2)√
M1m2 +

√
m1M2

,

t2 =
√

m1M1(
√

M1m2 +
√

m1M2)√
m1m2 +

√
M1M2

,

then ti ∈ [m1,M1], i = 1,2, and

min
t∈[m1,M1]

m(t) = m(t1) = K−2,

max
t∈[m1,M1]

M(t) = M(t2) = K2.

From Lemma 2.1 we have

m(ρ( f (A)))≤ ρ( f (A)g(A))
ρ( f (A))ρ(g(A))

≤M(ρ( f (A))),

where ρ( f (A)) ∈ [m1,M1]. So, the theorem is proved.
As usual, let B(H ) denote the C∗-algebra of all bounded linear operators on a Hilbert

space H .
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Corollary 2.1. Let A ∈ B(H ) be a selfadjoint operator on a Hilbert space H , x ∈H
be a unit vector and f ,g be continuous functions on the spectrum σ(A) of A such that
0 < m1 ≤ f (s)≤M1, 0 < m2 ≤ g(s)≤M2 for all s ∈ σ(A). Then(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤ 〈 f (A)g(A)x,x〉
〈 f (A)x,x〉〈g(A)x,x〉

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

Corollary 2.2. Let A ∈Mn(C) be a Hermitian matrix, f ,g be continuous real functions on
the spectrum σ(A) of A such that 0 < m1 ≤ f (s)≤M1, 0 < m2 ≤ g(s)≤M2 for all s∈ σ(A).
Then (√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤ nTr( f (A)g(A))
Tr( f (A))Tr(g(A))

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

,

where Tr denotes the usual matrix trace.

Example 2.1. As consequences of Corollary 2.1, we demonstrate some reverse inequalities
of those presented in [2, Examples 1,2,3].

Let A ∈ B(H ) be a selfadjoint operator on a Hilbert space H and x ∈H be a unit
vector.

If A is positive definite, p,q > 0 and 0 < m1≤ sp≤M1, 0 < m2≤ sq≤M2 for all s∈σ(A)
then (√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤ 〈Ap+qx,x〉
〈Apx,x〉〈Aqx,x〉

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

If α,β > 0 and 0 < m1 ≤ exp(αs)≤M1, 0 < m2 ≤ exp(β s)≤M2 for all s ∈ σ(A) then(√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2

)−2

≤ 〈exp[(α +β )A]x,x〉
〈exp(αA)x,x〉〈exp(βA)x,x〉

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

If A is positive definite, p > 0 and 0 < m1≤ sp≤M1, 0 < m2≤ logs≤M2 for all s∈σ(A)
then (√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)−2

≤ 〈Ap logAx,x〉
〈Apx,x〉〈logAx,x〉

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

3. Applications for multiple elements

In this section we give a version of Theorem 2.1 for multiple elements, according to Dragomir’s
technique [2].

As usual, we denote by Mn(A ) the C∗-algebra of n×n matrices with entries in A .

Theorem 3.1. For j = 1,2, . . . ,n, let A j be a selfadjoint element of a unital C∗-algebra A

with unit I, and ρ j be a bounded positive linear functional on A such that
n
∑
j=1

ρ j(I) = 1, and

f ,g be continuous functions on the spectrum σ(A j) of A j such that 0 < m1 ≤ f (s) ≤ M1,
0 < m2 ≤ g(s)≤M2 for all s ∈ σ(A j). Then

(√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2

)−2

≤

n
∑
j=1

ρ j( f (A j)g(A j))

n
∑
j=1

ρ j( f (A j))
n
∑
j=1

ρ j(g(A j))
≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.
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Proof. We define a positive linear functional on Mn(A ) as follows. For B = (Bi j)∈Mn(A )

with Bi j ∈A , i, j = 1, . . . ,n, put ρ(B) =
n
∑
j=1

ρ j(B j j). In particular, for A = A1⊕·· ·⊕An one

has ρ(A) =
n
∑
j=1

ρ j(A j). It is easily seen that ρ( f (A)g(A)) =
n
∑
j=1

ρ j( f (A j)g(A j)), ρ( f (A)) =

n
∑
j=1

ρ j( f (A j)) and ρ(g(A)) =
n
∑
j=1

ρ j(g(A j)).

Now, the required inequalities of Theorem 3.1 follow from the inequalities of Theo-
rem 2.1.

Corollary 3.1. For j = 1,2, . . . ,n, let A j ∈ B(H ) be a selfadjoint operator on a Hilbert

space H , x j ∈H be a vector such that
n
∑
j=1
‖x j‖2 = 1, and f ,g be continuous functions

on the spectrum σ(A j) of A j such that 0 < m1 ≤ f (s) ≤ M1, 0 < m2 ≤ g(s) ≤ M2 for all
s ∈ σ(A j). Then

(√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2

)−2

≤

n
∑
j=1
〈 f (A j)g(A j)x j,x j〉

n
∑
j=1
〈 f (A j)x j,x j〉

n
∑
j=1
〈g(A j)x j,x j〉

≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

.

Proof. Apply Theorem 3.1 for the unital C∗-algebra A = B(H ) and positive linear func-
tionals ρ j = 〈(·)x j,x j〉, j = 1,2, . . . ,n.

In the forthcoming result, by λmax(A) (resp. λmin(A)) we denote the largest (resp. small-
est) eigenvalue of a Hermitian matrix A. In addition, the symbol ‖ · ‖ stands for the spectral
norm on Mn(C).

Corollary 3.2. For j = 1,2, . . . ,n, let A j ∈Mn(C) be a Hermitian matrix, x be a unit vector

in Cn, and p j ≥ 0 be a scalar with
m
∑
j=1

p j = 1, and f ,g be continuous functions on the

spectrum σ(A j) of A j such that 0 < m1 ≤ f (s)≤M1, 0 < m2 ≤ g(s)≤M2 for all s∈ σ(A j).
Then

λmax

(
n
∑
j=1

p j f (A j)g(A j)

)

λmax

(
n
∑
j=1

p j f (A j)

)
·λmax

(
n
∑
j=1

p jg(A j)

) ≤ (√m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

or equivalently ∥∥∥∥∥ n
∑
j=1

p j f (A j)g(A j)

∥∥∥∥∥∥∥∥∥∥ n
∑
j=1

p j f (A j)

∥∥∥∥∥ ·
∥∥∥∥∥ n

∑
j=1

p jg(A j)

∥∥∥∥∥
≤
(√

m1m2 +
√

M1M2√
m1M2 +

√
M1m2

)2

,
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and

(√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2

)−2

≤
λmin

(
n
∑
j=1

p j f (A j)g(A j)

)

λmin

(
n
∑
j=1

p j f (A j)

)
·λmin

(
n
∑
j=1

p jg(A j)

)
or equivalently

(√
m1m2 +

√
M1M2√

m1M2 +
√

M1m2

)−2

≤

∥∥∥∥∥∥
(

n
∑
j=1

p j f (A j)g(A j)

)−1
∥∥∥∥∥∥
−1

∥∥∥∥∥∥
(

n
∑
j=1

p j f (A j)

)−1
∥∥∥∥∥∥
−1

·

∥∥∥∥∥∥
(

n
∑
j=1

p jg(A j)

)−1
∥∥∥∥∥∥
−1 .

Proof. Use Corollary 3.1 and Courant–Fischer’s min-max theorem.
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