An Operator Karamata Inequality

${ }^{1}$ Mohammad Sal Moslehian, ${ }^{2}$ Marek Niezgoda and ${ }^{3}$ Rajna Rajić
${ }^{1}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran
${ }^{2}$ Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
${ }^{3}$ Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
${ }^{1}$ moslehian@um.ac.ir, ${ }^{2}$ marek.niezgoda@up.lublin.pl, ${ }^{3}$ rajna.rajic@zg.t-com.hr

Abstract

We present an operator version of the Karamata inequality. More precisely, we prove that if A is a selfadjoint element of a unital C^{*}-algebra \mathscr{A}, ρ is a state on \mathscr{A}, the functions f, g are continuous on the spectrum $\sigma(A)$ of A such that $0<m_{1} \leq f(s) \leq M_{1}$, $0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma(A)$ and $K=\left(\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}\right) /\left(\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}\right)$, then $$
K^{-2} \leq \frac{\rho(f(A) g(A))}{\rho(f(A)) \rho(g(A))} \leq K^{2}
$$

We also give some applications.

2010 Mathematics Subject Classification: Primary 47A63; Secondary 47B25, 15A60
Keywords and phrases: Karamata inequality, operator inequality, positive operator, unital C^{*}-algebra, state.

1. Introduction

The classical Karamata inequality [5] states that if f, g are integrable real functions on $[0,1]$ such that $0<m_{1} \leq f \leq M_{1}$ and $0<m_{2} \leq g \leq M_{2}$, then

$$
\begin{equation*}
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\int_{0}^{1} f(t) g(t) d t}{\int_{0}^{1} f(t) d t \int_{0}^{1} g(t) d t} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2} \tag{1.1}
\end{equation*}
$$

The right hand constant is greater than or equal to 1 . This may be regarded as a multiplicative converse inequality to the integral analogue of Čebyšev's inequality. The additive version is known as the Grüss inequality [3] asserting that if f and g are integrable real functions on $[0,1]$ such that $m_{1} \leq f \leq M_{1}$ and $m_{2} \leq g \leq M_{2}$ for some real constants $m_{1}, M_{1}, m_{2}, M_{2}$, then

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) g(t) d t-\int_{0}^{1} f(t) d t \int_{0}^{1} g(t) d t\right| \leq \frac{1}{4}\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) \tag{1.2}
\end{equation*}
$$

and that the constant $1 / 4$ is the best possible, see $[1,4,6,8,9]$. The following discrete version of (1.1) was given by Lupaş [7] for positive linear functionals including the integral form of Karamata's inequality, see also [10]:
Theorem 1.1 (Lupaş). Suppose that X is a real linear space of real functions defined on a bounded interval $[a, b]$ such that the constant function $e(x)=1$ belongs to it. If $f, g \in X$ are such that $0<m_{1} \leq f \leq M_{1}$ and $0<m_{2} \leq g \leq M_{2}$ for all $x \in[a, b]$ and $F: X \rightarrow \mathbb{R}$ is a positive linear functional with $F(e)=1$, then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{F(f) F(g)}{F(f g)} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

In this note, we present an operator version of the Karamata inequality.

2. Main result

We start this section with the following useful lemma.
Lemma 2.1. Let A be a selfadjoint element of a unital C^{*}-algebra \mathscr{A} and ρ be a state on \mathscr{A}. Let f, g be continuous functions on the spectrum $\sigma(A)$ of A such that $0<m_{1} \leq f(s) \leq M_{1}$, $0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma(A)$ and let $D(f)=M_{1}-\rho(f(A))$ and $d(f)=\rho(f(A))-$ m_{1}. Then

$$
\frac{m_{1} M_{2} D(f)+M_{1} m_{2} d(f)}{M_{2} D(f)+m_{2} d(f)} \leq \frac{\rho(f(A) g(A))}{\rho(g(A))} \leq \frac{M_{1} M_{2} d(f)+m_{1} m_{2} D(f)}{M_{2} d(f)+m_{2} D(f)} .
$$

Proof. For all $s, t \in \sigma(A)$ we have

$$
\begin{align*}
& \left(M_{1}-f(s)\right)\left(f(t)-m_{1}\right)\left(M_{2} g(t)-m_{2} g(s)\right) \geq 0, \tag{2.1}\\
& \left(M_{1}-f(s)\right)\left(f(t)-m_{1}\right)\left(M_{2} g(s)-m_{2} g(t)\right) \geq 0 . \tag{2.2}
\end{align*}
$$

(2.1) is equivalent with

$$
\begin{align*}
& M_{1} M_{2} f(t) g(t)-M_{1} m_{2} f(t) g(s)-m_{1} M_{1} M_{2} g(t)+m_{1} m_{2} M_{1} g(s) \tag{2.3}\\
& -M_{2} f(s) f(t) g(t)+m_{2} f(s) g(s) f(t)+m_{1} M_{2} f(s) g(t)-m_{1} m_{2} f(s) g(s) \geq 0 .
\end{align*}
$$

Using the continuous functional calculus and the positivity of the state ρ it follows from (2.3) that

$$
\begin{align*}
& M_{1} M_{2} f(t) g(t)-M_{1} m_{2} f(t) \rho(g(A))-m_{1} M_{1} M_{2} g(t)+m_{1} m_{2} M_{1} \rho(g(A)) \\
& -M_{2} \rho(f(A)) f(t) g(t)+m_{2} \rho(f(A) g(A)) f(t)+m_{1} M_{2} \rho(f(A)) g(t) \\
& -m_{1} m_{2} \rho(f(A) g(A)) \geq 0 . \tag{2.4}
\end{align*}
$$

By the same technique we get from (2.4) that

$$
\begin{align*}
& M_{1} M_{2} \rho(f(A) g(A))-M_{1} m_{2} \rho(f(A)) \rho(g(A))-m_{1} M_{1} M_{2} \rho(g(A)) \\
& +m_{1} m_{2} M_{1} \rho(g(A))-M_{2} \rho(f(A)) \rho(f(A) g(A))+m_{2} \rho(f(A) g(A)) \rho(f(A)) \\
& +m_{1} M_{2} \rho(f(A)) \rho(g(A))-m_{1} m_{2} \rho(f(A) g(A)) \geq 0 \tag{2.5}
\end{align*}
$$

or equivalently

$$
\begin{aligned}
& \left(M_{1} M_{2}-m_{1} m_{2}\right) \rho(f(A) g(A))+\left(m_{1} M_{2}-m_{2} M_{1}\right) \rho(f(A)) \rho(g(A)) \\
& \quad \geq\left(M_{2}-m_{2}\right) \rho(f(A)) \rho(f(A) g(A))+m_{1} M_{1}\left(M_{2}-m_{2}\right) \rho(g(A))
\end{aligned}
$$

that is,

$$
\frac{m_{1} M_{2} D(f)+M_{1} m_{2} d(f)}{M_{2} D(f)+m_{2} d(f)} \leq \frac{\rho(f(A) g(A))}{\rho(g(A))}
$$

Similarly, from (2.2) it follows that

$$
\begin{aligned}
& \left(M_{1} M_{2}-m_{1} m_{2}\right) \rho(f(A)) \rho(g(A))+\left(m_{1} M_{2}-m_{2} M_{1}\right) \rho(f(A) g(A)) \\
& \geq\left(M_{2}-m_{2}\right) \rho(f(A)) \rho(f(A) g(A))+m_{1} M_{1}\left(M_{2}-m_{2}\right) \rho(g(A))
\end{aligned}
$$

that is,

$$
\frac{\rho(f(A) g(A))}{\rho(g(A))} \leq \frac{M_{1} M_{2} d(f)+m_{1} m_{2} D(f)}{M_{2} d(f)+m_{2} D(f)} .
$$

Theorem 2.1. Let A be a selfadjoint element of a unital C^{*}-algebra \mathscr{A} and ρ be a state on \mathscr{A}. Let f, g be continuous functions on the spectrum $\sigma(A)$ of A such that $0<m_{1} \leq f(s) \leq$ $M_{1}, 0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma(A)$. If

$$
K=\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}
$$

then

$$
K^{-2} \leq \frac{\rho(f(A) g(A))}{\rho(f(A)) \rho(g(A))} \leq K^{2} .
$$

Proof. Let us define functions $m, M:\left[m_{1}, M_{1}\right] \rightarrow[0, \infty)$ by

$$
\begin{aligned}
& m(t)=\frac{\left(M_{1} m_{2}-m_{1} M_{2}\right) t+m_{1} M_{1}\left(M_{2}-m_{2}\right)}{\left(M_{1} M_{2}-m_{1} m_{2}\right) t-\left(M_{2}-m_{2}\right) t^{2}} \\
& M(t)=\frac{\left(M_{1} M_{2}-m_{1} m_{2}\right) t-m_{1} M_{1}\left(M_{2}-m_{2}\right)}{\left(M_{2}-m_{2}\right) t^{2}+\left(m_{2} M_{1}-m_{1} M_{2}\right) t}
\end{aligned}
$$

If f or g is a constant function, then $K=1$. Let us assume that $m_{i} \neq M_{i}, i=1,2$. If

$$
\begin{aligned}
& t_{1}=\frac{\sqrt{m_{1} M_{1}}\left(\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}\right)}{\sqrt{M_{1} m_{2}}+\sqrt{m_{1} M_{2}}} \\
& t_{2}=\frac{\sqrt{m_{1} M_{1}}\left(\sqrt{M_{1} m_{2}}+\sqrt{m_{1} M_{2}}\right)}{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}
\end{aligned}
$$

then $t_{i} \in\left[m_{1}, M_{1}\right], i=1,2$, and

$$
\begin{aligned}
& \min _{t \in\left[m_{1}, M_{1}\right]} m(t)=m\left(t_{1}\right)=K^{-2}, \\
& \max _{t \in\left[m_{1}, M_{1}\right]} M(t)=M\left(t_{2}\right)=K^{2} .
\end{aligned}
$$

From Lemma 2.1 we have

$$
m(\rho(f(A))) \leq \frac{\rho(f(A) g(A))}{\rho(f(A)) \rho(g(A))} \leq M(\rho(f(A)))
$$

where $\rho(f(A)) \in\left[m_{1}, M_{1}\right]$. So, the theorem is proved.
As usual, let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a Hilbert space \mathscr{H}.

Corollary 2.1. Let $A \in \mathbb{B}(\mathscr{H})$ be a selfadjoint operator on a Hilbert space $\mathscr{H}, x \in \mathscr{H}$ be a unit vector and f, g be continuous functions on the spectrum $\sigma(A)$ of A such that $0<m_{1} \leq f(s) \leq M_{1}, 0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma(A)$. Then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\langle f(A) g(A) x, x\rangle}{\langle f(A) x, x\rangle\langle g(A) x, x\rangle} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

Corollary 2.2. Let $A \in M_{n}(\mathbb{C})$ be a Hermitian matrix, f, g be continuous real functions on the spectrum $\sigma(A)$ of A such that $0<m_{1} \leq f(s) \leq M_{1}, 0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma(A)$. Then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{n \operatorname{Tr}(f(A) g(A))}{\operatorname{Tr}(f(A)) \operatorname{Tr}(g(A))} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

where Tr denotes the usual matrix trace.
Example 2.1. As consequences of Corollary 2.1, we demonstrate some reverse inequalities of those presented in [2, Examples 1,2,3].

Let $A \in \mathbb{B}(\mathscr{H})$ be a selfadjoint operator on a Hilbert space \mathscr{H} and $x \in \mathscr{H}$ be a unit vector.

If A is positive definite, $p, q>0$ and $0<m_{1} \leq s^{p} \leq M_{1}, 0<m_{2} \leq s^{q} \leq M_{2}$ for all $s \in \sigma(A)$ then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\left\langle A^{p+q_{x}} x\right\rangle}{\left\langle A^{p} x, x\right\rangle\left\langle A^{q} x, x\right\rangle} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

If $\alpha, \beta>0$ and $0<m_{1} \leq \exp (\alpha s) \leq M_{1}, 0<m_{2} \leq \exp (\beta s) \leq M_{2}$ for all $s \in \sigma(A)$ then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\langle\exp [(\alpha+\beta) A] x, x\rangle}{\langle\exp (\alpha A) x, x\rangle\langle\exp (\beta A) x, x\rangle} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

If A is positive definite, $p>0$ and $0<m_{1} \leq s^{p} \leq M_{1}, 0<m_{2} \leq \log s \leq M_{2}$ for all $s \in \sigma(A)$ then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\left\langle A^{p} \log A x, x\right\rangle}{\left\langle A^{p} x, x\right\rangle\langle\log A x, x\rangle} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

3. Applications for multiple elements

In this section we give a version of Theorem 2.1 for multiple elements, according to Dragomir's technique [2].

As usual, we denote by $M_{n}(\mathscr{A})$ the C^{*}-algebra of $n \times n$ matrices with entries in \mathscr{A}.
Theorem 3.1. For $j=1,2, \ldots, n$, let A_{j} be a selfadjoint element of a unital C^{*}-algebra \mathscr{A} with unit I, and ρ_{j} be a bounded positive linear functional on \mathscr{A} such that $\sum_{j=1}^{n} \rho_{j}(I)=1$, and f, g be continuous functions on the spectrum $\sigma\left(A_{j}\right)$ of A_{j} such that $0<m_{1} \leq f(s) \leq M_{1}$, $0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma\left(A_{j}\right)$. Then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\sum_{j=1}^{n} \rho_{j}\left(f\left(A_{j}\right) g\left(A_{j}\right)\right)}{\sum_{j=1}^{n} \rho_{j}\left(f\left(A_{j}\right)\right) \sum_{j=1}^{n} \rho_{j}\left(g\left(A_{j}\right)\right)} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

Proof. We define a positive linear functional on $M_{n}(\mathscr{A})$ as follows. For $B=\left(B_{i j}\right) \in M_{n}(\mathscr{A})$ with $B_{i j} \in \mathscr{A}, i, j=1, \ldots, n$, put $\rho(B)=\sum_{j=1}^{n} \rho_{j}\left(B_{j j}\right)$. In particular, for $A=A_{1} \oplus \cdots \oplus A_{n}$ one has $\rho(A)=\sum_{j=1}^{n} \rho_{j}\left(A_{j}\right)$. It is easily seen that $\rho(f(A) g(A))=\sum_{j=1}^{n} \rho_{j}\left(f\left(A_{j}\right) g\left(A_{j}\right)\right), \rho(f(A))=$ $\sum_{j=1}^{n} \rho_{j}\left(f\left(A_{j}\right)\right)$ and $\rho(g(A))=\sum_{j=1}^{n} \rho_{j}\left(g\left(A_{j}\right)\right)$.

Now, the required inequalities of Theorem 3.1 follow from the inequalities of Theorem 2.1.

Corollary 3.1. For $j=1,2, \ldots, n$, let $A_{j} \in \mathbb{B}(\mathscr{H})$ be a selfadjoint operator on a Hilbert space $\mathscr{H}, x_{j} \in \mathscr{H}$ be a vector such that $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, and f, g be continuous functions on the spectrum $\sigma\left(A_{j}\right)$ of A_{j} such that $0<m_{1} \leq f(s) \leq M_{1}, 0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma\left(A_{j}\right)$. Then

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle f\left(A_{j}\right) x_{j}, x_{j}\right\rangle \sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

Proof. Apply Theorem 3.1 for the unital C^{*}-algebra $\mathscr{A}=\mathbb{B}(\mathscr{H})$ and positive linear functionals $\rho_{j}=\left\langle(\cdot) x_{j}, x_{j}\right\rangle, j=1,2, \ldots, n$.

In the forthcoming result, by $\lambda_{\max }(A)$ (resp. $\left.\lambda_{\min }(A)\right)$ we denote the largest (resp. smallest) eigenvalue of a Hermitian matrix A. In addition, the symbol $\|\cdot\|$ stands for the spectral norm on $M_{n}(\mathbb{C})$.

Corollary 3.2. For $j=1,2, \ldots, n$, let $A_{j} \in M_{n}(\mathbb{C})$ be a Hermitian matrix, x be a unit vector in \mathbb{C}^{n}, and $p_{j} \geq 0$ be a scalar with $\sum_{j=1}^{m} p_{j}=1$, and f, g be continuous functions on the spectrum $\sigma\left(A_{j}\right)$ of A_{j} such that $0<m_{1} \leq f(s) \leq M_{1}, 0<m_{2} \leq g(s) \leq M_{2}$ for all $s \in \sigma\left(A_{j}\right)$. Then

$$
\frac{\lambda_{\max }\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right)\right)}{\lambda_{\max }\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right)\right) \cdot \lambda_{\max }\left(\sum_{j=1}^{n} p_{j} g\left(A_{j}\right)\right)} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2}
$$

or equivalently

$$
\frac{\left\|\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right)\right\|}{\left\|\sum_{j=1}^{n} p_{j} f\left(A_{j}\right)\right\| \cdot\left\|\sum_{j=1}^{n} p_{j} g\left(A_{j}\right)\right\|} \leq\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{2},
$$

and

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\lambda_{\min }\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right)\right)}{\lambda_{\min }\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right)\right) \cdot \lambda_{\min }\left(\sum_{j=1}^{n} p_{j} g\left(A_{j}\right)\right)}
$$

or equivalently

$$
\left(\frac{\sqrt{m_{1} m_{2}}+\sqrt{M_{1} M_{2}}}{\sqrt{m_{1} M_{2}}+\sqrt{M_{1} m_{2}}}\right)^{-2} \leq \frac{\left\|\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right) g\left(A_{j}\right)\right)^{-1}\right\|^{-1}}{\left\|\left(\sum_{j=1}^{n} p_{j} f\left(A_{j}\right)\right)^{-1}\right\|^{-1} \cdot\left\|\left(\sum_{j=1}^{n} p_{j} g\left(A_{j}\right)\right)^{-1}\right\|^{-1}}
$$

Proof. Use Corollary 3.1 and Courant-Fischer's min-max theorem.
Acknowledgement. The first author was supported by a grant from Ferdowsi University of Mashhad (No. MP90249MOS).

References

[1] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Sci. Publ., Hauppauge, NY, 2005.
[2] S. S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Linear Multilinear Algebra 58 (2010), no. 7-8, 805-814.
[3] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z. 39 (1935), no. 1, 215-226.
[4] D. R. Jocić, D. Krtinić and M. S. Moslehian, Landau and Grüss type inequalities for inner product type integral transformers in norm ideals, Math. Inequal. Appl. 16 (2013), no. 1, 109-125.
[5] J. Karamata, Inégalités relatives aux quotients et à la différence de $\int f g$ et $\int f \int g$, Acad. Serbe Sci. Publ. Inst. Math. 2 (1948), 131-145.
[6] M. Krnić, N. Lovričević and J. Pečarić, Jensen's operator and applications to mean inequalities for operators in Hilbert space, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 1-14.
[7] A. Lupaş, On two inequalities of Karamata, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), 119-123 (1979).
[8] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61, Kluwer Acad. Publ., Dordrecht, 1993.
[9] M. S. Moslehian and R. Rajić, A Grüss inequality for n-positive linear maps, Linear Algebra Appl. 433 (2010), no. 8-10, 1555-1560.
[10] J. Pečarić and I. Perić, Note on Grüss type inequality, Math. Inequal. Appl. 8 (2005), no. 2, 233-236.

