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Abstract. In this paper, we consider the following nonlinear q-fractional three-point bound-
ary value problem

(Dα
q u)(t)+ f (t,u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η),

where 0 < βηα−2 < 1. By the properties of the Green function and the lower and upper
solution method, some new existence to the above boundary value problem are established.
As applications, examples are presented to illustrate the main results.
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1. Introduction

Recently, an increasing interest in studying the existence of solutions for boundary value
problems of fractional order functional differential equations has been observed [5–8, 16–
19, 21, 25, 26]. Fractional differential equations describe many phenomena in various fields
of science and engineering such as physics, mechanics, chemistry, control, engineering, etc.
For an extensive collection of such results, we refer the readers to the monographs by Samko
et al. [24], Podlubny [22] and Kilbas et al. [15].

On the other hand, the q-difference calculus or quantum calculus is an old subject that
was first developed by Jackson [12,13]. It is rich in history and in applications as the reader
can confirm in [9].

The origin of the fractional q-difference calculus can be traced back to the works by Al-
Salam [3] and Agarwal [1]. More recently, maybe due to the explosion in research within
the fractional differential calculus setting, new developments in this theory of fractional q-
difference calculus were made, e.g., q-analogues of the integral and differential fractional
operators properties such as the q-Laplace transform, q-Taylor’s formula [4, 23], just to
mention some.
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Recently, some works consider the existence of positive solutions for nonlinear q-fractional
boundary value problem (see [10, 11]). As is well-known, the aim of finding positive solu-
tions to boundary value problems is of main importance in various fields of applied mathe-
matics (see the book [2] and references therein). In addition, since q-calculus has a tremen-
dous potential for applications [9], we find it pertinent to investigate such a demand. To the
authors’ knowledge, no one has studied the existence of positive solutions for nonlinear q-
fractional three-point boundary value problem (1.1) and (1.2) by using the lower and upper
solution method.

In this paper, we deal with the following three-point boundary value problem

(Dα
q u)(t)+ f (t,u(t)) = 0, 0 < t < 1, 2 < α < 3,(1.1)

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η),(1.2)

where 0 < βηα−2 < 1, 0 < q < 1. We will prove the existence of a positive solution for the
boundary value problems (1.1)–(1.2) by using the lower and upper solution method. This
work is motivated by papers [10, 11, 20].

2. Preliminaries

We need the following definitions and lemmas that will be used to prove our main results.
Let q ∈ (0,1) and define

[a]q =
1−qa

1−q
, a ∈ R.

The q-analogue of the power function (a−b)n with N0 is

(a−b)0 = 1, (a−b)n =
n−1

∏
k=0

(a−bqk), n ∈ N, a,b ∈ R.

More generally, if α ∈ R, then

(a−b)(α) = aα
∞

∏
n=0

a−bqn

a−bqα+n .

Note that, if b = 0 then a(α) = aα . The q-gamma function is defined by

Γq(x) =
(1−q)(x−1)

(1−q)x−1 , x ∈ R\{0,−1,−2, . . .},

and satisfies Γq(x+1) = [x]Γq(x).
The q-derivative of a function f is here defined by

(Dq f )(x) =
f (x)− f (qx)

(1−q)x
, (Dq f )(0) = lim

x→0
(Dq f )(x),

and q-derivatives of higher order by

(D0
q f )(x) = f (x) and (Dn

q f )(x) = Dq(Dn−1
q f )(x), n ∈ N.

The q-integral of a function f defined in the interval [0,b] is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

f (xqn)qn, x ∈ [0,b].
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If a ∈ [0,b] and f is defined in the interval [0,b], its integral from a to b is defined by∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f )(x) = f (x) and (In

q f )(x) = Iq(In−1
q f )(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIq f )(x) = f (x),

and if f is continuous at x = 0, then

(IqDq f )(x) = f (x)− f (0).

Basic properties of the two operators can be found in [14]. We now point out three formulas
that will be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α),(2.1)

tDq(t− s)(α) = [α]q(t− s)(α−1),(2.2) (
xDq

∫ x

0
f (x, t)dqt

)
(x) =

∫ x

0
xDq f (x, t)dqt + f (qx,x).(2.3)

Remark 2.1. [10] We note that if α > 0 and a≤ b≤ t, then (t−a)(α) ≥ (t−b)(α).

The following definition was considered first in [1].

Definition 2.1. Let α ≥ 0 and f be a function defined on [0,1]. The fractional q-integral of
the Riemann-Liouville type is (I0

q f )(x) = f (x) and

(Iα
q f )(x) =

1
Γq(α)

∫ x

0
(x−qt)(α−1) f (t)dqt, α > 0, x ∈ [0,1].

Definition 2.2. [23] The fractional q-derivative of the Riemann-Liouville type of order α ≥
0 is defined by (D0

q f )(x) = f (x) and

(Dα
q f )(x) = (Dm

q Im−α
q f )(x), α > 0,

where m is the smallest integer greater than or equal to α .

Next, we list some properties that are already known in the literature. Its proof can be
found in [1, 23].

Lemma 2.1. Let α,β ≥ 0 and f be a function defined on [0,1]. Then the next formulas
hold:

(1) (Iβ
q Iα

q f )(x) = (Iα+β
q f )(x),

(2) (Dα
q Iα

q f )(x) = f (x).

Lemma 2.2. [10] Let α > 0 and p be a positive integer. Then the following equality holds:

(Iα
q Dp

q f )(x) = (Dp
q Iα

q f )(x)−
p−1

∑
k=0

xα−p+k

Γq(α + k− p+1)
(Dk

q f )(0).
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3. Related lemmas

Lemma 3.1. Let 0 < η < 1 and β 6= 1
ηα−2 . If h ∈C[0,1], then the boundary value problem

(Dα
q u)(t)+h(t) = 0, 0 < t < 1, 2 < α < 3,(3.1)

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η)(3.2)

has a unique solution

(3.3) u(t) =
∫ 1

0
G(t,qs)h(s)dqs+

β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs)h(s)dqs,

where

(3.4) G(t,s) =
1

Γq(α)

{
(1− s)(α−2)tα−1− (t− s)(α−1), 0≤ s≤ t ≤ 1,

(1− s)(α−2)tα−1, 0≤ t ≤ s≤ 1,

(3.5)

H(t,s) = tDqG(s, t) =
[α−1]q
Γq(α)

{
(1− s)(α−2)tα−2− (t− s)(α−2), 0≤ s≤ t ≤ 1,

(1− s)(α−2)tα−2, 0≤ t ≤ s≤ 1.

Proof. Consider p = 3. In view of Lemma 2.1 and Lemma 2.2, from (3.1) we see that

(Iα
q D3

qI3−α
q u)(t) =−(Iα

q h)(t)

and

(3.6) u(t) = c1tα−1 + c2tα−2 + c3tα−3−
∫ t

0

(t−qs)(α−1)

Γq(α)
h(s)dqs.

From (3.2), we know that c3 = 0. Differentiating both sides of (3.6) one obtain, with the
help of (2.1) and (2.2)

(Dqy)(x) = [α−1]qc1tα−2 +[α−2]qc2tα−3−
[α−1]q
Γq(α)

∫ t

0
(t−qs)(α−2)h(s)dqs.

Using the boundary condition (3.2), we have c2 = 0 and

c1 =
1

Γq(α)(1−βηα−2)

[∫ 1

0
(1−qs)(α−2)h(s)dqs−

∫
η

0
β (η−qs)(α−2)h(s)dqs

]
.

Therefore, the unique solution of boundary value problem (3.1)–(3.2) is

u(t) =−
∫ t

0

(t−qs)(α−1)

Γq(α)
h(s)dqs

+
tα−1

Γq(α)(1−βηα−2)

[∫ 1

0
(1−qs)(α−2)h(s)dqs−

∫
η

0
β (η−qs)(α−2)h(s)dqs

]
=−

∫ t

0

(t−qs)(α−1)

Γq(α)
h(s)dqs− β tα−1

Γq(α)(1−βηα−2)

∫
η

0
(η−qs)(α−2)h(s)dqs

+
(

tα−1

Γq(α)
+

βηα−2tα−1

Γq(α)(1−βηα−2)

)∫ 1

0
(1−qs)(α−2)h(s)dqs

=
1

Γq(α)

∫ t

0
((1−qs)(α−2)tα−1− (t−qs)(α−1))h(s)dqs
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+
1

Γq(α)

∫ 1

t
(1−qs)(α−2)tα−1h(s)dqs+

βηα−2tα−1

Γq(α)(1−βηα−2)

∫ 1

0
(1−qs)(α−2)h(s)dqs

− β tα−1

Γq(α)(1−βηα−2)

∫
η

0
(η−qs)(α−2)h(s)dqs

=
∫ 1

0
G(t,qs)h(s)dqs+

β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs)h(s)dqs.

The proof is complete.

Lemma 3.2. G defined by (3.4) has the following properties:
(1) G is a continuous function and G(t,qs)≥ 0;
(2) G(t,qs) is strictly increasing in the first variable.

Proof. The continuity of G is easily checked. On the other hand, let

h1(t,s) = (1− s)(α−2)tα−1− (t− s)(α−1), 0≤ s≤ t ≤ 1,

and
h2(t,s) = (1− s)(α−2)tα−1, 0≤ t ≤ s≤ 1.

It is obvious that h2(t,qs)≥ 0. Now, h1(0,qs) = 0 and, in view of Remark 2.1, for t 6= 0

h1(t,qs) = (1−qs)(α−2)tα−1− (1−q
s
t
)(α−1)tα−1

≥ tα−1
[
(1−qs)(α−2)− (1−qs)(α−1)

]
≥ 0.

Then we conclude that G(t,qs)≥ 0 for all (t,s) ∈ [0,1]× [0,1]. This concludes the proof of
Lemma 3.2 (1).

Next, for fixed s ∈ [0,1],

tDqh1(t,qs) = (1−qs)(α−2)[α−1]qtα−2− [α−1]q(t−qs)(α−2)

= (1−qs)(α−2)[α−1]qtα−2− [α−1]q(1−q
s
t
)(α−2)tα−2

≥ (1−qs)(α−2)[α−1]qtα−2− [α−1]q(1−qs)(α−2)tα−2 = 0.

This implies that h1(t,qs) is an increasing function of t. Obviously, h2(t,qs) is increasing
in t. Therefore G(t,qs) is an increasing function of t for fixed s ∈ [0,1]. The proof is
complete.

Remark 3.1. Obviously, following the proof Lemma 3.2 (1) we have H(η ,qs) ≥ 0. By
Lemma 3.1 and 3.2, we have u(t)≥ 0 if 1−βηα−2 > 0 and h(t)≥ 0 on t ∈ [0,1].

4. Single positive solution of the boundary value problems (1.1)–(1.2)

In this section, we establish the existence of single positive solution for boundary value
problem (1.1) and (1.2) by lower and upper solution method. We assume that f : [0,1]×
[0,+∞)→ [0,+∞) is continuous in this section.

Lemma 4.1. If u(t) ∈ C[0,1] and is a positive solution of (1.1) and (1.2), then mρ(t) ≤
u(t)≤Mρ(t), where

ρ(t) :=
∫ 1

0
G(t,qs)dqs+

β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs)dqs
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and m,M are two constants.

Proof. Since u(t) ∈C[0,1], there exists M′ > 0 so that |u(t)| ≤M′ for t ∈ [0,1]. Set

m := min
(t,u)∈[0,1]×[0,M′]

f (t,u), M := max
(t,u)∈[0,1]×[0,M′]

f (t,u).

By view of Lemma 3.1, we have

mρ(t)≤ u(t) =
∫ 1

0
G(t,qs) f (s,u(s))dqs

+
β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs) f (s,u(s))dqs≤Mρ(t).

Thus we finished the proof of Lemma 4.1.
Now we introduce the following two definitions about the upper and lower solutions of

fractional boundary value problem (1.1) and (1.2).

Definition 4.1. A function θ(t) is called a lower solution of fractional boundary value
problem (1.1) and (1.2) if θ(t) ∈C[0,1] and θ(t) satisfies

−(Dα
q θ)(t)≤ f (t,θ(t)), 0 < t < 1, 2 < α ≤ 3,

θ(0)≤ 0, (Dqθ)(0)≤ 0, (Dqθ)(1)≤ β (Dqθ)(η).

Definition 4.2. A function γ(t) is called an upper solution of fractional boundary value
problem (1.1) and (1.2) if γ(t) ∈C[0,1] and γ(t) satisfies

−(Dα
q γ)(t)≥ f (t,γ(t)), 0 < t < 1, 2 < α ≤ 3,

γ(0)≥ 0, (Dqγ)(0)≥ 0, (Dqγ)(1)≥ β (Dqγ)(η).

The main result of this paper is the following.

Theorem 4.1. The fractional boundary value problem (1.1) and (1.2) has a positive and
strictly increasing solution u(t) if the following conditions are satisfied:

(i) f : [0,1]× [0,+∞)→ [0,+∞) is continuous and nondecreasing with respect to the
second variable and f (t,0) 6= 0 for t ∈ Z ⊂ [0,1] with µ(Z) > 0 (µ denotes the
Lebesgue measure);

(ii) There exists a positive constant µ < 1 such that

kµ f (t,u)≤ f (t,ku), ∀ 0≤ k ≤ 1.

Proof. At first, we will prove that the functions θ(t) = k1g(t), γ(t) = k2g(t) are lower and

upper solutions of (1.1) and (1.2), respectively, where 0 < k1 ≤ min
{

1
a2

,(a1)
µ

1−µ

}
, k2 ≥

max
{

1
a1

,(a2)
µ

1−µ

}
and

a1 = min
{

1, inf
t∈[0,1]

f (t,ρ(t))
}

> 0, a2 = max

{
1, sup

t∈[0,1]
f (t,ρ(t))

}
and

g(t) =
∫ 1

0
G(t,qs) f (s,ρ(s))dqs+

β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs) f (s,ρ(s))dqs.
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By view of Lemma 3.1, we know that g(t) is a positive solution of the following equations

(Dα
q u)(t)+ f (t,ρ(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η).

From the conclusion of Lemma 4.1, we know that

a1ρ(t)≤ g(t)≤ a2ρ(t), ∀ t ∈ [0,1].

Thus, by virtue of the assumption of the Theorem 4.1, it follows that

k1a1 ≤
θ(t)
ρ(t)

≤ k1a2 ≤ 1,
1

k2a2
≤ ρ(t)

γ(t)
≤ 1

k2a1
≤ 1,

(k1a1)µ ≥ k1, (k2a2)µ ≤ k2.

Therefore, we have

f (t,θ(t)) = f
(

t,
θ(t)
ρ(t)

ρ(t)
)
≥
(

θ(t)
ρ(t)

)µ

f (t,ρ(t))≥ (k1a1)µ f (t,ρ(t))≥ k1 f (t,ρ(t)),

k2 f (t,ρ(t))= k2 f
(

t,
ρ(t)
γ(t)

γ(t)
)
≥ k2

(
ρ(t)
γ(t)

)µ

f (t,γ(t))≥ k2(k2a2)−µ f (t,γ(t))≥ f (t,γ(t)).

It implies that

−(Dα
q θ)(t) = k1 f (t,ρ(t))≤ f (t,θ(t)), 0 < t < 1, 2 < α < 3,

−(Dα
q γ)(t) = k2 f (t,ρ(t))≥ f (t,γ(t)), 0 < t < 1, 2 < α < 3.

Obviously, θ(t) = k1g(t), γ(t) = k2g(t) satisfies the boundary conditions (1.2). So, α(t) =
k1g(t), β (t) = k2g(t) are lower and upper solutions of (1.1) and (1.2) respectively.

Next, we will prove that the fractional boundary value problem

(Dα
q u)(t)+g(t,u(t)) = 0, 0 < t < 1, 2 < α < 3,(4.1)

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η),(4.2)

has a solution, where

g(t,u(t)) =


f (t,θ(t)), i f u(t)≤ θ(t),
f (t,u(t)), i f θ(t)≤ u(t)≤ γ(t),
f (t,γ(t)), i f γ(t)≤ u(t).

Thus, we consider the operator A : C[0,1]→C[0,1] define as

Au(t) =
∫ 1

0
G(t,qs)g(s,u(s))dqs+

β tα−1

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs)g(s,u(s))dqs,

where G(t,qs) and H(η ,qs) are defined in Lemma 3.1. Since the function f (t,u) in nonde-
creasing in u, this shows that, for any u ∈C[0,1],

f (t,θ(t))≤ g(t,u(t))≤ f (t,γ(t)) for t ∈ [0,1].

The operator A : C[0,1]→C[0,1] is continuous in view of continuity of G(t,s) and g(t,u(t)).
By means of Arzela-Ascoli theorem, A is a compact operator. Therefore, from Leray-
Schauder fixed point theorem, the operator A has a fixed point, i.e., fractional boundary
value problem (4.1)–(4.2) has a solution.

Finally, we will prove that fractional boundary value problem (1.1) and (1.2) has a posi-
tive solution.
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Suppose u∗(t) is a solution of fractional boundary value problem (4.1)–(4.2). Since the
function f (t,u) is nondecreasing in u, we know that

f (t,θ(t))≤ g(t,u∗(t))≤ f (t,γ(t)) for t ∈ [0,1].

Thus
−(Dα

q z)(t)≥ f (t,γ(t))−g(t,u∗(t))≥ 0,

z(0) = (Dqz)(0) = 0, (Dqz)(1) = β (Dqz)(η),

where z(t) = γ(t)−u∗(t). By virtue of Remark 3.1, z(t)≥ 0, i.e., u∗(t)≤ θ(t) for t ∈ [0,1].
Similarly, β (t) ≤ u∗(t) for t ∈ [0,1]. Therefore, u∗(t) is a positive solution of fractional
boundary value problem (1.1) and (1.2).

In the following, we will prove that this positive solution u(t) is strictly increasing func-
tion. As u(0) =

∫ 1
0 G(0,qs) f (s,u(s))dqs and G(0,qs) = 0 we have u(0) = 0.

Moreover, if we take t1, t2 ∈ [0,1] with t1 < t2, we can consider the following cases.
Case 1. t1 = 0, in this case, u(t1) = 0 and, as u(t)≥ 0, suppose that u(t2) = 0. Then

0 = u(t2) =
∫ 1

0
G(t2,qs) f (s,u(s))dqs+

β tα−1
2

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs) f (s,u(s))dqs.

This implies that
G(t2,qs) · f (s,u(s)) = 0, a.e.(s)

and as G(t2,s) 6= 0 a.e.(s) we get f (s,u(s)) = 0 a.e.(s).
On the other hand, f is nondecreasing with respect to the second variable and therefore

we get
f (s,0)≤ f (s,u(s)) = 0, a.e.(s)

which contradicts the condition (i) f (t,0) 6= 0 for t ∈ Z ⊂ [0,1](µ(Z) 6= 0). Thus u(t1) =
0 < u(t2).
Case 2. 0 < t1. In this case, let us take t2, t1 ∈ [0,1] with t1 < t2, then

u(t2)−u(t1) =
∫ 1

0
(G(t2,qs)−G(t1,qs)) f (s,u(s))dqs

+
β (tα−1

2 − tα−1
1 )

[α−1]q(1−βηα−2)

∫ 1

0
H(η ,qs) f (s,u(s))dqs.

Taking into account Lemma 3.2 (2) and the fact that f ≥ 0, we get u(t2)−u(t1)≥ 0.
Suppose that u(t2) = u(t1) then∫ 1

0
(G(t2,qs)−G(t1,qs)) f (s,u(s))dqs = 0

and this implies
(G(t2,qs)−G(t1,qs)) f (s,u(s)) = 0 a.e.(s).

Again, Lemma 3.2 (2) gives us

f (s,u(s)) = 0 a.e.(s)

and using the same reasoning as above we have that this contradicts condition (i) f (t,0) 6= 0
for t ∈ Z⊂ [0,1] (µ(Z) 6= 0). Thus u(t1) = 0 < u(t2). We have finished the proof of Theorem
4.1.
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5. Example

Example 5.1. As an example we mention the following fractional boundary value problem

(5.1)

{
(D

5
2
q u)(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β (Dqu)(η),

where 0 < q < 1 and 0 < βηα−2 < 1 and f (t,u) = t +uµ , 0 < µ < 1.

Proof. Since kµ ≤ 1 for 0 < µ < 1 and 0≤ k ≤ 1. It is easy to check that

kµ f (t,u) = kµ t + kµ uµ ≤ t +(ku)µ = f (t,ku).

Thus, by Theorem 4.1 we know that the boundary value problem (5.1) has a positive and
strictly increasing solution u(t).
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