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Abstract. The k-distance domination problem is to find a minimum vertex set D of a graph
such that every vertex of the graph is either in D or within distance k from some vertex of D,
where k is a positive integer. In the present paper, by using labeling method, a linear-time
algorithm for k-distance domination problem on block graphs is designed.

2010 Mathematics Subject Classification: 05C69, 05C12

Keywords and phrases: Distance domination, block graph, algorithm.

1. Introduction

All graphs considered in this paper are simple and connected graphs. For terminology and
notation not given here, the reader is referred to [10]. Let G = (V,E) be a graph with vertex
set V and edge set E. For any v ∈ V , The neighborhood N(v) of v is the set of vertices
adjacent to v, the closed neighborhood of v is N[v] = N(v)∪{v}. The distance dG(u,v)
between two vertices u and v is the length of a shortest uv-path in G. Let k be a positive
integer. For any vertex v∈V , the k-distance neighborhood of v is Nk(v) = {u| 0 < dG(v,u)≤
k}. The closed k-distance neighborhood of v is Nk[v] = Nk(v)∪{v}.

Given a graph G = (V,E), we say that a vertex v ∈V dominates all vertices in its closed
neighborhood N[v]. Recall that a subset D⊆V is called a dominating set of G if every vertex
in G is dominated by a vertex in D. The domination number γ(G) of G is the minimum
cardinality among all dominating sets of G.

Domination and some domination-related parameters have been extensively studied (see,
for example, [1, 2, 11, 17]). Among these parameters, k-distance domination has received
more and more attention in recent years.

We say that a vertex v ∈ V k-distance dominates all vertices in its closed k-distance
neighborhood Nk[v]. A subset D ⊆ V is called a k-distance dominating set of G if every
vertex in G is k-distance dominated by a vertex in D. The k-distance domination number
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γk(G) of G is the minimum cardinality among all k-distance dominating sets of G. A k-
distance dominating set with cardinality γk(G) is also called a γk(G)-set. The k-distance
domination problem is to find a minimum k-distance dominating set of G. It is clear that a
dominating set is a 1-distance dominating set, and thus γ(G) = γ1(G).

There are many applications of the above generalizations. An interpretation in terms of
communication networks is presented by Slater [13] as follows. If V represents a collection
of cities and an edge represents a communication link, then one may be interested in select-
ing a minimum number of cities as sites for transmitting stations so that every city either
contains a transmitter or can receive messages from at least one of the transmitting stations
through the links. If only direct transmissions are acceptable, then one wishes to find a
minimum 1-distance dominating set or 1-step dominating set. If communication over paths
of k links (but not of k + 1 links) is adequate in quality and rapidity, the problem becomes
that of determining a minimum k-distance dominating set.

k-distance domination is introduced by Boland, Haynes, and Lawson [3]. k-distance
domination problem is NP-complete for general graphs, chord graphs, and bipartite graphs
[3,7]. To obtain an algorithm for trees, Slater introduced the concept of “R-domination” and
obtained a linear-time algorithm for R-domination on trees. A restriction of R-domination
turns to be k-distance domination. As a generalization of Slater’s algorithm, a linear-time
algorithm for R-domination on block graphs was provided in [6]. In the present paper, we
provide a labeling algorithm for the k-distance domination problem on block graphs. We
shall show that why our algorithm has different idea from that in [6, 13]. Studies of some
other distance or distance-related domination can be seen in, for example, [4, 8, 12, 14–16].

2. A linear-time algorithm for block graphs

In a graph G, a vertex v is a cut-vertex if G−v (deleting v together with all edges incident to
it) is disconnected. A block of G is a maximal connected subgraph without a cut-vertex. If
G has no cut-vertex, G itself is a block. The intersection of two blocks contains at most one
vertex and a vertex is a cut-vertex if and only if it is the intersection of two or more blocks.
In general, the blocks of a connected graph fit together in a treelike structure. A block B of
G is called an end block if B contains at most one cut-vertex of G. A block graph is a graph
whose blocks are complete graphs. This name arises because a graph G is the intersection
graph of the blocks of some graph if and only if every block of G is complete [9].

Given a block graph G, since its blocks fit together in a treelike structure, then we may
give some similar terminology and definitions to those in a tree. Define the distance between
two blocks B1 and B2 as dG(B1,B2) = max {dG(v1,v2)| v1 ∈ B1,v2 ∈ B2}− 1. Define the
distance between a vertex v and a block B as dG(v,B) = max {dG(v,u)| u ∈ B}− 1. Now,
we assume that the block graph G is rooted at any end block, say B0, of it. Then the height
of G is the maximum among the distances between B0 and all end blocks. If G = B0, then
G is a complete graph and the height of G is zero. Let h be the height of G and let the i-th
level Ai,0≤ i≤ h, be the set of blocks of G which are at distance i from B0.

For a block graph G which is rooted at an end block B0 and has the height at least one,
and for a vertex v with the farthest distance from B0, we use Fk(v) to denote the unique
cut-vertex of G in Nk(v) which has the minimum distance from B0.

Now, we work on an algorithm for finding a minimum k-distance dominating set of a
block graph. In our algorithm, we will use a label L(v) for each vertex v in current block
graph G as follows.
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L(v) =

 0, if v needs not to be k-distance dominated by any vertex in G;
1, if v needs to be k-distance dominated by a vertex in G;
2, if v is put into the output minimum k-distance dominating set.

If all vertices of G are labeled as above, we call G a labeled graph. Initially, all vertices of
G are labeled 1. In every step, our algorithm visits a vertex farthest from the root block B0,
relabel some vertices, deletes this vertex (together with its incident edges) from the current
labeled block graph and obtains a new labeled block graph.

In every step, the labels of the vertices of G will be changed, and the vertices with
label 2 will be put into the output minimum k-distance dominating set. So we give some
definitions for a labeled graph G. An optional k-distance dominating set of G is any set
D ⊆ V which contains all vertices with label 2, and k-distance dominates all vertices with
label 1. Note that a vertex with label 0 needs not to be k-distance dominated by a vertex
in D but can be used in D to dominate vertices with label 1, a vertex v with L(v) = 1
should be k-distance dominated by a vertex (v or another vertex different from v) of G in D.
The optional k-distance domination number γok(G) is the minimum cardinality among all
optional k-distance dominating sets of G. an optional k-distance dominating set of G with
cardinality γok(G) is also called a γok-set.

Note that the k-distance domination problem is just the optional k-distance domination
problem with all vertices being labeled 1. This generalization can be viewed as a labeling
algorithm. The idea of a labeling algorithm was first introduced by Cockayne, Goodman,
and Hedetniemi for solving the domination problem in trees [5]. It is a natural but powerful
tool when we use an induction to treat a treelike structure.

As a k-distance dominating set of a graph G = (V,E) is indeed an optional k-distance
dominating set of G when all vertices of G are labeled 1, in order to find a minimum k-
distance dominating set of G, we only have to label all vertices of G with label 1 and find a
minimum optional k-distance dominating set of G. Now a linear-time algorithm for finding
a minimum optional k-distance dominating set of a block graph is shown as follows.

Algorithm OkDDB: optional k-distance domination on block graphs.
Input: a block graph G, rooted at an end block B0, with all its vertices being labeled 1.
Output: a minimum optional k-distance dominating set D of G, consisting of all vertices
with label 2 when the algorithm stops.

Method. In every step, the algorithm visits a non-cut vertex in an end block B, label or
relabel some vertices, deletes this vertex from B and G.

Begin
D = /0.
While the height of G is at least one do

Let B be an end block of G with the maximum level number;
For every non-cut vertex v ∈ B do

If L(v) = 0, then B← B− v, G← G− v;
If L(v) = 1, then

If there exists some vertex u ∈ Nk(v) such that L(u) = 2, then
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B← B− v, G← G− v;
If L(x) 6= 2 for every u ∈ Nk(v), then

L(Fk(v))← 2, B← B− v, G← G− v;
If L(v) = 2, then

For every vertex x ∈ Nk(v) do
If L(x) = 2, then do nothing;
If L(x) 6= 2, then L(x)← 0;

End for;
D← D∪{v}, B← B− v, G← G− v;

End for;
While the height of G is zero do

If there is a vertex u ∈ Nk(v) such that L(u) = 2, then
D← D∪{x ∈ G| L(x) = 2} and stop;

Else
If L(x) = 0 for every x ∈V (G), then stop;
Else, select an arbitrary vertex u, L(u)← 2, D← D∪{u} and stop.

End
It is easy to see that the running time of the algorithm is O(n), as it merely executes a

simple for-loop, all of the statements within which can be executed in at most constant time,
with an adequate data structure. The correctness of the algorithm is based on the following
theorem.

Theorem 2.1. Algorithm OkDDB produces a minimum k-distance dominating set of a block
graph G.

Proof. It is sufficient to consider a block graph G with the height at least one, since the last
step (the second while sentence) in algorithm OkDDB clearly finds a minimum k-distance
dominating set of a complete graph. Suppose G is the current labeled block graph rooted at
an end block B0, v is the current vertex in G which has the farthest distance from B0. Then,
the proof of Theorem 2.1 is followed by a series of claims.

Claim 1. If L(v) = 0, then γok(G) = γok(G− v).

Let D be a γok-set of G. If v ∈ D, then D\{v}∪{Fk(v)} is an optional k-distance domi-
nating set of G, since Nk(v)⊆Nk(Fk(v)), that is, all vertices which are k-distance dominated
by v can also be k-distance dominated by Fk(v). So assume v /∈D. Then clearly D is also an
optional k-distance dominating set of G− v. Hence γok(G− v)≤ γok(G).

Conversely, let D′ be a γok-set of G−v. Since L(v) = 0 in G, v needs not to be k-distance
dominated by a vertex in G. It follows that D′ is also an optional k-distance dominating set
of G. Therefore γok(G)≤ γok(G− v).

Claim 2. If L(v) = 1 and there exists some vertex u ∈ Nk(v) such that L(u) = 2, then
γok(G) = γok(G− v).

Let D be a γok-set of G. Since L(u) = 2 in G, we have u ∈ D by the definition of an
optional k-distance dominating set. By the minimality of D, v /∈ D. It follows that D is also
an optional k-distance dominating set of G− v. Thus γok(G− v)≤ γok(G).

Conversely, let D′ be a γok-set of G− v. Since L(u) = 2 in G− v, we know u ∈ D′. Then
it follows that D′ is also an optional k-distance dominating set of G, since v is k-distance
dominated by u ∈ D′ in G. Hence, γok(G)≤ γok(G− v).
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Claim 3. If L(v) = 1 and there exists no vertex in Nk(v) with label 2, and G ′ is the block
graph which results from G by deleting v and relabeling Fk(v) with 2, then γok(G) = γok(G ′).

Let D be a γok-set of G. If v ∈ D, then D\{v}∪{Fk(v)} is an optional k-distance dom-
inating set of G− v, in which Fk(v) is considered as a vertex with label 2. Next assume
v /∈ D. Since L(v) = 1, there must exist some vertex x ∈ Nk(v)∩D to k-distance dominate
v. If x 6= Fk(v), then noting the fact that v is the farthest vertex from B0, it is easy to see
that all the vertices which are k-distance dominated by x can also be k-distance dominated
by Fk(v). So D\{x}∪{Fk(v)} is an optional k-distance dominating set of G− v, in which
Fk(v) is considered as a vertex with label 2. If x = Fk(v), then D is obviously an optional
k-distance dominating set of G− v, in which Fk(v) is also considered as a vertex with label
2. In either case, γok(G ′)≤ γok(G).

Conversely, let D′ be a γok-set of G ′. Since L(Fk(v)) = 2 in G ′, Fk(v) ∈ D′. Then it
follows that D′ is also an optional k-distance dominating set of G, since v is k-distance
dominated by Fk(v) in G. Hence, γok(G)≤ γok(G ′).

Claim 4. If L(v) = 2 and G ′ is the block graph which results from G by deleting v and
relabeling every vertex x∈Nk(v) such that L(x) 6= 2 with label 0, then γok(G) = γok(G ′)+1.

Let D be a γok-set of G. Since L(v) = 2, we know v ∈ D. Note that all the vertices in
Nk(v) have labels 2 or 0 in G ′, which means that in G ′, any vertex in Nk(v) is either in D or
needs not to be k-distance dominated by a vertex in G ′. So D\{v} is an optional k-distance
dominating set of G ′, and thus γok(G ′)≤ γok(G)−1.

Conversely, let D′ be a γok-set of G ′. Obviously D′∪{v} is an optional k-distance domi-
nating set of G. This means that γok(G)≤ γok(G ′)+1, and completes the proof of Theorem
1.

To obtain an efficient algorithm for k-distance domination problem on trees, Slater in-
troduced the concept of R-dominating set as follows [13]. Given a graph G with vertex
set V = {1,2, . . . ,n}, suppose one has an ordered n-tuple of ordered pairs of integers, say
R = ((a1,b1), (a2,b2), . . . ,(an,bn)), where ai ≥ 0 and bi ≥ 1 for 1 ≤ i ≤ n. Now B ⊆ V
will be said to dominate i ∈ V if and only if either (1) there is a vertex b of B such that
dG(i,b)≤ ai, or (2) there is a vertex j of V such that dG(i, j)+b j ≤ ai. If B dominates every
vertex of V , then B will be said to be an R-dominating set of G. Note that if let ai = k and
bi = 1+k for every 1≤ i≤ n, then an R-dominating set of G becomes a k-distance dominat-
ing set of G. Thus an algorithm for finding a minimum R-dominating set of G is sufficient
to find a minimum k-distance dominating set of G. Slater designed a recursive algorithm
for finding a minimum R-dominating set of a tree T , by decreasing ai and increasing b j step
by step, where, i is an endvertex of T and j is the vertex adjacent to i. A vertex i is put into
the minimum R-dominating set only when ai is, or has been reduced to, zero or when i is,
or has become, an isolated vertex with ai < bi. As a generalization of Slater’s algorithm, a
linear-time algorithm for R-domination on block graphs was provided in [6].

It is noticeable that, the ideas of our algorithm and the algorithms in [6, 13] are differ-
ent. Also, if all the vertices of G are labeled arbitrarily in the input of the algorithm, we
can obtain an algorithm for optional k-distance domination problem on any labeled block
graphs.
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