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Abstract. A new shifted Jacobi operational matrix (SJOM) of fractional integration of any
order is introduced and applied together with spectral tau method for solving linear frac-
tional differential equations (FDEs). The fractional integration is described in the Riemann-
Liouville sense. The numerical approach is based on the shifted Jacobi tau method. The
main characteristic behind the approach using this technique is that only a limited number
of shifted Jacobi polynomials is needed to obtain a satisfactory result. Illustrative examples
reveal that the present method is very effective and convenient for linear muti-term FDEs.
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1. Introduction

In recent years, the study of fractional ODEs and PDEs has attracted much attention due
to an exact description of nonlinear phenomena in fluid mechanics, viscoelasticity, biology,
physics, engineering and other areas of science [2, 18,33,36]. On this kind of equations
the derivatives of fractional order are involved. The interest of the study of fractional-order
differential equations lies in the fact that fractional-order models are more accurate than
integer-order models, that is, there are more degrees of freedom in the fractional-order mod-
els. Furthermore, fractional derivatives provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes due to the existence
of a memory term in a model. This memory term insures the history and its impact to the
present and future, see [21]. In consequence, the subject of fractional differential equations
is gaining much importance and attention. For details, see [2, 19,40] and the references
therein. Recent results on fractional differential equations can be seen in [15,16,24,27,34].

It is well known that the spectral methods have gained increasing popularity for several
decades, especially in solving differential equations and in the field of computational fluid
dynamics (see, e.g., [7,9, 13,31, 39] and the references therein). The main advantage of
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these methods lies in their accuracy for a given number of unknowns. For smooth prob-
lems in simple geometries, they offer exponential rates of convergence/spectral accuracy.
In contrast, finite difference and finite-element methods yield only algebraic convergence
rates. The three most widely used spectral versions are the Galerkin, collocation, and tau
methods. In the Lanczos tau-method [20], the auxiliary conditions imposed on the problem,
such as initial, boundary or more general conditions may be imposed as constraints on the
expansions coefficients.

Several algorithms have been proposed to solve the multi-term fractional differential
equations. Some recent techniques are spectral methods [11, 14,22], Haar wavelet [6, 23],
Legendre wavelet method [17,35] and Piecewise polynomial collocation [30]. Moreover,
the authors in [11,12,38] constructed an efficient spectral methods for the numerical approx-
imation of the FDEs and fractional integro-differential equations based on tau and pseudo-
spectral methods. Bhrawy et al. [1] introduced a quadrature shifted Legendre tau method
based on Gauss-Lobatto interpolation for solving the multi-order FDEs with variable coef-
ficients and in [4], the shifted Legendre spectral methods have been developed for solving
the fractional-order multi-point boundary value problems.

For spectral and pseudospectral methods; explicit formulae for operational matrices of
fractional derivatives for classical orthogonal polynomials are needed. The operational ma-
trices of fractional derivatives have been determined for Chebyshev polynomials [12] and
Legendre polynomials [1], and are applied together with tau and pseudospectral methods to
solve some types of FDEs.

The operational matrix of integration has been determined for several types of orthog-
onal polynomials, such as Chebyshev polynomials of the first kind [28], Chebyshev poly-
nomials of third and fourth kinds [10] and Legendre polynomials [29]. Recently, Singh et
al. [37] derived the Bernstein operational matrix of integration. The Bernstein operational
matrix approach is developed for solving a system of high order linear Volterra-Fredholm
integro-differential equations in [25]. The Haar wavelet operational matrix of fractional or-
der integration has been developed for solving FDEs [23]. In [5], the authors derived a new
explicit formula for the integrals of shifted Chebyshev polynomials of any degree for any
fractional-order in terms of shifted Chebyshev polynomials themselves. In their article, and
as an important application, they described how to use these formulae to solve multi-term
FDEs. However in [3], the authors introduced a shifted Chebyshev operational matrix of
fractional integration and applied it together with spectral tau method for the same FDEs.

The Jacobi polynomials have become increasingly important in numerical analysis, from
both theoretical and practical points of view. Recently, Doha et al. [14] derived the shifted
Jacobi operational matrix of fractional derivatives which is applied together with spectral
tau method for numerical solution of general linear multi-term fractional differential equa-
tions. In this paper, we derive an operational matrix of fractional integration of the shifted
Jacobi polynomials; in the Riemann-Liouville sense. Subsequently, we use this operational
matrix for Jacobi polynomials to introduce a direct solution technique for solving the FDEs.
We note that the shifted Chebyshev operational matrix of fractional integration has been
introduced by Bhrawy and Alofi [3], and some other very interesting cases, can be obtained
directly as special cases from the shifted Jacobi operational matrix of fractional integration.
Finally, the accuracy of the proposed algorithm is demonstrated by test problems.
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The paper is organized as follows. In Section 2 we introduce some necessary definitions
and give some relevant properties of Jacobi polynomials. In Section 3 the SJOM of frac-
tional integration is introduced. In Section 4 we apply SJOM of fractional integration for
solving linear multi-order FDEs. In Section 5 the proposed method is applied to several
examples. Also a conclusion is given in Section 6.

2. Preliminaries and notation

2.1. The fractional integration in the Riemann-Liouville sense
There are several definitions of a fractional integration of order v > 0, and not necessarily

equivalent to each other, see [26]. The most used definition is due to Riemann-Liouville,
which is defined as

I f(x) = g o (=) f(0)dt, v >0, x>0,

2.1
If(x) = f(x).
One of the basic property of the operator IV is
rBg+1)
22 PP = 25T By
22 CETBrw)

The Riemann-Liouville fractional derivative of order v will be denoted by DY. The next
equation define Riemann-Liouville fractional derivative of order v

3 DYf(x) = S (" £ ),

where m— 1 < v <m, m € N and m is the smallest integer greater than v.

Lemma 2.1. [fm—1<v <m, mé&N, then

(2.4) D'I"f(x) = f(x),  I'DYf( Z f207)=, x>o0.

2.2. Properties of shifted Jacobi polynomials

The well-known Jacobi polynomials Pi(m/3 ) (x) are defined on the interval (—1,1). In order

to use these polynomials on the interval x € (0,7) we defined the so-called shifted Jacobi
polynomials by introducing the change of variable x = 2x/t — 1. Let the shifted Jacobi

polynomials Pl-(a’ﬁ )(2x/ t —1) be denoted by P{(;xﬁ >(x). The analytic form of the shifted
(Q-ﬁ)( ) '

Jacobi polynomials P;;"" (x) of degree i is given by

@)\ v (DT TE+B+DI(i+k+a+B+1)
25) P ) = ;F(k+ﬁ+1)F(i+oc+ﬁ+1)(i—k)!k!tk '
Li+p+1)

where P(a P) 0) = (—1)' . The orthogonality condition is

T@+D
26 B @ coml P e =GP b

[2Y}
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where w,w’ﬁ )(x) = (1 —x)%xP and

o) tPITkt et DEKk+B+1)
1k k+a+B+1)Ik+1)(k+a+p+1)

The special values

)i+ B+1)(i+a+p+1),
tiT(i—qg+1)(g+B+1) ’

@.7) prpe) (o) = |

will be of important use later. A function u(x), square integrable in (0,7), may be expressed
in terms of shifted Jacobi polynomials as

u(x) = Y ;PP (),
j=0

where the coefficients c; are given by

1 t .
238) =T /0 u(@)PSP P ()dx,  j=0.1,2,....
tﬁj

In practice, only the first (N + 1)-terms shifted Jacobi polynomials are considered. Hence
u(x) can be expanded in the form

N
2.9) uv() = Y ;PP () =T o (),
j=0

where the shifted Jacobi coefficient vector C and the shifted Jacobi vector ¢ (x) are given by

CT = [C(),C],...,CN],
(2.10)
000 = [P'5P (), PSP (), ... . BYP ()]

If we define the g times repeated integration of Jacobi vector ¢ (x) by J7¢ (x).
@.11) J99(x) ~ P (x),

where ¢ is an integer value and P'%) is the operational matrix of integration of o (x).

3. Operational matrix of fractional integration

The main objective of this section is to generalize the SJOM of integration (2.11) for frac-
tional calculus.

Theorem 3.1. Let ¢ (x) be the shifted Jacobi vector and v > 0 then

3.1) Vo (x) =~ PV (x),
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where PU) is the (N + 1) x (N + 1) operational matrix of fractional integration of order v
in the Riemann-Liouville sense and is defined as follows:

QV(OaOaa7ﬁ) QV(Oalaavﬁ) QV(OaN7aaﬁ)
Qv(l,o,a,ﬁ) QV(lalaavﬁ) Qv(l,N,(X,B)
. : : :
G2 P 00008) QL) o QN ap)
QV(N767a7ﬁ) QV(N7‘17a7B) QV(Nv‘]'vaavﬁ)
where

. L (D) i+ B+ ) T(i+k+a+B+1)
L (DTGt et B D@+ DI +h+v+B+1) 2 +atBt1) e

-3 ngo TG+at OI(f+B+0)(j— N fT(f+k+ta+B+v+2)

(‘_X-ﬁ)( )

Proof. The analytic form of the shifted Jacobi polynomials P;""’(x) of degree i is given
by (2.5). Using (2.1) and (2.2), and since the Riemann-Liouville’s fractional integration is
a linear operation, we get

V(4 B+ D)D(i+k+a+B+1)
k+ﬁ+ W(i+a+p+1) (i—k)! k! ik

(=D T+ B+ (i+k+a+p+1) "
Tk+B+1)(i+a+B+1) (i—k)T(ktv+1)k"

IR JV Xk

(3.4)

9-E iz
L

i=0,1,...,N. Now, approximate x**V by N + 1 terms of shifted Jacobi series, yields

v _ N paB)
(3.5) V=Y BT (x),
=0
where ¢y; is given from (2.8) with u(x) = x**", that is
o _Qj+a+B+ DI+ l);"+v
/ C(j+o+1)

i TG+ f+a+B+1)T(a+1)T(f+k+B+v+1)
= C(f+B+1) (j—NAT(f+k+a+B+Vv+2) ’

j=1,2,...,N. In virtue of (3.4) and (3.5), we get

(3.7) TP () = Z Qu(i, )P4 (x), i=0,1,...,N,
j:

i
where Qy (i, j) = ¥ &ijk, and
k=0

(=) Ti+B+1)T(i+k+a+B+1)
Fk+B+)T(i+a+p+1)(i—k)!T(k+v+1)

Cijk =
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Xi(—Ufﬁu+f+a+ﬁ+nna+Urq+k+v+ﬁ+n(m+a+ﬁ+n jreY

o L(j+oa+D)I(f+B+1)(j— N fID(f+k+a+B+Vv+2) ’
j=12,...N.

Accordingly, equation (3.7) can be written in a vector form as follows:

(3:8) IR () 2 [Q0(1,0,08), 21,1, B). 2 (12,0, B) .-+ Qu (i.N, @, B) | 9(x),
i=0,1,...,N. equation (3.8) leads to the desired result. 1

4. Fractional SJOM for solving linear multi-order FDEs

In this section, the proposed multi-order FDE is integrated v times, in the Riemann-Liouville
sense, where Vv is the highest fractional-order and making use of the formula relating the
expansion coefficients of fractional integration appearing in this integrated form of the pro-
posed multi-order FDE to shifted Jacobi polynomials themselves, and then we apply tau
approximations based on operational matrix.

In order to show the fundamental importance of SJOM of fractional integration, we apply it
to solve the following multi-order FDE:

(4.1) ZyDB’ )+ Yepru(x) + f(x), inl=(0,1),

with initial conditions
(4.2) uDOy=d;, i=0,....m—1,

where (i =1,2,...,k+ 1) are real constant coefficients and alsom —1 < v <m, 0 < fB; <
By < --- < Br < v. Moreover DVu(x) = u'Y)(x) denotes the Riemann-Liouville fractional
derivative of order v for u(x) and the values of d;(i = 0,--- ,m — 1) describe the initial state
of u(x) and g(x) is a given source function. For the existence and uniqueness and continuous
dependence of the solution to the problem, see [8].

If we apply the Riemann-Liouville integral of order v on (4.1) and after making use of
(2.4), we get the integrated form of (4.1), namely

m—1 m;—1
ux)— Y u(”<0*) 5 ZWV A Z W05yt (x)+ 1Y f(x),
j=0 : i=1

(4.3)
u<i>(0)=d,-, i=0,....m—1,

where m; — 1 < B; < m;, m; € N, this implies that

k
4.4) u(x) = )y WY ﬁl”(x)JrYk—HIv (x)+g(x),

where
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In order to use the tau method with SJOM for solving the fully integrated problem (4.4)
with initial conditions (4.2). We approximate «(x) and g(x) by the shifted Jacobi polynomi-
als as

(4.5) Zc, =CTo(x),
(4.6) Zg, =G"9(x),
where the vector G = [go,g1, -+ ,gn]7 is given but C = [cg,cy, - ,cy]! is an unknown

vector. Now, the Riemann-Liouville integral of orders v- and (v — ;) of the approximate
solution (4.5), after making use of Theorem 3.1 (relation (3.1)), can be written as

(4.7) M uy(x) ~CTI9(x) ~ TPV (x),
and
(4.8) I Piuy(x) =TI Pig(x) ~ TPV Po(x), j=1,... k

respectively, where P(*) is the (N + 1) x (N + 1) operational matrix of fractional integration
of order v.
Employing equations (4.5)-(4.8) the residual Ry(x) for equation (4.4) can be written as

k
(4.9) Ry(x)= (" =T Y yPVP) — g, TP — GT g ().
j=1
As in a typical tau method, see [7, 12], we generate N —m + 1 linear algebraic equations by
applying

(4.10) (Ry(x), BL%P /RN PP (x)dx=0, j=0,1,..N-m.

Also by substituting equations (2.7) and (4.5) in Eq (4.2), we get
4.11) Zc, ” 0)=d;, i=01,....m—1.

equations (4.10) and (4.11) generate N —m+ 1 and m set of linear equations, respectively.
These linear equations can be solved for unknown coefficients of the vector C. Conse-
quently, uy(x) given in equation (4.5) can be calculated, which give a solution of equation
(4.1) with the initial conditions (4.2).

5. Illustrative examples

To illustrate the effectiveness of the proposed method in the present paper, some test exam-
ples are carried out in this section. The results obtained by the present methods reveal that
the present method is very effective and convenient for linear FDEs.

Example 5.1. As the first example, we consider the following initial value problem,
8
G D) +3u(x) =36 + praS u(0)=0,4(0) =0, xe o),

whose exact solution is given by u(x) = x>.
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By applying the technique described in Section 4 with N = 3, we may write the approx-
imate solution and the right hand side in the forms

3
zc, =CTo(), and g(x)= Y gl PP () =T o).

From equation (3.2) one can write

QZ(O 0,a,B) Q;(O,l,a B) Q%(O,Z,oc, ) Q%(0,3,oc, ) P
P(%): Q%(l Ovaaﬁ) %(LLa B) Q%(l7z7a7 ) Q%(1737a7 ) G: gl

Q%(z 07(1.,[3) Q%(Z,l,a ﬁ) Q%(2>2~a7B) Q%(Z,3,(X, ) ’ 82

Q,(3,0,a.8) Qi6.1Lap) Q320 01(.3ap) 2
where Q% (i, j, o, B) is given in equation (3.3) and

_ QjtatBADj L )T o+ BA1)
8T BT (et 1) A O fIG - DIT(f B+ 1)

1 64x/2
B (¢ a
X./O(IOS\f—i—x) (r —x)%dx.

Making use of (4.8) and (4.10) yields
(52) 3Q3(0,2,0, B)co +3Q; (1,2, ey +3Q3 (2,2, B)ez +3Q3 (3,2, B)es +¢2 — g2 =0,

(53) 3Q3(0,3, 0, B)co +3Q; (1,3, ey +3Q3(2,3,, B)ez +3Q3 (3,3, 0, B)cs + ¢ — g3 = 0.
Applying equation (4.11) for the initial conditions gives

3 o) =eo— (B ey + BEVBHD  BADBLB4Y
(5.4
g0y~ @TBD BB (BAB DB,

Finally by solving equations ((5.2)-(5.6)) we get the approximate solution.

In particular, the special cases for ultraspherical basis (o = 8 and each is replaced by
(o — %)) and for Chebyshev basis of the first, second, third and fourth kinds may be ob-
tained directly by taking oo = 8 = 1%7 a=—-f= j:%, respectively, and for the Legendre
basis by taking o = 8 = 0.

If o = B =0, then

=7
and the approximate solution is given by

3
0) =Y a0 =2,
=0

which is the exact solution.

Also if we choose o = —%,[3 = %, then
3563 2113 76 13
co = —— cCl = — CH = — cCy = —
07 Tear T3 T g BT
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and
11

3
uN(x) — Zci})t(,i_ji)(x) :X3,
i=0

which is the exact solution.

In the case of o = %,[3 = —%, we have
56 93 56 I
cg=—, Cl=—, C=—, (3= —
07 6a T3 T U
and
SR 3
uy(x) =Y b (x) =2,
=0
which is the exact solution.
Example 5.2. Consider the equation
16
(5.5) D?u(x) —2Du(x)+D%u(x)—|—u(x) = x> —6x> - 6x+ Sﬁxz.s’ u(0)=0, u'(0) =0,

x € [0,1], whose exact solution is given by u(x) = x>.

Now, we can apply the technique described in Example 5.1 with N = 3.
The approximate solution obtained by using the proposed method for some special cases
of a and B are listed in the following cases:

Case 1. If o = = 0, then
I 973 I I
co=—, Cl=—, C=—, 3= —
0 9 1 20 b 2 4 b 3 207
and
3
0,0
uy(x) = ZciP,{i >(x) =x,
i=0
which is the exact solution.
Case2. If a = —%7[3 = %, then

358
64

o218 7 r

(€] 32’

and

which is the exact solution.
Case3.Ifa=1,f=—1, then

563 973 563 I

and

which is the exact solution.
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Cased.If = = —1, then

56 156 33 =
co = — cCl = — CHh = — [rp—
0= 16" 1 33 @
and

~3.-%) _ .3
chtt —x,

which is the exact solution.

Example 5.3. Consider the equation

D?u(x) — 2Du(x) + D%u(x) +u(x)
2048 8
56 _ 7 65 _ 14x0 4+ 4225 — 2 LS L 49
(>6) x+429ﬁx A 3\/ﬁx s

u(0)=0, u'(0)=0, xel0,1,

whose exact solution is given by u(x) = x” —x%.

Now, applying the technique described in Example 5.1 with N =9 for some special
choices of a and 3, gives the following cases:
Case 1. If o = B = 0, then

s 12 12 49¢7
=—(3r-8 7 —12 7 — 4 = —
0= 7! ), e 24( ) = 24( TR
7¢7 7¢7 1’ !
4= c5 = ce = c7 = cg=0, ¢c9g=0,

88’ 312’ 264’ 3432’

and

=0
which is the exact solution.
Case2. Ifa == % then
5¢2 2 12
14365 — 512 1001£5 — 2048 8195 — 512
= g105 )= Giag! ) 2= 351500 ),
. 1347 25¢7 . 15¢7 . 7¢7 ! 0 0
— C4 = R = — T = — Ccg = C9g =
T8 T s760 ST 1232 YT 3432 T T 63y BT 99T
and
<R
uy(x) =Y il 7Y (x) =x7 — 7,
i=0
which is the exact solution.
Case 3. Ifa:—%, :%,
. _12(643565 — 10240) . ~ 12(50055 — 5120) . (30035 — 1024)
0= 16384 R 8192 R 6144 ’
c_273t7 C_13t7 c_i c_5t7 C_t7 =0 =0
ST 0240 YT 1287 DT 1920 T 12320 T Tzazy T 9T
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and
<E ) 72
un(x) = ZC,’PN 22 (x)=x"—x",
i=0
which is the exact solution.
Cased. If o = %,ﬁ = —1, then
12(4291° —2048) £2(1001£5 —3072) £2(1001£5 — 1024) 637t7
O T ie3ss 0 T 8192 27 6144 © BT 510
397 1’ 1317 1 , ,
C4:@, L5:%, C(,:m7 C7:@, (,8:0, (,9:0,
and

SO Y 72
uy(x) =Y eiB P (x) =x' — 7,
i=0
which is the exact solution.

6. Concluding remarks

In this article, we have presented the operational matrix of fractional integration of the
shifted Jacobi polynomials, and as an important application, we describe how to use the
operational tau technique to numerically solve the FDEs. The basic idea of this technique
is as follows:

(i) The FDE is converted to an fully integrated form via multiple integration in the
Riemann-Liouville sense.

(ii) Subsequently, the various signals involved in the integrated form equation are ap-
proximated by representing them as linear combinations of shifted Jacobi polyno-
mials.

(iii) Finally, the integrated form equation is converted to an algebraic equation by intro-
ducing the operational matrix of fractional integration of the shifted Jacobi polyno-
mials.

To the best of our knowledge, the presented theoretical formula for SIOM is completely new
and we do believe that this formula may be used to solve some other kinds of fractional-
order initial value problems

References

[1] A.H.Bhrawy, A. S. Alofi and S. S. Ezz-Eldien, A quadrature tau method for fractional differential equations
with variable coefficients, Appl. Math. Lett. 24 (2011), no. 12, 2146-2152.

[2] A.H.Bhrawy and M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear
fractional Langevin equation involving two fractional orders in different intervals, Bound. Value Probl. 2012,
2012:62, 13 pp.

[3] A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev poly-
nomials, Appl. Math. Lett. 26 (2013), no. 1, 25-31.

[4] A. H. Bhrawy and M. Alshomrani, A shifted Legendre spectral method for fractional-order multi-point
boundary value problems, Advan. Differ. Egs. 2012 (2012) 8.

[5] A. H. Bhrawy, M. M. Tharwat and A. Yildirim, A new formula for fractional integrals of Chebyshev poly-
nomials: application for solving multi-term fractional differential equations, Appl. Math. Model. 37 (2013),
no. 6, 4245-4252.

[6] Y. Chen, M. Yi and C. Yu, Error analysis for numerical solution of fractional differential equation by Haar
wavelets method, J. Comput. Sci. (2010), doi:10.1016/j.jocs.2012.04.008



994

[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21

[22]

[23

[24]

[25

[26]
[27]
(28]
[29]
[30]
[31]
[32]

[33]

A. H. Bhrawy, M. M. Tharwat and M. A. Alghamdi

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer
Series in Computational Physics, Springer, New York, 1988.

K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl.
Math. Comput. 154 (2004), no. 3, 621-640.

E. H. Doha and W. M. Abd-Elhameed, Efficient spectral-Galerkin algorithms for direct solution of second-
order equations using ultraspherical polynomials, SIAM J. Sci. Comput. 24 (2002), no. 2, 548-571 (elec-
tronic).

E. H. Doha and W. M. Abd-Elhameed, On the coefficients of integrated expansions and integrals of Cheby-
shev polynomials of third and fourth kinds, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 2, 383-398.

E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term
fractional orders differential equations, Appl. Math. Model. 35 (2011), no. 12, 5662-5672.

E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix
for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), no. 5, 2364-2373.
E. H. Doha and A. H. Bhrawy, An efficient direct solver for multidimensional elliptic Robin boundary value
problems using a Legendre spectral-Galerkin method, Comput. Math. Appl. 64 (2012), no. 4, 558-571.

E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving
fractional differential equations, Appl. Math. Model. 36 (2012), no. 10, 4931-4943.

E. Girejko, D. Mozyrska and M. Wyrwas, A sufficient condition of viability for fractional differential equa-
tions with the Caputo derivative, J. Math. Anal. Appl. 381 (2011), no. 1, 146-154.

Z. Hu, W. Liu and T. Chen, Two-point boundary value problems for fractional differential equations at reso-
nance, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 747-755.

H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani and C. M. Khalique, Application of Legendre wavelets
for solving fractional differential equations, Comput. Math. Appl. 62 (2011), no. 3, 1038-1045.

A. A.Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,
North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69
(2008), no. 8, 2677-2682.

C. Lanczos, Applied Analysis, Pitman, London, 1957.

M. P. Lazarevi¢ and A. M. Spasi¢, Finite-time stability analysis of fractional order time-delay systems: Gron-
wall’s approach, Math. Comput. Modelling 49 (2009), no. 3-4, 475-481.

C. Li, F. Zeng and F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl.
Anal. 15 (2012), no. 3, 383-406.

Y. Li and W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in
solving the fractional order differential equations, Appl. Math. Comput. 216 (2010), no. 8, 2276-2285.

G. B. Loghmani and S. Javanmardi, Numerical methods for sequential fractional differential equations for
Caputo operator, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 315-323.

K. Maleknejad, B. Basirat and E. Hashemizadeh, A Bernstein operational matrix approach for solving a
system of high order linear Volterra-Fredholm integro-differential equations, Math. Comput. Modelling 55
(2012), no. 3—4, 1363-1372.

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,
A Wiley-Interscience Publication, Wiley, New York, 1993.

S. K. Ntouyas, G. Wang and L. Zhang, Positive solutions of arbitrary order nonlinear fractional differential
equations with advanced arguments, Opuscula Math. 31 (2011), no. 3, 433-442.

P. N. Paraskevopoulos, Chebyshev series approach to system identification, analysis and optimal control, J.
Franklin Inst. 316 (1983), no. 2, 135-157.

P. N. Paraskevopoulos, Legendre series approach to identification and analysis of linear systems, IEEE Trans.
Automat. Control 30 (1985), no. 6, 585-589.

A. Pedas and E. Tamme, Piecewise polynomial collocation for linear boundary value problems of fractional
differential equations, J. Comput. Appl. Math. 236 (2012), no. 13, 3349-3359.

R. Peyret, Spectral Methods for Incompressible Viscous Flow, Applied Mathematical Sciences, 148, Springer,
New York, 2002.

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic
Press, San Diego, CA, 1999.

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press,
New York, 1999.



Operational Matrix of Fractional Integration for Shifted Jacobi Polynomials 995

[34] A. Rakhimov and A. Ahmedov, On the fundamental solution of the Cauchy problem for time fractional
diffusion equation on the sphere, Malays. J. Math. Sci. 6 (2012), no. 1, 105-112.

[35] M. ur Rehman and R. Ali Khan, The Legendre wavelet method for solving fractional differential equations,
Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4163-4173.

[36] S.G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987
Russian original, Gordon and Breach, Yverdon, 1993.

[37] A. K. Singh, V. K. Singh and O. P. Singh, The Bernstein operational matrix of integration, Appl. Math. Sci.
(Ruse) 3 (2009), no. 49-52, 2427-2436.

[38] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional-order integro-
differential equations, ANZIAM J. 51 (2010), no. 4, 464—475.

[39] L. N. Trefethen, Spectral Methods in MATLAB, Software, Environments, and Tools, 10, STAM, Philadelphia,
PA, 2000.

[40] S.Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Elec-
tron. J. Differential Equations 2006, No. 36, 12 pp. (electronic).






