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1. Introduction

In this paper, we consider the following equation with initial conditions and mixed nonho-
mogeneous conditions

(1.1)  uy — Uy — Elhyy + A \u,|q72u,+K\u|p72u:F(x,t), xeQ=(0,1),0<t<T,

(1.2) €ty (0,1) + 1 (0,1) = hu(0,1) + (1),
(1.3) u(1,1) =0,
(1.4) u(x,0) = do(x), us(x,0) = (x),

where p>1,g>1,€>0,A1 >0, K >0, h > 0 are constants and iy, i, F, g are given
functions satisfying conditions specified later.
When F =0,1 =K =0, Q= (0,L), Equation (1.1) is related to the Love’s equation

E
(1.5) =t = 262Kty = 0,
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presented by V. Radochova in 1978 (see [8]). This equation describes the vertical oscilla-
tions of a rod, which was established from Euler’s variational equation of an energy function

T L 1
(1.6) /O dt /O [2Fp (uf + uzkzu?x)*gF (B + puPiPuiny ) | dx,

the parameters in (1.6) have the following meanings: u is the displacement, L is the length of
the rod, F is the area of cross-section, k is the cross-section radius, E is the Young modulus
of the material and p is the mass density. By using the Fourier method, Radochova [8]
obtained a classical solution of problem (1.5) associated with initial conditions (1.4) and
boundary conditions

(1.7) u(0,2) = u(L,t) =0,
or
u(0,¢) =0,
(1.8) { €ty (L,t) + c*uy(L,t) =0,

where ¢ = %7 € = 2u%k?. On the other hand, the asymptotic behaviour of the solution of
problem (1.4), (1.5), (1.7) or (1.8) as € — 0 are also established by the method of small
parameter.

Equations of Love waves or equations for waves of Love types have been studied by
many authors, we refer to [3, 4, 7] and references therein.

In [1], Ang and Dinh established a uniqueness and global existence for the problem (1.1)-
(14)ywithe=K=h=0,A=1,1<¢g<2, F(x,t) = 0. In this latter case this problem
governs the motion of a linear viscoelastic bar.

In this paper, we shall use the Faedo-Galerkin method, compactness method and mono-
tone method in order to study problem (1.1)-(1.4). The results obtained are existence of a
weak solution, uniqueness, regularity and asymptotic behavior of solutions.

The paper consists of four sections. Section 2 is devoted to the study of the existence a
weak solution for problem (1.1)-(1.4) with iip, it €V ={ve H' :v(1) =0}, p> 1,9 > 1.
Here, a energy lemma (as given in Lemma 2.3) is also established in order to pass the limit
of a approximate problem and prove the uniqueness in case p > 2. In Section 3, we consider
the regularity of solution for problem (1.1)-(1.4) with g, i; € VNH?, p>2, ¢ > 2 and some
other conditions. In case p = g = 2, we show that the regularity of solutions depending on
the regularity of data. Finally, the asymptotic behavior of solutions as € — 0. is discussed
in Section 4. The results obtained here may be considered as the generalizations of those in

[8].

2. Existence and uniqueness of a solution

First, we put Q = (0,1); Or = Q x (0,T), T > 0 and we denote the usual function spaces
used in this paper by the notations C" (Q), W™P = W™P(Q), LP = WO (Q), H™ =
W2 (Q), 1 < p<oo, m=0,1,... Let (-,-) be either the scalar product in L? or the dual
pairing of a continuous linear functional and an element of a function space. The notation
||| stands for the norm in L? and we denote by || - ||x the norm in the Banach space X. We

call X’ the dual space of X. We denote by L? (0,T;X), 1 < p < oo for the Banach space of
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the real functions u : (0,7) — X measurable, such that

T , 1/p
lisra = ([ I@lar) " <o for1 < pocen
and
H”||L°°(0,T;X) = esssup ||u(t)||x for p = co.
0<t<T

Let u(t), u'(t) = (1), u"(t) = (), ux(r), uxs(t) denote u(x,), 3 (x,1), T (x,1),
% (x,1), 3—?{‘2‘ (x,1), respectively.

On H' we shall use the following norm

1/2
Wl = (I + Ivl?)
We put
2.1) V={veH":v(1)=0}.

Then V is a closed subspace of H! and on V, v+ |[v|| ;1 and v~ ||v,|| are equivalent
norms.
Then the following lemmas are known as a standard one.

Lemma 2.1. The imbedding H' — C°([0,1]) is compact and
(2.2) Wllco) < V2||v||y1 forallveH'.

Lemma 2.2. The imbedding V — C°([0,1]) is compact and
(2.3) [Vllco@) < lvxll forallv e V.

We remark that the weak formulation of the initial-boundary value problem (1.1)-(1.4)
can be given in the following manner: Find u € L*(0,T;V), with 4, € L*(0,T;V), such that
u satisfies the following variational equation

1 (6),) + €t (1), W)+ (g (0,3} -+ (hae(0,) + g(£)) wi(0)
. { ‘ A 1) 72 (), ) + KLl 2, w) = (F (), ),

forallw eV, ae., r € (0,T), together with the initial conditions
(2.5) u(0) = iy, u,(0) = dj.
Next, we need the following assumptions:
(Hy) p>1,g>1,A>0,K>0,€>0,h>0;

(Hz) i, ity €V,
(H;) FeL'(0,T;L?);
(H4) g€ WLl (07 T) :

Then, we have the following theorem.

Theorem 2.1. Let T > 0. Suppose that (Hy) — (Hy) hold. Then, there exists a weak solution
u of problem (1.1)-(1.4) such that

(2.6) uel”(0,T;V), uy € L7(0,T;V).

Furthermore, if p > 2, the solution is unique.
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Proof. The proof is a combination of Galerkin method and compactness arguments, and
consits of four steps.
Step 1. The Faedo-Galerkin approximation (introduced by Lions [6]). Consider the basis

inV
2 . T
wi(x) = /rljzcos(ljx), Ai=(2j—- 1)57 JjeN,
constructed by the eigenfunctions of the Laplace operator —A = _,98722~ Put
m
Q.7) un(t) =Y emj()w;,
j=1

where the coefficients cf,’fj) satisfy the system of nonlinear ordinary differential equations
(0 ),95) + atme(0) + (1), w30+ 2 (i (O 10, 05)
2.8) +K<|um(z)|1’*2 um(r),wj> + (hum(0,1) + () w;(0) = (F(1),w;), 1 < j < m,
um(O) = lom, u;n(o) = l1m,
where
2.9) { Izom = ZZzl O jwj — z~20 strongly'in V,
dhm =Y Bmjw; — i strongly in V.
From the assumptions of Theorem 2.1, system (2.8) has a solution u, on an interval
[0,T,,] C [0,T]. The following estimates allow one to take T,,, = T for all m (see [2]).
Step 2. Multiplying the j* equation of (2.8) by ¢/, ;(t) and summing up with respect to
J, afterwards, integrating by parts with respect to the time variable from O to ¢, after some
rearrangements, we get

(1) = S (0) +28(0)itgm (0) +2 /0 C(F(s),uly(s)) ds

42 /0 & () (0, 5)ds — 2(1)1tm(0,1)

(2.10) = Su(0) +2¢g(0)diom (0) +Zj:1 1j,
where
Sn(t) = ||t (0| + et (0) |2 + € ||t ()| |* -+ Fa, 0, )
27]( p ! / q
e = 01 +22 5[y

By (2.9), (2.11) and the imbedding H' — C° (ﬁ) , there exists a positive constant Cy
depending only on i, i1, i, K, p, g(0) and &, such that

2K
Sm(o) "‘Zg(O)f‘Om(O) + 7 ||’/70m||1pﬁ = ||ﬁ1mH2+ ||L70rrzx||2"‘8 HﬁlmxH2

Co,V m.

0| —

2K
(2.12) + hiig,, (0) +28(0)iiom (0) + > l[doml|» <

Using (2.3) and the following inequalities
1

(2.13) 2ab < Bd® + 3

b?, foralla, be R, B >0,
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and

(2.14) [tm (0,0)] <t (1) l o @y < Nttma ()] < v/ Sm(2),

we can estimate all terms in the right-hand side of (2.10) as follows
=2 [ (F6 ) ds< [ IFGds+ [ 1F 6] 6)]ds
@19 s+ [ IFG)ISa (s
where Cr indicates a constant depending on T';
L= Z/Otg’(s)um(o,s)ds < Z/Ot g ()] \/ST(s)der/Ot &' ()| Sm(s)ds
(2.16) <Cr+ /Ot |8/ (5)] S (s)ds,
with Cr > [ ¢ (s)|ds;
@.17) I = ~2(0)un(0,1) < 2 gl =01 /S 0) < Cr + 550 ),
for all B >0, Cr > 2|g|[7=(0.7) -
Combining (2.10), (2.12), (2.15)-(2.17) and choose 8 = %, the result is
(2.18) S (t) < Cr +/Ot A5 ()8 (s)ds, 0 <t < Ty,

1 1
where dy')(s) = 2[|F (s)|| +|¢/(s)[], ) € L'(0,T).
By Gronwall’s lemma, we deduce from (2.18) that

T
(2.19) Sp(t) < Crexp [ / d(T”(s)ds} <Cr, forallz € [0,T],
0

where Cr always indicates a bound depending on 7. Thus, we can take constant 7;, = T for

all m.
On the other hand, we deduce from (2.11) and (2.19) that

p/

) B »
(2.20) H‘Mm|p Up 1=(0.T:L7) - ||um||L°°<07T;Lp) < %CT <Cr,
[l 24 o, = 6 Wfads < S <,

where Cr always indicates a bound depending on 7T as above.
Step 3. Limiting process. From (2.11), (2.19), (2.20) we deduce the existence of a sub-
sequence of {u,, }, denoted by the same symbol such that

Uy — U in L*(0,T;V) weakly*,

u, —u in L~(0,T;V) weakly*,

2.21) M/m — u/ %n L=(0,T;LP) weakly*,
u, —u in Li(Qr) weakly,

lum|P 2ty — 2o in L=(0,T;LF')  weakly*,

W |, — 1 in LY(Qr) weakly.
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By the compactness lemma of Lions ([6], p. 57), from (2.21); , there exists a subse-
quence of {uy, }, still denoted by {u,, }, such that

(2.22) Uy, — u strongly in L*(Qr) and a.e. in Q.
By means of the continuity of function x — |x|?~2x, we have
(2.23) |ttn|P 21ty — |u|P"%u a.e. in Q.
Using Lions’s Lemma ([6], Lemma 1.3, p.12), it follows from (2.20); and (2.23) that
(2.24) |t |P 2ty — |u|P~2uin L (Qr) weakly.
By (2.21)5 and (2.24), we deduce that
(2.25) o = |ulP~2u.

Passing to the limit in (2.8) by (2.9), (2.21), (2.24) and (2.25), we have u satisfying the
problem
1 (0),) + € Gl0), v )]+ e (0),v) + 2 (1 (0),) + K (@) (o), v)
(2.26) + (hu(0,1) + g(¢)) v(0) = (F(t),v), forall v € V,
u(0) = g, u'(0) = .
/|q72

It remains to prove that x; = |u u'. We need the following lemmas.

Lemma 2.3. Let u be the weak solution of the following problem

W —uy—eu. =0, 0<x<1,0<t<T,

el (0,1) +u,(0,¢) = G(1), u(1,¢) =0,
(2.27) u(0) = i, u'(0) = dy,

ueL=0,T;V), u' €L=(0,T;V),

dg, il €V,GeL*(0,T), ®cL'(0,T;L?).

Then we have
1 1 t
5Hu’<r>|\2+5||ux<z>||2+§||u;(z>||2+ /O G(s)l (0,5)ds

1, . 1. €. !
(2.28) > HM1H2+§ ||u()x|\2+E Hu1x||2+/0 (®(s),u(s))ds, a.e., t €[0,T].
Furthermore, if iig = ii; = 0, there is equality in (2.28).

Proof of Lemma 2.3. The idea of the proof is the same as in ([5], Lemma 2.1, p. 79). Fix
t1,h,0<t; <t <T and let v(x,?) be the function defined as follows

(2.29) v(x,1) = O (1) [(Om (1) (x,1)) 5 pi(t) * pi(1)],
where
(i) 6y, is a continuous, piecewise linear function on [0, 7] defined as follows:

0, if, 1€[0,TI\[ti+1/m,t,—1/m],
1, if, te[t+2/m,t—2/mj,
m(t—t; —1/m), if, r€[n+1/mt+2/m],
—m(t—tr+1/m), if, t€[nr—2/mt,—1/m].

(2.30) O,(t) =
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(ii) {px} is a regularizing sequence in C;°(R), i.e.,

~+oo
(2.31) px € CZ(R), pi(t) = p(—1), px(t)dt =1, supp px C [—1/k, 1/k].

(iii) () is the convolution product in the time variable, ie.,

+oo
(2.32) (u*py)(x,1) = /700 u(x,t —s)pr(s)ds

We take the scalar product of the function v(x,) in (2.29) with equation (2.27);, then
integrate with respect to the time variable from 0 to 7', and we have

(2.33) Xk + Yk = Zinks
where
Xk = Jo < ( ),v(1))dt,
(2.34) mk— fo (2 (ua(1) + €10 (1)), 0(2) )it

— 7 (@ () (1)) .

)
By using the properties of the functions 6,,(¢) and pi(¢) we can show after some lengthy
calculation

. 2
kETNka = _f()T 6m6, m Hu (t)H dt,

@35)  { lim Yo = = J§ 005 luc(0)|*dr — [ 06, [u6,(1) >+ JiT 656G (0)ud (0,0,
Jim Z, = [ 63 (@(0). (1) dr.
— o0

Letting m — oo, (2.33) — (2.35) yield

1y, 2 1 1 2 €y 2 €y, 2
EHL{ (tz)H _EH H —l— \ux(tz)H §||ux(t1)|| +§Hux(t2)H _EHMX(H)H
(2.36)
o]
+/ G(0)d (0,1)dr = /<q>(t),u'(t)>dt, ac.ti i € (0,T), 11 <t
n

I

From (2.36), using the weak lower semicontinuity of the functional v — ||v/|*, we ob-
tain (2.28) by taking #, =t and passing to the limit as ; — 0.

In the case of iy = ii; = 0, we prolong u, @, G by 0 as t < 0 and we deduce equality
(2.36) is true for almost #; < t, < T. Taking #; < 01in (2.36), its right-hand side is 0, we take
t; — 0_, we have equality (2.28).

The proof of Lemma 2.3 is completed. 1

Remark 2.1. Lemma 2.3 is a relative generalization of a lemma of Lions ([6], Lemma 6.1,
p. 224).

We now prove that y; = |u’|q72 u'. From (2.10) and (2.11) we deduce

ZA/ o (s)|" 2, )>ds—2/l/ ) ()] 2, ds

. 2K
= llml? + & @ + lldome > + hat om(0)+?||u0mll'2p

2K
[y ()| — €[t ()]|* = Nt |2 — Irad, (0,) Ll
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t t
(2.37) —|—2/ <F(s),u,/n(s)>ds—2/ g(s)ul,(0,5)ds.
0 0

Using Lemma 2.3, with ® = F — K [u|” 2 u— A1, G(t) = hu(0,1) +g(t), it follows from
(2.8),(2.9), (2.21), (2.28), (2.37) that

3
2Alimsup < |14, (5) |q72 ul, ()1, (s) > ds
0

m-—oo

. . . . 2K
< N+ e | e + [ldiox] | + it (0) + W oIz,

—Timinf ||u, (¢)||* — eliminf ||u},. (£)]|* = liminf (||umx(t)||2 +hu3,,(o,t)>
m—soo

m—oo m—oo
2K t t
_—liminf||um(t)||£p—|—2/ <F(s),u/(s)>ds_2/ o(s)i (0,5)ds
p m—ee 0 0
<l 112 i 2 ol + hii2 (0 2K p
< 1 P+ e+ e+ h(0) + = o
NIy, , 2 2 2
= @) e )] = (0] ~ 0.1
2K P ! ! ! /
=S )2 [P0l () ds—2 [ a(s)u (0.)ds
~ ~ - 2 2
< NP+ o+ € el = [l O] = ) ~ € 0]

+2/Ot <F(S)—K\M(S)|P72u(s)—lxl(s),u/(s)>ds—2/ot (hu(0,s) +g(s)) ' (0, 5)ds
(2.38)
+2/1/0 <xl<s),u’(s)>ds§2/l/o (a1 (s), ' (s) ) ds.

Consider
@31 o) = [ ([ o) W 0(5).t(5) —v(s) ) ds 20,

forall v € L1(Qr).
Combining (2.21),_¢, (2.38) and (2.39), we have

(2.40) Oglimsupqﬁm(t)g/ (10(5) = V)12 v(s),0l(5) — v(s) Y s, ¥ v € L9(Qr).

!
m—soo 0
In (2.40), choose v(s) = u/(s) — ow, with 6 > 0 and w € L(Qr). Apply the argument of
Minty and Browder (see Lions [6], p. 172), we obtain y; = |« |q72 u'.
The proof of existence is completed.

Step 4. Uniqueness of the solution. Assume now that p > 2 holds.
Let u, v be two weak solutions of the problem (1.1) — (1.4), such that

(2.41) u,v € L*(0,T;V) and u’,v/ € L (0,T;V).
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Then w = u — v is the weak solution of the following problem
— EWynr — Wiy = —A (|u’\q72 W — V|12 v’) — K ([ulP"2u—|v|P~2v) =0,
Wy (0,7) +wy(0,2) = hw(0,2), w(l,7) =0,
w(x,0) = w(x,0) =0,
w,w' € L*(0,T;V).

(2.42)

Using Lemma 2.3 with iip = ii; =0, &= —1 (|u 9720 — V|92 v’) —K (JuP~2u—|v[P=2v),
G(t) = hw(0,t), we obtain

1) +2A /t u/(s)‘LF2 u'(s) — ’v’(s)"k2 V' (s),u(s) —v’(s)>ds

(2.43) = —2K/ $)|P2u(s) — |v(s)\p_2v(s),w/(s)>ds, ae.r€0,7T],
where
(2.44) o (1) = W @) + [lwee) I” + & [|wh(0)]|* + 1w*(0,2).

Using the following inequality
(2.45) ‘ |x[P~2x — |y|”*2y‘ <(p—1)MP~2|x—y|, ¥Yx,y € [-M,M], YM >0, ¥p > 2,

with M = [|u| ;=g 7.v) + [Vl =0,y » and note that

[ (W16 = 69,06 ~(9)yds 20,
(2.46) o (1) = [|W @[> + e ()17 + || whe)||* = 2w (o) || Iw o)1
we deduce from (2.43), (2.46) that

)< —2K / )17 2u(s) — ()P 2v(s), W' (s) ) ds
Q47 <2K(p— 1)MP2 /0 Iw(s)ll [ ()| ds < K(p— 1)MP~2 /0 o (s)ds.

By Gronwall’s lemma, it follows from (2.47) that 6 = 0, i.e., u = v. Theorem 2.1 is
proved completely. 1

3. The regularity of solutions

In this section, we study the regularity of solutions of problem (1.1) — (1.4) corresponding
to (it i) € (VNH?) x (VNH?).
Henceforth, we strengthen the hypotheses and assume that:
(H) p>2,q>2,A>0,K>0,€>0,h>0;
(Hb) io, @iy € VNH?;
(H}) F, F' € LY(0,T;L?);
(Hy) g€ W>'(0,T).

First, we have the following theorem.
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Theorem 3.1. Let T > 0. Suppose that (H{) — (H}) hold. Then problem (1.1)-(1.4) has a
unique weak solution

(3.1 ue L™ (0,T;VNH?), suchthat u,, uy € L (0,T;V NH?).

Remark 3.1. The regularity obtained by (3.1) shows that problem (1.1)-(1.4) has a unique
strong solution

3.2) ueC (0,T;VNH?), uy € L (0,T;VNH?).

Proof. The proof consists of four Steps as follows.

Step 1. The Faedo-Galerkin approximation. By the same argument as in Theorem 2.1,
we obtain the approximate solution u,,(7) of problem (1.1) — (1.4) in the form (2.7), where
the coefficient functions c¢,,; satisfy the system (2.8), with

m

3.3) fom = Z O jwj — fig strongly in VOHZ,
j=1
m

(3.4 fiym = Y Bmjw; — d1 strongly in V NH>.
j=1

Step 2. A priori estimates 1. Using assumptions (H{) — (H}), similarly, we get
2 2 2
Sn(1) = [t ()| + et (1) 17 + € [t (1) ||+ P (0,1)
2K 4
(3.5) = 0l 22 [ )]s < 7.

for all r € [0,T] and for all m, and Cr always indicates a bound depending on 7.
A priori estimates 11. Now differentiating (2.8); with respect to ¢, we have

(a0, + (1) 16 (1) i)+ K (p = 1) (Jan(0) 7 (0,07

(6 +2a= 1) {[u O e)wy )+ (i (0,0) +¢'(0) w; (0) = (F'(1),wj),
forall 1 < j<m.

Multiplying the j-th equation of (3.6) by ¢/, j(t), summing up with respect to j and then
integrating with respect to the time variable from O to ¢, we obtain

(1) = X0 0) +2¢ (O (0) +2 [ (F(5)165(5)) ds
2K (p=1) [ (lin(0)17 2 (5)164(5) ) s

—2¢'(t)ul,(0,¢) +2 /t g (s)u,(0,5)ds
JO
4
(3.7) = Xn(0) +2¢'(0)@1,,(0) + ) J;,
Jj=1
where
" 2 / 2 " 2 ’ 2
Xm(t) = Hum(t>H + Humx(t)H +8Humx(t)H +h‘um(07t)’

1
(3.8) +2A(g— l)/t ds/ |ufn(x7s)’q72 |u:,/1(x7s)’2dx.
0 0
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First, we estimate 1,, = ||u (0)||* ++ & ||, (0)[|*.
Letting t — 0, in equation (2.8);, multiplying the result by c, ;(0), then

Hu;;;(O>H2+8HM H +<u0m)m mx( >>+A<‘M1m| Ui, U ”(O)>
+ (hiion (0) +g(0) ) uy, (0,0)
(3.9) + K (J0n" ™ dom, 1,(0) ) = (F(0),14(0)).
Note that
(3.10) |13 (0,0)| < [|u(0)]| o 0,17y < Nl (O] < fme

This implies that
M = [l ()| + & ][l (O)||* < 1w | ||l (0)]| + Feiom (0) + £(0)] | L2 (0,0) |
+ [xHmlmw”H+KH|a0m|P*'H+HF 0)[| | [l 0)]

1
35 W+ 2 1 0) | + 5 (0 0)+ £(0))2 + 570

+ i K
27
< L ol Lttt - ((iiom(0) +5(0)])? +
2y 2¢e 2y

+2iy[/1

|aomv’-1H+HF<o>|| [+ L on?

|ﬁ1m|q_1H +K

1
51

2
= p— Y
@onl?”|| + IFO)I ]+ 2

|I/~llm|q71H +K

||u0mx|| + 1Y<|hu0m<0>+g<o>\>2

S [ R o PR O

(3.11) +%’ [1+ﬂ N forall y> 0.
Choose ¥ > 0, such that ¥ [1 + } , we have
N = ||u;;<0>||2+euu;;x<0>|\2 f||u0mx|| + y<|hu0m<0>+g<0>|>2
(3.12) o2 [l +z<H|a0m|P” |11 ] <Xo foraitm

where X is a constant depending only on p, g, K, A, F, iy, it1, h, g(0) and €.
By (3.4), (3.8) and (3.12), we get

Xm(0)+2g/(0)ﬁlm( ) Nim + H”lmxH +hu1mx( )+2gl(0)ﬁ1m(0)
_ 1
(3.13) < X0+ |ldime||* + b3, (0) + 28" (0)ii1 (0) < 5 X0, forall m,

where X is a constant depending only on p, ¢, K, A, F, i, i1, h, g(0) and €.
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A combination of (2.3), (2.14), (3.8) and the following inequalities

(3.14) Xn(1) = (s ()||” + ||t (0)]* + & [l ()|
(3.15) 130 (0,)] < [[u65, (1) o) < i) < /X0,

all terms on the right-hand side of (3.7) are estimated as follows

t
D=2 [ (F 6 )ds < [F oy + [ 1F6)| X

t
(3.16) < CT+/0 |F'(s)|| Xon (s) ds;

1= =2K(p=1) [l 2 (), 065 s

<2K(p=1) [ ama ()72 a5 s 9]
<2K(p / (VEu®)" ™ VS0 v/ Zu(5)ds

3.17) §2(p—l)\/C¥71/0 \/Xm(s)dsgCT—i-/otXm(s)ds

J3 = —2¢'(1)uy, (0,1) < 2|g'(t Hu;no; | <218 (1) /X (1)

Ly,
(3.18) SﬁllgHiw(o’TﬁBXm() ﬁCr+BX()
J4—2/g Osds<2/ |g” \/ s)ds
(3.19) /}g” |1+ X ( )]dsgCT+/0 & ()] Xon () ds

where Cr also indicates a bound depending on T and Cy > fo lg” (s)|ds.
Combining (3.7), (3.13), (3.16) — (3.19) and choose § = é, the result is

(3.20) Xu(t) < Cr +2/0t (L+[8" ()| + ||F'(5)]|) Xm (s)ds, 0<t<T,

where Cr indicates a bound depending on T as above.
By Gronwall’s lemma, we deduce from (3.20) that

T
620 X <Crew |2 [ (L41g76)]+[F ) s| < r, foratre T,

where Cr always indicates a bound depending on 7.
Step 3. Limiting process. From (3.5), (3.8), (3.21), we deduce the existence of a subse-
quence of {u,,} still also so denoted, such that

umy —u in L*(0,T;V) weakly*,
(3.22) u, —u in L*(0,T;V) weakly*,
uh —u’ in L*(0,T;V) weakly*.
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By the compactness lemma of Lions ([6], p. 57), from (3.22), there exists a subsequence
of {u,,}, denoted by the same symbol, such that

(3.23) { Un — u stronglyin L?>(Qr) andae.in Qr,
u, —u' stronglyin L?>(Qr) andae.in Q7.
Using again the inequality (2.45), with M = Cr, we deduce from (3.23) that
(3.24) |ty | P2ty — |u|P~2u strongly in L*(Q7),
(3.25) |ul, |97 %ul, — |u'|77 21 strongly in L*(Q7).
Passing to the limit in (2.8), by (3.4), (3.22) — (3.25), we have u satisfying the problem
(0 (1), ) + (e (1) + 0601, ) + A Jud (1)) (1), v) + K (Ju () (o), v)
(3.26) + (hu(0,1) 4 g(1)) v(0) = (F(¢),v) , forall v € V,
u(0) = i, u'(0) = ;.

On the other hand, (3.22) and (3.26); yield
2

(3.27) 52 (u+ €ugy) = gy + Aug| 72wy + K |ulP 2 u—F(t) € L(0,T;L?).
Hence
(3.28) u+euy; =¥ e L(0,T;VNH?).
Furthermore, by u;, + é = l‘P it follows that
1\ . IR
u(t) = cos —t | dip++/€sin —t | i
£ )
t 1 1 - 2
(3.29) ++/€ [ sin g(t—s) E‘I—‘(s)ds eL”(0,T;VNH?).
0
Then
(3.30)

1 t
utt:E(‘Pfu)eLm(O,T;VﬂHz), and u,:ﬂ1+/ Uy (s)ds € L™(0,T;V NH?).
0

Thus u, u;, u,; € L7(0,T;V N H?) and the existence of the solution is proved completely.
Step 4. Uniqueness of the solution. Let u, v be two weak solutions of problem (1.1)-(1.4),
such that

(3.31) u,y €C'(0,T;VNH?), withu', v/, u", V' € L (0,T;VNH?).
Then w = u — v verifies
(W(1),2) + (wi(t) + ewy (0), z) + A ([ ()92 (8) = [V (1) |72V (1), 2)
(3.32) +hw(0,1)2(0) = —K (|u(t)|P~2u(t) — [v(t)|P~?v(t),z), forall z € V,
w(0) =w/(0) =0.

We take z=w = u — v in (3.32) and integrating with respect to ¢, we obtain

(3.33) )= —2K / $)1P2u(s) — [v(s)|P~2v(s), W' (s)) ds,
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where
(1) = W @)|]* +& || wi)||> + wa(e) |2 + hw?(0,7)
(3.34) Iy /0 t <]u'(s)‘q—2 () — [V ()| v (5),d (5) —v’(s)>ds.
Using again the inequality (2.45), with M = max{|[ul| =0 7.y} [Vll1=(0,r:v) }> We get

(3.35)
| |u(x,5)[P2u(x,s) — [v(x,s)|P~v(x, )| < (p— DMP2|w(x,s)|, for all (x,s) € Qr,

and the following inequalities

/O-t <‘u’(s)’q_2 u/(s) - ‘V/(s)|q_2 v/(s),u/(s) . V/(S)>ds >0,

(3.36) a(t) > W) +e | wi) |+ Iwe@)l> = 2 || @) || w0,
)< ZK/ )P 2u(s) — [v(s)|P~2v(s), W (s)) ds
(3.37) <2K(p—1)MP~ 2/ [w(s)| [|[w(s)||ds < K (p 1)MP*2/Oto(s)ds.

By Gronwall’s lemma, it follows from (3.37) that 6 =0, i.e., u = v.
Theorem 3.1 is proved completely. 1
Next, we continue to consider the regularity of solution of problem (1.1)-(1.4), corre-
sponding to p = g =2.

Lu=u"—uy—eul, + A +Ku=F(x,1),0<x<1,0<r<T,

Lou = eu/(0,1) + u,(0,7) — hu(0,1) = g(1),

u(l,r) =0,

u(0) = i, u'(0) = ;.

(3.38)

For this purpose, we also assume that € > 0, K > 0, A > 0, & > 0. Furthermore, we will
impose stronger assumptions. With » € N, we assume that

(HYY) iy, iy € VOH™2,
(HSM) The function F satisfies
PE € [1=(0,T;VNH"), 0<j <1,

%’;f € LY(0,T:VNH").

H)) gew110,T), r> 1.

First, we define the sequences {ﬁ([)k] }, {ﬁ[lk]}, k=0,1,...,r+2 by the following recurrent
formulas

_[0] _ _
Uy = Uy, Uy = U]
3.39 0, = o i ’
539 {ag‘]:a[{‘”,ke{lz 1) > 1,
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where ﬁ([)k] is defined by the following problem
—eday iy = 22E(,0)+ Ay —Kay P - aal T = el 0<x <1,
(3.40) K (0) = —glt-2 ) a2 W =Ky —
eilg, (0) = —iig, ~(0) +hiy = (0)+ 73 (0) =Py, i1y (1) =0.

Then, we have the following Lemma.

Lemma 3.1. Suppose that (H, [r]) (H, M) hold. Then problem has a unique weak solution
H € V. Furthermore, wehaveu([)]EVﬁH”r2 k=2,3,...,r+1.

Proof. The weak solution of problem (3.40) is obtained from the following variational prob-
lem.
Find U € V such that

(3.41) a(U,w) = (,w), forallw eV,

where

(3.42) { a(U,w) = (eUx,wy) + (U, w),

(w) = (@K w) — ol (0).

Using the Lax-Milgram’s theorem, Problem (3.41) has a unique weak solution ﬁg(] ev.
We shall prove that

(3.43) i e VAH™? ke {1,2,..,r+1}, r>1.

G k=1:a =i =i e vAH™2. (by (H)).

(i1) Suppose by induction that 12([)]], u([)k 1 € VNH"? hold. We shall prove that ﬁ([)k] €
V N H"2 holds. .

In fact, by (H. HY ]) we have 2L (-,0) e VNH", 2 <k < r+2. Hence, by induction we

0 tk 2
obtain

k=2
aak Lo+ ad k- aal evon

On the other hand, by i, [ } €V and (3.44), we obtain

(3.44) ol =

[k
K _ol v,

(3.45) eAT) =i

Then iy € VNH?.
Similarly, we have also @iy € VAH**! withs € N, 25— 1 < r < 25+ 1. Then

(3.46) eAdl =gl —oll e vH"
Thus
~k r
(3.47) il e vaH™?,

Lemma 3.1 is proved completely. 1
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Now, formally differentiating problem (3.38) with respect to time up to order r and letting

ull = % we are led to consider the solution ul") of problem (Q[’]) :

Lull = %rF( 1), (x,t) € 0Or,
(3.48) Q") ¢ Loull=2£(t), ull(1,1) =0,
W0y =, ul(0) = al.
From the assumptions (Hz[r]) - (H‘[tr]) we deduce that u([)r]7 ﬁ[lr], %rt, and ¢ S+ satisfy the
conditions of Theorem 3.1. So, the problem (Q[ ]) has a unique weak solution u"} such that

(3.49) u e (0,7;vNH?), W)l €17 (0,T;V NH?).

Moreover, from the uniqueness of a weak solution we have ull = ‘3:? Hence we deduce
from (3.49) that the solution u of problem (3.38) satisfy

(3.50) ueC™(0,T;vNH?), 3 €L (0T nH?).
Next we shall prove by induction on r that
9" 2
(3.51) ue ™ (0,T;VvNH™?), 577 € L0, T;VNH""?), r>1.

(1) In the case of r = 1, the proof of (3.51) is easy, hence we omit the details. We only
prove with r > 2.
(ii) Suppose by induction that (3.51) holds for r — 1. i.e.,

(3.52) ueC (0,T;VNH™), L>(0,T;VNH™).

arr+1

We need prove that (3.51) holds. To achieve this, we only have to prove that
g4 e L°(0,T;VNH2),
9 e [0, T,V NH™?),

ot +1
ort2y,

Sy € L=(0,T;VNH"2), r> 1.

(3.53)

y (O, we have

7 end Al gl 1 — OF
(3.54) (u eAu ) sl Kl 4 2l = S
Put
W = u[r] — gAu[r]’
(3.55) Wo = il — eAdl),
W =i —eaa =l "t —eaq Y,

it follows that
1 1 r r a" r oo .
W 1w = Ll — guld — 2l + ZE =@l € 1=(0,T;V NHY),

(3.56) W(0)=woeVNH",
W/(0) =W, e VNH"
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W(t) = cos (\/Zl) Wo +/€sin <\/Zt> Wi

(3.57) + \/E/Ot sin <\/Z(t —s)) wll(s)ds € L*(0,T;VNH").

By (3.52) and (3.57), it follows that

Thus

(3.58) Aull = %u[’] - éW eL”(0,T:VNH").
Thus

(3.59) ull e L2(0,T:v nH™*?).
On the other hand, by (3.56);, we obtain

(3.60) W = —%W+‘PM eL”(0,T;VNH").
It follows from (3.49), (3.60) and r > 2, that

3.61) Aull) = %uiﬂ —éw” € L=(0,T;V N H?).
Consequently

(3.62) ul) e L0, ;v NH).

Similarly, we have also u,[f] € L=(0,T;H%), with s € N, 25 —2 < r < 2s. Then

(3.63) Aull) = éu,[:] - éw” € L°(0,T;VNH").
So

(3.64) W e L=(0,T;vV NH"2).
On the other hand

(3.65) ' =l 4 /O "Wl (s)ds € L=(0,T:V A H™2),

Combining (3.59), (3.64) and (3.65), by induction arguments on r, we conclude that
(3.51) holds and the following theorem is proved.

Theorem 3.2. Let (Hz[r]) - (Hir]) hold. Then the unique solution u(x,t) of problem (3.38)
satisfies (3.51).

4. Asymptotic behavior of solutions as € — 04

In this part, we assume that p >2,¢> 1,4 >0, K > 0, 2 > 0 and (i, i, F) satisfy
the assumptions (H,), (H3). Let € > 0. By theorem 2.3, the problem (1.1) — (1.4) has a
unique weak solution u = u, depending on €.
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We consider the following perturbed problem, where € is a small parameter:
“.n
et — e — Eltgxy + A |7 2w + K ulP Pu=F(x,1),0<x<1,0<t<T,
(Pe) q €ur(0,2) +ux(0,2) = hu(0,1) +g(t), u(1,t) =0,
u(0) = iy, u’(O) =1.
We shall study the asymptotic behavior of the solution u, of problem (P;) as € — 0.

Theorem 4.1. Let T >0,p>2,q>1,1>0,K > 0. Let (H,), (H3) hold. Then

(i) The problem (By) corresponding to € = 0 has a unique weak solution iy satisfying

4.2) iip € L= (0,T;V), iy € L~ (0,T;L?).
() Ifay € LZ(O, T;Hz), then solution ug converges strongly in Wr to ip, as € — 04,
where
4.3) Wr = {ve L™(0,T;V):V € L™(0,T;L*)}.

Furthermore, we have the estimation
/ —/ —
(4.4) H”e - MOHLw(o,T;y) + [Jue — “0||L°°(0,T;V) <Crve,
where Cr is a posistive constant depending only on T.

Proof. First, we note that if the small parameter € > 0 satisfy 0 < € < 1 then a priori esti-
mates of the sequence {u,,} in the proof of Theorem 2.1 for problem (P ) satisfy

't
@) (O] + O + & 0 )| + Nt 05+ [ [ (5)[f s < .

for all t € [0,T] and for all m, and Cr is a constant depending only on T, p, ¢, A, K, iy, il
F (independent of €). Hence, the limit u = u, of the sequence {u,,} as m — oo, in suitable
function spaces is a unique weak solution of problem (FP;) satisfying

t
@6 (el + lues )P+ O]+ e ()1 + [ e[y a5 <,

forall 7 € [0,7] and for all € € (0,1).

Let {&,} be a sequence such that g, > 0, &, — 0 as m — +oo. We put u,, = ug, , we
deduce from (4.6) that, there exists a subsequence of the sequence {u,,} still denoted by
{um}, such that

Uy — il in L*(0,T;V) weakly*,
u,, — i in  L*(0,T;L%) weakly*,
Vemuly, — & in L~(0,T;V) weakly*,
4.7 Uy — il in L~(0,T;LP) weakly*,
u, — i in  Li(Qr) weakly,
|t — 20 in L=(0,T;LF')  weakly*,
Wl [P2ul, =y in LY(Qr) weakly.

By the compactness lemma of Lions [6, p. 57], (4.7)1 2 lead to the existence of a subse-
quence still denoted by {uy, }, such that

4.8) w, — ig strongly in LZ(QT) and a.e. in Qr.
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It follows from (4.7); 3, that { = 0. Hence, we obtain from (4.7)3 that

(4.9) Ve, — 01in L=(0,T;V) weakly*.
Similarly

(4.10) |um|’772um — |120\”72120 = xo strongly in L2(Qr),

and

4.11) 21 = lig| 72,

By passing to the limit, as in the proof of Theorem 2.1, we conclude that i is a unique
weak solution of problem (F) corresponding to € = 0 satisfying

(4.12) iip € L= (0,T;V), iy € L~ (0,T;L?).
(ii) Put u = ue — iy, then u is the weak solution of the following problem

W—Awﬁﬂﬂ+l0%wzl |OVQ%)+KO%V4uyﬂ%V4ﬁO
(4.13) =eAiy, 0<x<1,0<1<T,

eul{(0,t) +uy(0,t) = hu(0,1) — £ii((0,t), u(1,¢) =0,

u(0) =4/(0) =0.

Using again Lemma 2.3, in a manner similar to the above part, we obtain
o(1) =2 [ (AmG.(5)) ds+ 2¢ [ (0.5 (0,5)ds

(4.14) —ZK/t <|u8|l7*2u€ — |120‘p i, u' (s )>dS
0
where
o(r) = Hu’(z)”2+8 Hu;(t)H2+ e (£)]1* + hud?(0,1)
t —
(4.15) +27L/0 <|,/8}q || (s)>ds.
Note that

fQ%V2'|OV2%, $))ds 20,
(4.16) o(t) > ellu )2H , )
o(t) = [lu' ()" + lux ()|~ = 2{Jux(@) | 1’ ()] -
By (2.45), (4.6), (4.16), we estimate all terms in the right — hand side of (4.14) as follows

2 [ (A (s).u(5)) ds < 2¢ [ [ah(s) 1) s
< 2¢ [ @09 (9] s < &2 / a5 ds+ [ al )]s

4.17) <e H_”HB (0,T;H?) +/

2 [ (0,90 (0,9)ds < 22e [ [0, (9)] 1 [1l5) [ s < 2v2e [ (5 ()] s
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(4.18)

t t 1
<2¢ [ jago)|fpds+e [ )] ds < 26 8o + [ o)

t t
2K [ (el e — ol 0.l (5) ) ds < 2K (p = 1)) [ uts) [/ (5) s
0 0
t
4.19) <K(p—1)Cch? / o(s)ds.
0
Combining (4.14), (4.17)-(4.19), it implies that
12 2] /!
(4.20) 0 (1) < 3¢ [ 20 gy + [2+ K (P~ 1)CF }/0 & (s)ds.
By Gronwall’s lemma, (4.20) leads to
12 s _
@21 o(t) <320 pum xp(T [2+K(pf e ]) = Cre, V€ [0,7].

Hence
(4.22) [t = 0| o 0.712) + 1t = Toll =0 71y < CrVE,
where Cr is a constant depending only on 7. Theorem 4.1 is proved completely. 1
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