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1. Introduction

In this paper, we consider the following equation with initial conditions and mixed nonho-
mogeneous conditions

(1.1) utt −uxx− εuxxtt +λ |ut |q−2 ut +K |u|p−2 u = F(x, t), x ∈Ω = (0,1), 0 < t < T,

(1.2) εuxtt(0, t)+ux(0, t) = hu(0, t)+g(t),

(1.3) u(1, t) = 0,

(1.4) u(x,0) = ũ0(x), ut(x,0) = ũ1(x),

where p > 1, q > 1, ε > 0, λ > 0, K > 0, h ≥ 0 are constants and ũ0, ũ1, F, g are given
functions satisfying conditions specified later.

When F = 0, λ = K = 0, Ω = (0,L), Equation (1.1) is related to the Love’s equation

(1.5) utt −
E
ρ

uxx−2µ
2k2uxxtt = 0,
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presented by V. Radochová in 1978 (see [8]). This equation describes the vertical oscilla-
tions of a rod, which was established from Euler’s variational equation of an energy function

(1.6)
∫ T

0
dt
∫ L

0

[
1
2

Fρ
(
u2

t + µ
2k2u2

tx
)
− 1

2
F
(
Eu2

x +ρµ
2k2uxuxtt

)]
dx,

the parameters in (1.6) have the following meanings: u is the displacement, L is the length of
the rod, F is the area of cross-section, k is the cross-section radius, E is the Young modulus
of the material and ρ is the mass density. By using the Fourier method, Radochová [8]
obtained a classical solution of problem (1.5) associated with initial conditions (1.4) and
boundary conditions

(1.7) u(0, t) = u(L, t) = 0,

or

(1.8)
{

u(0, t) = 0,
εuxtt(L, t)+ c2ux(L, t) = 0,

where c2 = E
ρ
, ε = 2µ2k2. On the other hand, the asymptotic behaviour of the solution of

problem (1.4), (1.5), (1.7) or (1.8) as ε → 0+ are also established by the method of small
parameter.

Equations of Love waves or equations for waves of Love types have been studied by
many authors, we refer to [3, 4, 7] and references therein.

In [1], Ang and Dinh established a uniqueness and global existence for the problem (1.1)-
(1.4) with ε = K = h = 0, λ = 1, 1 < q < 2, F(x, t) = 0. In this latter case this problem
governs the motion of a linear viscoelastic bar.

In this paper, we shall use the Faedo-Galerkin method, compactness method and mono-
tone method in order to study problem (1.1)-(1.4). The results obtained are existence of a
weak solution, uniqueness, regularity and asymptotic behavior of solutions.

The paper consists of four sections. Section 2 is devoted to the study of the existence a
weak solution for problem (1.1)-(1.4) with ũ0, ũ1 ∈V = {v ∈ H1 : v(1) = 0}, p > 1, q > 1.
Here, a energy lemma (as given in Lemma 2.3) is also established in order to pass the limit
of a approximate problem and prove the uniqueness in case p≥ 2. In Section 3, we consider
the regularity of solution for problem (1.1)-(1.4) with ũ0, ũ1 ∈V ∩H2, p≥ 2, q≥ 2 and some
other conditions. In case p = q = 2, we show that the regularity of solutions depending on
the regularity of data. Finally, the asymptotic behavior of solutions as ε → 0+ is discussed
in Section 4. The results obtained here may be considered as the generalizations of those in
[8].

2. Existence and uniqueness of a solution

First, we put Ω = (0,1); QT = Ω× (0,T ), T > 0 and we denote the usual function spaces
used in this paper by the notations Cm

(
Ω
)
, W m,p = W m,p (Ω) , Lp = W 0,p (Ω) , Hm =

W m,2 (Ω) , 1 ≤ p ≤ ∞, m = 0,1, ... Let 〈·, ·〉 be either the scalar product in L2 or the dual
pairing of a continuous linear functional and an element of a function space. The notation
‖·‖ stands for the norm in L2 and we denote by || · ||X the norm in the Banach space X . We
call X ′ the dual space of X . We denote by Lp(0,T ;X), 1 ≤ p ≤ ∞ for the Banach space of
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the real functions u : (0,T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0
‖u(t)‖p

X dt
)1/p

< ∞ for 1≤ p < ∞,

and
‖u‖L∞(0,T ;X) = esssup

0<t<T
‖u(t)‖X for p = ∞.

Let u(t), u′(t) = ut(t), u′′(t) = utt(t), ux(t), uxx(t) denote u(x, t), ∂u
∂ t (x, t),

∂ 2u
∂ t2 (x, t),

∂u
∂x (x, t), ∂ 2u

∂x2 (x, t), respectively.
On H1 we shall use the following norm

‖v‖H1 =
(
‖v‖2 +‖vx‖2

)1/2
.

We put

(2.1) V = {v ∈ H1 : v(1) = 0}.
Then V is a closed subspace of H1 and on V, v 7−→ ||v||H1 and v 7−→ ||vx|| are equivalent

norms.
Then the following lemmas are known as a standard one.

Lemma 2.1. The imbedding H1 ↪→C0([0,1]) is compact and

(2.2) ||v||C0(Ω) ≤
√

2||v||H1 for all v ∈ H1.

Lemma 2.2. The imbedding V ↪→C0([0,1]) is compact and

(2.3) ||v||C0(Ω) ≤ ||vx|| for all v ∈V.

We remark that the weak formulation of the initial-boundary value problem (1.1)-(1.4)
can be given in the following manner: Find u∈ L∞(0,T ;V ), with ut ∈ L∞(0,T ;V ), such that
u satisfies the following variational equation

(2.4)
{ d

dt [〈ut(t),w〉+ ε〈uxt(t),wx〉]+ 〈ux(t),wx〉+(hu(0, t)+g(t))w(0)
+λ 〈|ut(t)|q−2 ut(t),w〉+K〈|u|p−2 u,w〉= 〈F(t),w〉,

for all w ∈V, a.e., t ∈ (0,T ), together with the initial conditions

(2.5) u(0) = ũ0, ut(0) = ũ1.

Next, we need the following assumptions:

(H1) p > 1, q > 1, λ > 0, K > 0, ε > 0, h≥ 0;

(H2) ũ0, ũ1 ∈V ;
(H3) F ∈ L1(0,T ;L2);
(H4) g ∈W 1,1 (0,T ) .

Then, we have the following theorem.

Theorem 2.1. Let T > 0. Suppose that (H1)−(H4) hold. Then, there exists a weak solution
u of problem (1.1)-(1.4) such that

(2.6) u ∈ L∞ (0,T ;V ) , ut ∈ L∞ (0,T ;V ) .

Furthermore, if p≥ 2, the solution is unique.
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Proof. The proof is a combination of Galerkin method and compactness arguments, and
consits of four steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions [6]). Consider the basis
in V

w j(x) =

√
2

1+λ 2
j

cos(λ jx), λ j = (2 j−1)
π

2
, j ∈ N,

constructed by the eigenfunctions of the Laplace operator −∆ =− ∂ 2

∂x2 . Put

(2.7) um(t) =
m

∑
j=1

cm j(t)w j,

where the coefficients c(k)
m j satisfy the system of nonlinear ordinary differential equations

(2.8)


〈
u′′m(t),w j

〉
+
〈
umx(t)+ εu′′mx(t),w jx

〉
+λ

〈
|u′m(t)|q−2 u′m(t),w j

〉
+K

〈
|um(t)|p−2 um(t),w j

〉
+(hum(0, t)+g(t))w j(0) =

〈
F(t),w j

〉
, 1≤ j ≤ m,

um(0) = ũ0m, u′m(0) = ũ1m,

where

(2.9)
{

ũ0m = ∑
m
j=1 αm jw j→ ũ0 strongly in V,

ũ1m = ∑
m
j=1 βm jw j→ ũ1 strongly in V.

From the assumptions of Theorem 2.1, system (2.8) has a solution um on an interval
[0,Tm]⊂ [0,T ]. The following estimates allow one to take Tm = T for all m (see [2]).

Step 2. Multiplying the jth equation of (2.8) by c′m j(t) and summing up with respect to
j, afterwards, integrating by parts with respect to the time variable from 0 to t, after some
rearrangements, we get

Sm(t) = Sm(0)+2g(0)ũ0m(0)+2
∫ t

0

〈
F(s),u′m(s)

〉
ds

+2
∫ t

0
g′(s)um(0,s)ds−2g(t)um(0, t)

= Sm(0)+2g(0)ũ0m(0)+∑
3
j=1 I j,(2.10)

where

Sm(t) =
∥∥u′m(t)

∥∥2 +‖umx(t)‖2 + ε
∥∥u′mx(t)

∥∥2 +hu2
m(0, t)

+
2K
p
‖um(t)‖p

Lp +2λ

∫ t

0

∥∥u′m(s)
∥∥q

Lq ds.(2.11)

By (2.9), (2.11) and the imbedding H1 ↪→ C0
(
Ω
)
, there exists a positive constant C̄0

depending only on ũ0, ũ1, h, K, p, g(0) and ε, such that

Sm(0)+2g(0)ũ0m(0)+
2K
p
‖ũ0m‖p

Lp = ‖ũ1m‖2 +‖ũ0mx‖2 + ε ‖ũ1mx‖2

+hũ2
0m(0)+2g(0)ũ0m(0)+

2K
p
‖ũ0m‖p

Lp ≤
1
2

C̄0,∀ m.(2.12)

Using (2.3) and the following inequalities

2ab≤ βa2 +
1
β

b2, for all a, b ∈ R, β > 0,(2.13)
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and

|um(0, t)| ≤ ‖um(t)‖C0(Ω) ≤ ‖umx(t)‖ ≤
√

Sm(t),(2.14)

we can estimate all terms in the right-hand side of (2.10) as follows

I1 = 2
∫ t

0

〈
F (s) ,u′m (s)

〉
ds≤

∫ t

0
‖F (s)‖ds+

∫ t

0
‖F (s)‖

∥∥u′m (s)
∥∥2 ds

≤CT +
∫ t

0
‖F (s)‖Sm (s)ds,(2.15)

where CT indicates a constant depending on T ;

I2 = 2
∫ t

0
g′(s)um(0,s)ds≤ 2

∫ t

0

∣∣g′(s)∣∣√Sm(s)ds+
∫ t

0

∣∣g′(s)∣∣Sm(s)ds

≤CT +
∫ t

0

∣∣g′(s)∣∣Sm(s)ds,(2.16)

with CT ≥
∫ T

0 |g′(s)|ds;

I3 =−2g(t)um(0, t)≤ 2‖g‖L∞(0,T )

√
Sm(t)≤CT +

1
2

Sm(t),(2.17)

for all β > 0, CT ≥ 2‖g‖2
L∞(0,T ) .

Combining (2.10), (2.12), (2.15)-(2.17) and choose β = 1
2 , the result is

Sm (t)≤CT +
∫ t

0
d(1)

T (s)Sm (s)ds, 0≤ t ≤ Tm,(2.18)

where d(1)
T (s) = 2 [‖F (s)‖+ |g′(s)|] , d(1)

T ∈ L1(0,T ).
By Gronwall’s lemma, we deduce from (2.18) that

Sm(t)≤CT exp
[∫ T

0
d(1)

T (s)ds
]
≤CT , for all t ∈ [0,T ],(2.19)

where CT always indicates a bound depending on T. Thus, we can take constant Tm = T for
all m.

On the other hand, we deduce from (2.11) and (2.19) that

(2.20)


∥∥∥|um|p−2 um

∥∥∥p′

L∞(0,T ;Lp′ )
= ‖um‖p

L∞(0,T ;Lp) ≤
p

2K CT ≤CT ,∥∥∥|u′m|q−2 u′m
∥∥∥q′

Lq′ (QT )
=
∫ T

0 ‖u′m(s)‖q
Lq ds≤ 1

2λ
CT ≤CT ,

where CT always indicates a bound depending on T as above.
Step 3. Limiting process. From (2.11), (2.19), (2.20) we deduce the existence of a sub-

sequence of {um}, denoted by the same symbol such that

(2.21)



um→ u in L∞(0,T ;V ) weakly*,

u′m→ u′ in L∞(0,T ;V ) weakly*,
um→ u in L∞(0,T ;Lp) weakly*,
u′m→ u′ in Lq(QT ) weakly,

|um|p−2 um→ χ0 in L∞(0,T ;Lp′) weakly*,
|u′m|

q−2 u′m→ χ1 in Lq′(QT ) weakly.
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By the compactness lemma of Lions ([6], p. 57), from (2.21)1,2, there exists a subse-
quence of {um}, still denoted by {um}, such that

um→ u strongly in L2(QT ) and a.e. in QT .(2.22)

By means of the continuity of function x 7−→ |x|p−2x, we have

|um|p−2um→ |u|p−2u a.e. in QT .(2.23)

Using Lions’s Lemma ([6], Lemma 1.3, p.12), it follows from (2.20)1 and (2.23) that

|um|p−2um→ |u|p−2u in Lp′(QT ) weakly.(2.24)

By (2.21)5 and (2.24), we deduce that

χ0 = |u|p−2u.(2.25)

Passing to the limit in (2.8) by (2.9), (2.21), (2.24) and (2.25), we have u satisfying the
problem

(2.26)


d
dt [〈u′(t),v〉+ ε 〈u′x(t),vx〉]+ 〈ux(t),vx〉+λ 〈χ1(t),v〉+K

〈
|u(t)|p−2 u(t),v

〉
+(hu(0, t)+g(t))v(0) = 〈F(t),v〉 , for all v ∈V,

u(0) = ũ0, u′(0) = ũ1.

It remains to prove that χ1 = |u′|q−2 u′. We need the following lemmas.

Lemma 2.3. Let u be the weak solution of the following problem

(2.27)


u′′−uxx− εu′′xx = Φ, 0 < x < 1, 0 < t < T,
εu′′x (0, t)+ux(0, t) = G(t), u(1, t) = 0,
u(0) = ũ0, u′(0) = ũ1,
u ∈ L∞(0,T ;V ), u′ ∈ L∞(0,T ;V ),
ũ0, ũ1 ∈V, G ∈ L2 (0,T ) , Φ ∈ L1(0,T ;L2).

Then we have
1
2

∥∥u′(t)
∥∥2 +

1
2
‖ux(t)‖2 +

ε

2

∥∥u′x(t)
∥∥2 +

∫ t

0
G(s)u′(0,s)ds

≥ 1
2
‖ũ1‖2 +

1
2
‖ũ0x‖2 +

ε

2
‖ũ1x‖2 +

∫ t

0

〈
Φ(s),u′(s)

〉
ds, a.e., t ∈ [0,T ].(2.28)

Furthermore, if ũ0 = ũ1 = 0, there is equality in (2.28).

Proof of Lemma 2.3. The idea of the proof is the same as in ([5], Lemma 2.1, p. 79). Fix
t1, t2, 0 < t1 < t2 < T and let v(x, t) be the function defined as follows

v(x, t) = θm(t)[
(
θm(t)u′(x, t)

)
∗ρk(t)∗ρk(t)],(2.29)

where
(i) θm is a continuous, piecewise linear function on [0,T ] defined as follows:

(2.30) θm(t) =


0, if, t ∈ [0,T ]r [t1 +1/m, t2−1/m],

1, if, t ∈ [t1 +2/m, t2−2/m],

m(t− t1−1/m), if, t ∈ [t1 +1/m, t1 +2/m],

−m(t− t2 +1/m), if, t ∈ [t2−2/m, t2−1/m].
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(ii) {ρk} is a regularizing sequence in C∞
c (R), i.e.,

ρk ∈C∞
c (R), ρk(t) = ρk(−t),

∫ +∞

−∞

ρk(t)dt = 1, supp ρk ⊂ [−1/k,1/k].(2.31)

(iii) (∗) is the convolution product in the time variable, ie.,

(u∗ρk)(x, t) =
∫ +∞

−∞

u(x, t− s)ρk(s)ds.(2.32)

We take the scalar product of the function v(x, t) in (2.29) with equation (2.27)1, then
integrate with respect to the time variable from 0 to T, and we have

Xmk +Ymk = Zmk,(2.33)

where

(2.34)


Xmk =

∫ T
0 〈u′′(t),v(t)〉dt,

Ymk =−
∫ T

0 〈 ∂

∂x (ux(t)+ εuxtt(t)) ,v(t)〉dt,
Zmk =

∫ T
0 〈Φ(t),v(t)〉dt.

By using the properties of the functions θm(t) and ρk(t) we can show after some lengthy
calculation

(2.35)


lim

k→+∞
Xmk =−

∫ T
0 θmθ ′m ‖u′(t)‖

2 dt,

lim
k→+∞

Ymk =−
∫ T

0 θmθ ′m ‖ux(t)‖2 dt− ε
∫ T

0 θmθ ′m ‖u′x(t)‖
2 dt +

∫ T
0 θ 2

mG(t)u′(0, t)dt,

lim
k→+∞

Zmk =
∫ T

0 θ 2
m〈Φ(t),u′(t)〉dt.

Letting m→ ∞, (2.33) – (2.35) yield
1
2

∥∥u′(t2)
∥∥2− 1

2

∥∥u′(t1)
∥∥2 +

1
2
‖ux(t2)‖2− 1

2
‖ux(t1)‖2 +

ε

2

∥∥u′x(t2)
∥∥2− ε

2

∥∥u′x(t1)
∥∥2

+
∫ t2

t1
G(t)u′(0, t)dt =

∫ t2

t1
〈Φ(t),u′(t)〉dt, a.e., t1 t2 ∈ (0,T ), t1 < t2.

(2.36)

From (2.36), using the weak lower semicontinuity of the functional v 7−→ ‖v‖2 , we ob-
tain (2.28) by taking t2 = t and passing to the limit as t1→ 0+.

In the case of ũ0 = ũ1 = 0, we prolong u, Φ, G by 0 as t < 0 and we deduce equality
(2.36) is true for almost t1 < t2 < T. Taking t1 < 0 in (2.36), its right-hand side is 0, we take
t1→ 0−, we have equality (2.28).

The proof of Lemma 2.3 is completed.

Remark 2.1. Lemma 2.3 is a relative generalization of a lemma of Lions ([6], Lemma 6.1,
p. 224).

We now prove that χ1 = |u′|q−2 u′. From (2.10) and (2.11) we deduce

2λ

∫ t

0

〈∣∣u′m(s)
∣∣q−2 u′m(s),u′m(s)

〉
ds = 2λ

∫ t

0

∥∥u′m(s)
∥∥q

Lq ds

= ‖ũ1m‖2 + ε ‖ũ1mx‖2 +‖ũ0mx‖2 +hũ2
0m(0)+

2K
p
‖ũ0m‖p

Lp

−
∥∥u′m(t)

∥∥2− ε
∥∥u′mx(t)

∥∥2−‖umx(t)‖2−hu2
m(0, t)− 2K

p
‖um(t)‖p

Lp
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+2
∫ t

0

〈
F(s),u′m(s)

〉
ds−2

∫ t

0
g(s)u′m(0,s)ds.(2.37)

Using Lemma 2.3, with Φ = F−K |u|p−2 u−λ χ1, G(t) = hu(0, t)+g(t), it follows from
(2.8), (2.9), (2.21), (2.28), (2.37) that

2λ limsup
m→∞

∫ t

0

〈∣∣u′m(s)
∣∣q−2 u′m(s),u′m(s)

〉
ds

≤ ‖ũ1‖2 + ε ‖ũ1x‖2 +‖ũ0x‖2 +hũ2
0(0)+

2K
p
‖ũ0‖p

Lp

− liminf
m→∞

∥∥u′m(t)
∥∥2− εliminf

m→∞

∥∥u′mx(t)
∥∥2− liminf

m→∞

(
‖umx(t)‖2 +hu2

m(0, t)
)

− 2K
p

liminf
m→∞

‖um(t)‖p
Lp +2

∫ t

0

〈
F(s),u′(s)

〉
ds−2

∫ t

0
g(s)u′(0,s)ds

≤ ‖ũ1‖2 + ε ‖ũ1x‖2 +‖ũ0x‖2 +hũ2
0(0)+

2K
p
‖ũ0‖p

Lp

−
∥∥u′(t)

∥∥2− ε
∥∥u′x(t)

∥∥2−‖ux(t)‖2−hu2(0, t)

− 2K
p
‖u(t)‖p

Lp +2
∫ t

0

〈
F(s),u′(s)

〉
ds−2

∫ t

0
g(s)u′(0,s)ds

≤ ‖ũ1‖2 +‖ũ0x‖2 + ε ‖ũ1x‖2−
∥∥u′(t)

∥∥2−‖ux(t)‖2− ε
∥∥u′x(t)

∥∥2

+2
∫ t

0

〈
F(s)−K|u(s)|p−2u(s)−λ χ1(s),u′(s)

〉
ds−2

∫ t

0
(hu(0,s)+g(s))u′(0,s)ds

+2λ

∫ t

0

〈
χ1(s),u′(s)

〉
ds≤ 2λ

∫ t

0

〈
χ1(s),u′(s)

〉
ds.

(2.38)

Consider

φm(t) =
∫ t

0

〈∣∣u′m(s)
∣∣q−2 u′m(s)−|v(s)|q−2 v(s),u′m(s)− v(s)

〉
ds≥ 0,(2.39)

for all v ∈ Lq(QT ).
Combining (2.21)2−6, (2.38) and (2.39), we have

0≤ limsup
m→∞

φm(t)≤
∫ t

0

〈
χ1(s)−|v(s)|q−2 v(s),u′(s)− v(s)

〉
ds, ∀ v ∈ Lq(QT ).(2.40)

In (2.40), choose v(s) = u′(s)−δw, with δ > 0 and w ∈ Lq(QT ). Apply the argument of
Minty and Browder (see Lions [6], p. 172), we obtain χ1 = |u′|q−2 u′.

The proof of existence is completed.
Step 4. Uniqueness of the solution. Assume now that p≥ 2 holds.
Let u, v be two weak solutions of the problem (1.1) – (1.4), such that

u,v ∈ L∞ (0,T ;V ) and u′,v′ ∈ L∞ (0,T ;V ) .(2.41)
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Then w = u− v is the weak solution of the following problem

(2.42)


wtt − εwxxtt −wxx =−λ

(
|u′|q−2 u′−|v′|q−2 v′

)
−K

(
|u|p−2u−|v|p−2v

)
= 0,

εwxtt(0, t)+wx(0, t) = hw(0, t), w(1, t) = 0,

w(x,0) = wt(x,0) = 0,

w, w′ ∈ L∞ (0,T ;V ) .

Using Lemma 2.3 with ũ0 = ũ1 = 0, Φ =−λ

(
|u′|q−2 u′−|v′|q−2 v′

)
−K

(
|u|p−2u−|v|p−2v

)
,

G(t) = hw(0, t), we obtain

σ(t)+2λ

∫ t

0

〈∣∣u′(s)∣∣q−2 u′(s)−
∣∣v′(s)∣∣q−2 v′(s),u′(s)− v′(s)

〉
ds

=−2K
∫ t

0

〈
|u(s)|p−2u(s)−|v(s)|p−2v(s),w′(s)

〉
ds, a.e. t ∈ [0,T ],(2.43)

where

σ(t) =
∥∥w′(t)

∥∥2 +‖wx(t)‖2 + ε
∥∥w′x(t)

∥∥2 +hw2(0, t).(2.44)

Using the following inequality∣∣ |x|p−2x−|y|p−2y
∣∣≤ (p−1)Mp−2 |x− y| , ∀x,y ∈ [−M,M], ∀M > 0, ∀p≥ 2,(2.45)

with M = ‖u‖L∞(0,T ;V ) +‖v‖L∞(0,T ;V ) , and note that∫ t

0

〈∣∣u′(s)∣∣q−2 u′(s)−
∣∣v′(s)∣∣q−2 v′(s),u′(s)− v′(s)

〉
ds≥ 0,

σ(t) =
∥∥w′(t)

∥∥2 +‖wx(t)‖2 + ε
∥∥w′x(t)

∥∥2 ≥ 2
∥∥w′(t)

∥∥‖wx(t)‖ ,(2.46)

we deduce from (2.43), (2.46) that

σ(t)≤−2K
∫ t

0

〈
|u(s)|p−2u(s)−|v(s)|p−2v(s),w′(s)

〉
ds

≤ 2K(p−1)Mp−2
∫ t

0
‖w(s)‖

∥∥w′(s)
∥∥ds≤ K(p−1)Mp−2

∫ t

0
σ(s)ds.(2.47)

By Gronwall’s lemma, it follows from (2.47) that σ ≡ 0, i.e., u ≡ v. Theorem 2.1 is
proved completely.

3. The regularity of solutions

In this section, we study the regularity of solutions of problem (1.1) – (1.4) corresponding
to (ũ0, ũ1) ∈

(
V ∩H2

)
×
(
V ∩H2

)
.

Henceforth, we strengthen the hypotheses and assume that:

(H ′1) p≥ 2, q≥ 2, λ > 0, K > 0, ε > 0, h≥ 0;

(H ′2) ũ0, ũ1 ∈V ∩H2;

(H ′3) F, F ′ ∈ L1(0,T ;L2);

(H ′4) g ∈W 2,1 (0,T ) .

First, we have the following theorem.
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Theorem 3.1. Let T > 0. Suppose that (H ′1)− (H ′4) hold. Then problem (1.1)-(1.4) has a
unique weak solution

u ∈ L∞
(
0,T ;V ∩H2) , such that ut , utt ∈ L∞

(
0,T ;V ∩H2) .(3.1)

Remark 3.1. The regularity obtained by (3.1) shows that problem (1.1)-(1.4) has a unique
strong solution

u ∈C1 (0,T ;V ∩H2) , utt ∈ L∞
(
0,T ;V ∩H2) .(3.2)

Proof. The proof consists of four Steps as follows.
Step 1. The Faedo-Galerkin approximation. By the same argument as in Theorem 2.1,

we obtain the approximate solution um(t) of problem (1.1) – (1.4) in the form (2.7), where
the coefficient functions cm j satisfy the system (2.8), with

ũ0m =
m

∑
j=1

αm jw j→ ũ0 strongly in V ∩H2,(3.3)

ũ1m =
m

∑
j=1

βm jw j→ ũ1 strongly in V ∩H2.(3.4)

Step 2. A priori estimates I. Using assumptions (H ′1)− (H ′4), similarly, we get

Sm(t) =
∥∥u′m(t)

∥∥2 +‖umx(t)‖2 + ε
∥∥u′mx(t)

∥∥2 +hu2
m(0, t)

+
2K
p
‖um(t)‖p

Lp +2λ

∫ t

0

∥∥u′m(s)
∥∥q

Lq ds≤CT ,(3.5)

for all t ∈ [0,T ] and for all m, and CT always indicates a bound depending on T.
A priori estimates II. Now differentiating (2.8)1 with respect to t, we have〈

u′′′m (t),w j
〉
+
〈
u′mx(t)+ εu′′′mx(t),w jx

〉
+K(p−1)

〈
|um(t)|p−2 u′m(t),w j

〉
+λ (q−1)

〈∣∣u′m(t)
∣∣q−2 u′′m(t),w j

〉
+
(
hu′m(0, t)+g′(t)

)
w j(0) =

〈
F ′(t),w j

〉
,(3.6)

for all 1≤ j ≤ m.
Multiplying the j-th equation of (3.6) by c′′m j(t), summing up with respect to j and then

integrating with respect to the time variable from 0 to t, we obtain

Xm(t) = Xm(0)+2g′(0)ũ1m(0)+2
∫ t

0

〈
F ′(s),u′′m(s)

〉
ds

−2K(p−1)
∫ t

0

〈
|um(s)|p−2 u′m(s),u′′m(s)

〉
ds

−2g′(t)u′m(0, t)+2
∫ t

0
g′′(s)u′m(0,s)ds

≡ Xm(0)+2g′(0)ũ1m(0)+
4

∑
j=1

J j,(3.7)

where

Xm(t) =
∥∥u′′m(t)

∥∥2 +
∥∥u′mx(t)

∥∥2 + ε
∥∥u′′mx(t)

∥∥2 +h
∣∣u′m(0, t)

∣∣2
+2λ (q−1)

∫ t

0
ds
∫ 1

0

∣∣u′m(x,s)
∣∣q−2 ∣∣u′′m(x,s)

∣∣2 dx.(3.8)
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First, we estimate ηm = ‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2 .
Letting t→ 0+ in equation (2.8)1, multiplying the result by c′′m j(0), then∥∥u′′m(0)

∥∥2 + ε
∥∥u′′mx(0)

∥∥2 +
〈
ũ0mx,u′′mx(0)

〉
+λ

〈
|ũ1m|q−2 ũ1m,u′′m(0)

〉
+(hũ0m(0)+g(0) )u′′m(0,0)

+K
〈
|ũ0m|p−2 ũ0m,u′′m(0)

〉
=
〈
F(0),u′′m(0)

〉
.(3.9)

Note that ∣∣u′′m(0,0)
∣∣≤ ∥∥u′′m(0)

∥∥
C0([0,1]) ≤

∥∥u′′mx(0)
∥∥≤ 1√

ε

√
ηm.(3.10)

This implies that

ηm =
∥∥u′′m(0)

∥∥2 + ε
∥∥u′′mx(0)

∥∥2 ≤ ‖ũ0mx‖
∥∥u′′mx(0)

∥∥+ |hũ0m(0)+g(0)|
∣∣u′′m(0,0)

∣∣
+
[
λ

∥∥∥|ũ1m|q−1
∥∥∥+K

∥∥∥|ũ0m|p−1
∥∥∥+‖F(0)‖

]∥∥u′′m(0)
∥∥

≤ 1
2γ
‖ũ0mx‖2 +

γ

2

∥∥u′′mx(0)
∥∥2 +

1
2γ

(|hũ0m(0)+g(0)|)2 +
1

2ε
γηm

+
1
2γ

[
λ

∥∥∥|ũ1m|q−1
∥∥∥+K

∥∥∥|ũ0m|p−1
∥∥∥+‖F(0)‖

]2
+

γ

2

∥∥u′′m(0)
∥∥2

≤ 1
2γ
‖ũ0mx‖2 +

γ

2ε
ηm +

1
2γ

(|hũ0m(0)+g(0)|)2 +
1

2ε
γηm

+
1
2γ

[
λ

∥∥∥|ũ1m|q−1
∥∥∥+K

∥∥∥|ũ0m|p−1
∥∥∥+‖F(0)‖

]2
+

γ

2
ηm

≤ 1
2γ
‖ũ0mx‖2 +

1
2γ

(|hũ0m(0)+g(0)|)2

+
1
2γ

[
λ

∥∥∥|ũ1m|q−1
∥∥∥+K

∥∥∥|ũ0m|p−1
∥∥∥+‖F(0)‖

]2

+
γ

2

[
1+

2
ε

]
ηm, f or all γ > 0.(3.11)

Choose γ > 0, such that γ

2

[
1+ 2

ε

]
≤ 1

2 , we have

ηm =
∥∥u′′m(0)

∥∥2 + ε
∥∥u′′mx(0)

∥∥2 ≤ 1
γ
‖ũ0mx‖2 +

1
γ

(|hũ0m(0)+g(0)|)2

+
1
γ

[
λ

∥∥∥|ũ1m|q−1
∥∥∥+K

∥∥∥|ũ0m|p−1
∥∥∥+‖F(0)‖

]2
≤ X0 f or all m,(3.12)

where X0 is a constant depending only on p, q, K, λ , F, ũ0, ũ1, h, g(0) and ε.
By (3.4), (3.8) and (3.12), we get

Xm(0)+2g′(0)ũ1m(0) = ηm +‖ũ1mx‖2 +hũ2
1mx(0)+2g′(0)ũ1m(0)

≤ X0 +‖ũ1mx‖2 +hũ2
1mx(0)+2g′(0)ũ1m(0)≤ 1

2
X0, f or all m,(3.13)

where X0 is a constant depending only on p, q, K, λ , F, ũ0, ũ1, h, g(0) and ε.
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A combination of (2.3), (2.14), (3.8) and the following inequalities

Xm(t)≥
∥∥u′′m(t)

∥∥2 +
∥∥u′mx(t)

∥∥2 + ε
∥∥u′′mx(t)

∥∥2
,(3.14)

∣∣u′m(0, t)
∣∣≤ ∥∥u′m(t)

∥∥
C0(Ω) ≤

∥∥u′mx(t)
∥∥≤√Xm(t),(3.15)

all terms on the right-hand side of (3.7) are estimated as follows

J1 = 2
∫ t

0

〈
F ′(s),u′′m(s)

〉
ds≤

∥∥F ′
∥∥

L1(0,T ;L2) +
∫ t

0

∥∥F ′(s)
∥∥Xm (s)ds

≤CT +
∫ t

0

∥∥F ′(s)
∥∥Xm (s)ds;(3.16)

J2 =−2K(p−1)
∫ t

0

〈
|um(s)|p−2 u′m(s),u′′m(s)

〉
ds

≤ 2K(p−1)
∫ t

0
‖umx(s)‖p−2∥∥u′m(s)

∥∥∥∥u′′m(s)
∥∥ds

≤ 2K(p−1)
∫ t

0

(√
Sm(s)

)p−2√
Sm(s)

√
Xm(s)ds

≤ 2(p−1)
√

Cp−1
T

∫ t

0

√
Xm(s)ds≤CT +

∫ t

0
Xm(s)ds;(3.17)

J3 =−2g′(t)u′m(0, t)≤ 2
∣∣g′(t)∣∣ ∣∣u′m(0, t)

∣∣≤ 2
∣∣g′(t)∣∣√Xm(t)

≤ 1
β

∥∥g′
∥∥2

L∞(0,T ) +βXm(t)≤ 1
β

CT +βXm(t);(3.18)

J4 = 2
∫ t

0
g′′(s)u′m(0,s)ds≤ 2

∫ t

0

∣∣g′′(s)∣∣√Xm (s)ds

≤
∫ t

0

∣∣g′′(s)∣∣ [1+Xm (s)]ds≤CT +
∫ t

0

∣∣g′′(s)∣∣Xm (s)ds,(3.19)

where CT also indicates a bound depending on T and CT ≥
∫ T

0 |g′′(s)|ds.
Combining (3.7), (3.13), (3.16) – (3.19) and choose β = 1

2 , the result is

Xm(t)≤CT +2
∫ t

0

(
1+
∣∣g′′(s)∣∣+∥∥F ′(s)

∥∥)Xm (s)ds, 0≤ t ≤ T,(3.20)

where CT indicates a bound depending on T as above.
By Gronwall’s lemma, we deduce from (3.20) that

Xm(t)≤CT exp
[

2
∫ T

0

(
1+
∣∣g′′(s)∣∣+∥∥F ′(s)

∥∥)ds
]
≤CT , f or all t ∈ [0,T ],(3.21)

where CT always indicates a bound depending on T.
Step 3. Limiting process. From (3.5), (3.8), (3.21), we deduce the existence of a subse-

quence of {um} still also so denoted, such that

(3.22)

 um→ u in L∞(0,T ;V ) weakly*,
u′m→ u′ in L∞(0,T ;V ) weakly*,
u′′m→ u′′ in L∞(0,T ;V ) weakly*.
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By the compactness lemma of Lions ([6], p. 57), from (3.22), there exists a subsequence
of {um}, denoted by the same symbol, such that

(3.23)

{
um→ u strongly in L2(QT ) and a.e. in QT ,

u′m→ u′ strongly in L2(QT ) and a.e. in QT .

Using again the inequality (2.45), with M = CT , we deduce from (3.23) that

|um|p−2um→ |u|p−2u strongly in L2(QT ),(3.24)

|u′m|q−2u′m→ |u′|q−2u′ strongly in L2(QT ).(3.25)

Passing to the limit in (2.8), by (3.4), (3.22) – (3.25), we have u satisfying the problem

(3.26)


〈u′′(t),v〉+ 〈ux(t)+ εu′′x (t),vx〉+λ

〈
|u′(t)|q−2u′(t),v

〉
+K

〈
|u(t)|p−2 u(t),v

〉
+(hu(0, t)+g(t))v(0) = 〈F(t),v〉 , for all v ∈V,

u(0) = ũ0, u′(0) = ũ1.

On the other hand, (3.22) and (3.26)1 yield

∂ 2

∂x2 (u+ εutt) = utt +λ |ut |q−2ut +K |u|p−2 u−F(t) ∈ L∞(0,T ;L2).(3.27)

Hence

u+ εutt ≡Ψ ∈ L∞(0,T ;V ∩H2).(3.28)

Furthermore, by utt + 1
ε

u≡ 1
ε

Ψ, it follows that

u(t) = cos

(√
1
ε

t

)
ũ0 +
√

ε sin

(√
1
ε

t

)
ũ1

+
√

ε

∫ t

0
sin

(√
1
ε
(t− s)

)
1
ε

Ψ(s)ds ∈ L∞(0,T ;V ∩H2).(3.29)

Then

utt =
1
ε

(Ψ−u) ∈ L∞(0,T ;V ∩H2), and ut = ũ1 +
∫ t

0
utt(s)ds ∈ L∞(0,T ;V ∩H2).

(3.30)

Thus u, ut , utt ∈ L∞(0,T ;V ∩H2) and the existence of the solution is proved completely.
Step 4. Uniqueness of the solution. Let u, v be two weak solutions of problem (1.1)-(1.4),

such that

u,v ∈C1 (0,T ;V ∩H2) , with u′, v′, u′′, v′′ ∈ L∞
(
0,T ;V ∩H2) .(3.31)

Then w = u− v verifies

(3.32)


〈w′′(t),z〉+ 〈wx(t)+ εw′′x (t),zx〉+λ

〈
|u′(t)|q−2u′(t)−|v′(t)|q−2v(t),z

〉
+hw(0, t)z(0) =−K

〈
|u(t)|p−2u(t)−|v(t)|p−2v(t),z

〉
, for all z ∈V,

w(0) = w′(0) = 0.

We take z = w = u− v in (3.32) and integrating with respect to t, we obtain

σ(t) =−2K
∫ t

0

〈
|u(s)|p−2u(s)−|v(s)|p−2v(s),w′(s)

〉
ds,(3.33)
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where

σ(t) =
∥∥w′(t)

∥∥2 + ε
∥∥w′x(t)

∥∥2 +‖wx(t)‖2 +hw2(0, t)

+2λ

∫ t

0

〈∣∣u′(s)∣∣q−2 u′(s)−
∣∣v′(s)∣∣q−2 v′(s),u′(s)− v′(s)

〉
ds.(3.34)

Using again the inequality (2.45), with M = max{‖u‖L∞(0,T ;V ) , ‖v‖L∞(0,T ;V )}, we get

∣∣ |u(x,s)|p−2u(x,s)−|v(x,s)|p−2v(x,s)
∣∣≤ (p−1)Mp−2 |w(x,s)| , for all (x,s) ∈ QT ,

(3.35)

and the following inequalities∫ t

0

〈∣∣u′(s)∣∣q−2 u′(s)−
∣∣v′(s)∣∣q−2 v′(s),u′(s)− v′(s)

〉
ds≥ 0,

σ(t)≥
∥∥w′(t)

∥∥2 + ε
∥∥w′x(t)

∥∥2 +‖wx(t)‖2 ≥ 2
∥∥w′(t)

∥∥‖wx(t)‖ ,(3.36)

so

σ(t)≤−2K
∫ t

0

〈
|u(s)|p−2u(s)−|v(s)|p−2v(s),w′(s)

〉
ds

≤ 2K(p−1)Mp−2
∫ t

0
‖w(s)‖

∥∥w′(s)
∥∥ds≤ K(p−1)Mp−2

∫ t

0
σ(s)ds.(3.37)

By Gronwall’s lemma, it follows from (3.37) that σ ≡ 0, i.e., u≡ v.
Theorem 3.1 is proved completely.

Next, we continue to consider the regularity of solution of problem (1.1)-(1.4), corre-
sponding to p = q = 2.

(3.38)


Lu≡ u′′−uxx− εu′′xx +λu′+Ku = F(x, t), 0 < x < 1, 0 < t < T,
L0u≡ εu′′x (0, t)+ux(0, t)−hu(0, t) = g(t),

u(1, t) = 0,
u(0) = ũ0, u′(0) = ũ1.

For this purpose, we also assume that ε > 0, K > 0, λ > 0, h≥ 0. Furthermore, we will
impose stronger assumptions. With r ∈ N, we assume that

(H [r]
2 ) ũ0, ũ1 ∈V ∩Hr+2.

(H [r]
3 ) The function F satisfies

∂ jF
∂ t j ∈ L∞(0,T ;V ∩Hr), 0≤ j ≤ r,

∂ r+1F
∂ tr+1 ∈ L1(0,T ;V ∩Hr).

(H [r]
4 ) g ∈W r+1,1 (0,T ) , r ≥ 1.

First, we define the sequences {ũ[k]
0 }, {ũ

[k]
1 }, k = 0,1, ...,r +2 by the following recurrent

formulas

(3.39)

{
ũ[0]

0 = ũ0, ũ[0]
1 = ũ1,

ũ[k]
0 = ũ[k−1]

1 , k ∈ {1,2, ...,r +1}, r ≥ 1,
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where ũ[k]
0 is defined by the following problem

(3.40)

{
−ε∆ũ[k]

0 + ũ[k]
0 = ∂ k−2F

∂ tk−2 (·,0)+∆ũ[k−2]
0 −Kũ[k−2]

0 −λ ũ[k−2]
1 ≡Φ[k], 0 < x < 1,

ε ũ[k]
0x(0) =−ũ[k−2]

0x (0)+hũ[k−2]
0 (0)+ dk−2g

dtk−2 (0)≡Φ
[k]
0 , ũ[k]

0 (1) = 0.

Then, we have the following Lemma.

Lemma 3.1. Suppose that (H [r]
2 )− (H [r]

4 ) hold. Then problem has a unique weak solution

ũ[k]
0 ∈V. Furthermore, we have ũ[k]

0 ∈V ∩Hr+2, k = 2,3, ...,r +1.

Proof. The weak solution of problem (3.40) is obtained from the following variational prob-
lem.

Find U ∈V such that

a(U,w) = 〈,w〉, f orall w ∈V,(3.41)

where

(3.42)
{

a(U,w) = 〈εUx,wx〉+ 〈U,w〉,
〈,w〉= 〈Φ[k],w〉−Φ

[k]
0 w(0).

Using the Lax-Milgram’s theorem, Problem (3.41) has a unique weak solution ũ[k]
0 ∈V.

We shall prove that

ũ[k]
0 ∈V ∩Hr+2, k ∈ {1,2, ...,r +1}, r ≥ 1.(3.43)

(i) k = 1 : ũ[1]
0 = ũ[0]

1 = ũ1 ∈V ∩Hr+2. (by (H [r]
2 )).

(ii) Suppose by induction that ũ[1]
0 , ..., ũ[k−1]

0 ∈ V ∩Hr+2 hold. We shall prove that ũ[k]
0 ∈

V ∩Hr+2 holds.
In fact, by (H [r]

3 ), we have ∂ k−2F
∂ tk−2 (·,0) ∈ V ∩Hr, 2 ≤ k ≤ r + 2. Hence, by induction we

obtain

Φ
[k] =

∂ k−2F
∂ tk−2 (·,0)+∆ũ[k−2]

0 −Kũ[k−2]
0 −λ ũ[k−1]

0 ∈V ∩Hr.(3.44)

On the other hand, by ũ[k]
0 ∈V and (3.44), we obtain

ε∆ũ[k]
0 = ũ[k]

0 −Φ
[k] ∈V.(3.45)

Then ũ[k]
0 ∈V ∩H3.

Similarly, we have also ũ[k]
0 ∈V ∩H2s+1, with s ∈ N, 2s−1≤ r < 2s+1. Then

ε∆ũ[k]
0 = ũ[k]

0 −Φ
[k] ∈V ∩Hr.(3.46)

Thus

ũ[k]
0 ∈V ∩Hr+2.(3.47)

Lemma 3.1 is proved completely.
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Now, formally differentiating problem (3.38) with respect to time up to order r and letting
u[r] = ∂ ru

∂ tr we are led to consider the solution u[r] of problem (Q[r]) :

(3.48) (Q[r])


Lu[r] = ∂ rF

∂ tr (x, t), (x, t) ∈ QT ,

L0u[r] = drg
dtr (t), u[r](1, t) = 0,

u[r](0) = ũ[r]
0 , u[r]

t (0) = ũ[r]
1 .

From the assumptions (H [r]
2 )− (H [r]

4 ) we deduce that ũ[r]
0 , ũ[r]

1 , ∂ rF
∂ tr and drg

dtr satisfy the
conditions of Theorem 3.1. So, the problem (Q[r]) has a unique weak solution u[r] such that

u[r] ∈C1 (0,T ;V ∩H2) , u[r]
tt ∈ L∞

(
0,T ;V ∩H2) .(3.49)

Moreover, from the uniqueness of a weak solution we haveu[r] = ∂ ru
∂ tr . Hence we deduce

from (3.49) that the solution u of problem (3.38) satisfy

u ∈Cr+1 (0,T ;V ∩H2) , ∂ r+2u
∂ tr+2 ∈ L∞

(
0,T ;V ∩H2) .(3.50)

Next we shall prove by induction on r that

u ∈Cr+1 (0,T ;V ∩Hr+2) , ∂ r+2u
∂ tr+2 ∈ L∞(0,T ;V ∩Hr+2), r ≥ 1.(3.51)

(i) In the case of r = 1, the proof of (3.51) is easy, hence we omit the details. We only
prove with r ≥ 2.

(ii) Suppose by induction that (3.51) holds for r−1. i.e.,

u ∈Cr (0,T ;V ∩Hr+1) , ∂ r+1u
∂ tr+1 ∈ L∞(0,T ;V ∩Hr+1).(3.52)

We need prove that (3.51) holds. To achieve this, we only have to prove that

(3.53)


∂ ru
∂ tr ∈ L∞(0,T ;V ∩Hr+2),
∂ r+1u
∂ tr+1 ∈ L∞(0,T ;V ∩Hr+2),

∂ r+2u
∂ tr+2 ∈ L∞(0,T ;V ∩Hr+2), r ≥ 1.

By (Q[r])1, we have(
u[r]− ε∆u[r]

)′′
−∆u[r] +Ku[r] +λu[r]

t =
∂ rF
∂ tr .(3.54)

Put

(3.55)


W = u[r]− ε∆u[r],

w̃0 = ũ[r]
0 − ε∆ũ[r]

0 ,

w̃1 = ũ[r]
1 − ε∆ũ[r]

1 = ũ[r+1]
0 − ε∆ũ[r+1]

0 ,

it follows that

(3.56)

 W ′′+ 1
ε
W = 1

ε
u[r]−Ku[r]−λu[r]

t + ∂ rF
∂ tr ≡Ψ[r] ∈ L∞(0,T ;V ∩Hr),

W (0) = w̃0 ∈V ∩Hr,
W ′(0) = w̃1 ∈V ∩Hr.
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Thus

W (t) = cos

(√
1
ε

t

)
w̃0 +

√
ε sin

(√
1
ε

t

)
w̃1

+
√

ε

∫ t

0
sin

(√
1
ε
(t− s)

)
Ψ

[r](s)ds ∈ L∞(0,T ;V ∩Hr).(3.57)

By (3.52) and (3.57), it follows that

∆u[r] =
1
ε

u[r]− 1
ε

W ∈ L∞(0,T ;V ∩Hr).(3.58)

Thus

u[r] ∈ L∞(0,T ;V ∩Hr+2).(3.59)

On the other hand, by (3.56)1, we obtain

W ′′ =−1
ε

W +Ψ
[r] ∈ L∞(0,T ;V ∩Hr).(3.60)

It follows from (3.49), (3.60) and r ≥ 2, that

∆u[r]
tt =

1
ε

u[r]
tt −

1
ε

W ′′ ∈ L∞(0,T ;V ∩H2).(3.61)

Consequently

u[r]
tt ∈ L∞(0,T ;V ∩H4).(3.62)

Similarly, we have also u[r]
tt ∈ L∞(0,T ;H2s), with s ∈ N, 2s−2≤ r < 2s. Then

∆u[r]
tt =

1
ε

u[r]
tt −

1
ε

W ′′ ∈ L∞(0,T ;V ∩Hr).(3.63)

So

u[r]
tt ∈ L∞(0,T ;V ∩Hr+2).(3.64)

On the other hand

u[r]
t = ũ[r]

1 +
∫ t

0
u[r]

tt (s)ds ∈ L∞(0,T ;V ∩Hr+2).(3.65)

Combining (3.59), (3.64) and (3.65), by induction arguments on r, we conclude that
(3.51) holds and the following theorem is proved.

Theorem 3.2. Let (H [r]
2 )− (H [r]

4 ) hold. Then the unique solution u(x, t) of problem (3.38)
satisfies (3.51).

4. Asymptotic behavior of solutions as ε → 0+

In this part, we assume that p > 2, q > 1, λ > 0, K > 0, h≥ 0 and (ũ0, ũ1, F) satisfy
the assumptions (H2) , (H3) . Let ε > 0. By theorem 2.3, the problem (1.1) – (1.4) has a
unique weak solution u = uε depending on ε.
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We consider the following perturbed problem, where ε is a small parameter:
(4.1)

(Pε)

 utt −uxx− εuxxtt +λ |ut |q−2 ut +K |u|p−2 u = F(x, t), 0 < x < 1, 0 < t < T,
εuxtt(0, t)+ux(0, t) = hu(0, t)+g(t), u(1, t) = 0,
u(0) = ũ0, u′(0) = ũ1.

We shall study the asymptotic behavior of the solution uε of problem (Pε) as ε → 0+.

Theorem 4.1. Let T > 0, p > 2, q > 1, λ > 0, K > 0. Let (H2), (H3) hold. Then
(i) The problem (P0) corresponding to ε = 0 has a unique weak solution ū0 satisfying

ū0 ∈ L∞ (0,T ;V ) , ū′0 ∈ L∞
(
0,T ;L2) .(4.2)

(ii) If ū′′0 ∈ L2(0,T ;H2), then solution uε converges strongly in WT to ū0, as ε → 0+,
where

WT = {v ∈ L∞(0,T ;V ) : v′ ∈ L∞(0,T ;L2)}.(4.3)

Furthermore, we have the estimation∥∥u′ε − ū′0
∥∥

L∞(0,T ;L2) +‖uε − ū0‖L∞(0,T ;V ) ≤CT
√

ε,(4.4)

where CT is a posistive constant depending only on T.

Proof. First, we note that if the small parameter ε > 0 satisfy 0 < ε < 1 then a priori esti-
mates of the sequence {um} in the proof of Theorem 2.1 for problem (Pε) satisfy∥∥u′m(t)

∥∥2 +‖umx(t)‖2 + ε
∥∥u′mx(t)

∥∥2 +‖um(t)‖p
Lp +

∫ t

0

∥∥u′m(s)
∥∥q

Lq ds≤CT ,(4.5)

for all t ∈ [0,T ] and for all m, and CT is a constant depending only on T, p, q, λ , K, ũ0, ũ1,
F (independent of ε). Hence, the limit u = uε of the sequence {um} as m→+∞, in suitable
function spaces is a unique weak solution of problem (Pε) satisfying∥∥u′ε(t)

∥∥2 +‖uεx(t)‖2 + ε
∥∥u′εx(t)

∥∥2 +‖uε(t)‖p
Lp +

∫ t

0

∥∥u′ε(s)
∥∥q

Lq ds≤CT ,(4.6)

for all t ∈ [0,T ] and for all ε ∈ (0,1).
Let {εm} be a sequence such that εm > 0, εm → 0 as m→ +∞. We put um = uεm , we

deduce from (4.6) that, there exists a subsequence of the sequence {um} still denoted by
{um}, such that

(4.7)



um→ ū0 in L∞(0,T ;V ) weakly*,
u′m→ ū′0 in L∞(0,T ;L2) weakly*,√

εmu′m→ ζ in L∞(0,T ;V ) weakly*,
um→ ū0 in L∞(0,T ;Lp) weakly*,
u′m→ ū′0 in Lq(QT ) weakly,
|um|p−2 um→ χ0 in L∞(0,T ;Lp′) weakly*,
|u′m|

p−2 u′m→ χ1 in Lq′(QT ) weakly.

By the compactness lemma of Lions [6, p. 57], (4.7)1,2 lead to the existence of a subse-
quence still denoted by {um}, such that

um→ ū0 strongly in L2(QT ) and a.e. in QT .(4.8)
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It follows from (4.7)2,3, that ζ = 0. Hence, we obtain from (4.7)3 that
√

εmu′m→ 0 in L∞(0,T ;V ) weakly*.(4.9)

Similarly

|um|p−2um→ |ū0|p−2ū0 = χ0 strongly in L2(QT ),(4.10)

and

χ1 = |ū′0|q−2ū′0.(4.11)

By passing to the limit, as in the proof of Theorem 2.1, we conclude that ū0 is a unique
weak solution of problem (P0) corresponding to ε = 0 satisfying

ū0 ∈ L∞ (0,T ;V ) , ū′0 ∈ L∞
(
0,T ;L2) .(4.12)

(ii) Put u = uε − ū0, then u is the weak solution of the following problem

(4.13)


u′′−∆u− ε∆u′′+λ

(
|u′ε |

q−2 u′ε −
∣∣ū′0∣∣q−2 ū′0

)
+K

(
|uε |p−2 uε −|ū0|p−2 ū0

)
= ε∆ū′′0 , 0 < x < 1, 0 < t < T,

εu′′x (0, t)+ux(0, t) = hu(0, t)− ε ū′′0(0, t), u(1, t) = 0,
u(0) = u′(0) = 0.

Using again Lemma 2.3, in a manner similar to the above part, we obtain

σ(t) = 2ε

∫ t

0

〈
∆ū′′0 ,u

′(s)
〉

ds+2ε

∫ t

0
ū′′0x(0,s)u′(0,s)ds

−2K
∫ t

0

〈
|uε |p−2 uε −|ū0|p−2 ū0,u′(s)

〉
ds,(4.14)

where

σ(t) =
∥∥u′(t)

∥∥2 + ε
∥∥u′x(t)

∥∥2 +‖ux(t)‖2 +hu2(0, t)

+2λ

∫ t

0

〈∣∣u′ε ∣∣q−2 u′ε −
∣∣ū′0∣∣q−2 ū′0,u

′(s)
〉

ds.(4.15)

Note that

(4.16)


∫ t

0

〈
|u′ε |

q−2 u′ε −
∣∣ū′0∣∣q−2 ū′0,u

′(s)
〉

ds≥ 0,

σ(t)≥ ε ‖u′x(t)‖
2 ,

σ(t)≥ ‖u′(t)‖2 +‖ux(t)‖2 ≥ 2‖ux(t)‖‖u′(t)‖ .

By (2.45), (4.6), (4.16), we estimate all terms in the right – hand side of (4.14) as follows

2ε

∫ t

0

〈
∆ū′′0(s),u

′(s)
〉

ds≤ 2ε

∫ t

0

∥∥∆ū′′0(s)
∥∥∥∥u′(s)

∥∥ds

≤ 2ε

∫ t

0

∥∥ū′′0(s)
∥∥

H2

∥∥u′(s)
∥∥ds≤ ε

2
∫ t

0

∥∥ū′′0(s)
∥∥2

H2 ds+
∫ t

0

∥∥u′(s)
∥∥2 ds

≤ ε
2∥∥ū′′0

∥∥2
L2(0,T ;H2) +

∫ t

0
σ(s)ds;(4.17)

2ε

∫ t

0
ū′′0x(0,s)u′(0,s)ds≤ 2

√
2ε

∫ t

0

∥∥ū′′0x(s)
∥∥

H1

∥∥u′x(s)
∥∥ds≤ 2

√
2ε

∫ t

0

∥∥ū′′0(s)
∥∥

H2

∥∥u′x(s)
∥∥ds
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≤ 2ε

∫ t

0

∥∥ū′′0(s)
∥∥2

H2 ds+ ε

∫ t

0

∥∥u′x(s)
∥∥2 ds≤ 2ε

∥∥ū′′0
∥∥2

L2(0,T ;H2) +
∫ t

0
σ(s)ds;

(4.18)

−2K
∫ t

0

〈
|uε |p−2 uε −|ū0|p−2 ū0,u′(s)

〉
ds≤ 2K(p−1)Cp−2

T

∫ t

0
‖u(s)‖

∥∥u′(s)
∥∥ds

≤ K(p−1)Cp−2
T

∫ t

0
σ(s)ds.(4.19)

Combining (4.14), (4.17)-(4.19), it implies that

σ(t)≤ 3ε
∥∥ū′′0
∥∥2

L2(0,T ;H2) +
[
2+K(p−1)Cp−2

T

]∫ t

0
σ(s)ds.(4.20)

By Gronwall’s lemma, (4.20) leads to

σ(t)≤ 3ε
∥∥ū′′0
∥∥2

L2(0,T ;H2) exp(T
[
2+K(p−1)Cp−2

T

]
)≡ C̄T ε, ∀t ∈ [0,T ].(4.21)

Hence ∥∥u′ε − ū′0
∥∥

L∞(0,T ;L2) +‖uε − ū0‖L∞(0,T ;H1) ≤CT
√

ε,(4.22)

where CT is a constant depending only on T. Theorem 4.1 is proved completely.
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