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Abstract. The best linear unbiased reconstructor and the best linear invariant reconstructor
of the past upper records based on observed upper record values for the location–scale family
of distributions are derived. The results are obtained in detail for two-parameter exponential
distribution. A comparison study is performed in terms of mean squared reconstruction error
and Pitman’s measure of closeness criteria. Finally, a real example is given to illustrate the
proposed procedures.
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1. Introduction

Let {Xi, i > 1} be a sequence of independent and identically distributed (iid) continuous
random variables. An observation X j is called an upper record value if its value exceeds
that of all previous observations, i. e., X j is an upper record value if X j > Xi for every i < j.
These type of data are of great importance in several real-life problems involving weather,
industry, economic and sport data. For more details and applications of record values, see
for example, Arnold et al. [4]. Ahsanullah and Shakil [3] obtained some characterization
results of Rayleigh distribution based on conditional expectation of record values.

The prediction problem of the future records based on past records have been extensively
studied in both frequentist and Bayesian approaches; Awad and Raqab [6] considered the
prediction problem of the future nth record value based on the first m (m < n) observed
record values from one-parameter exponential distribution. Raqab [17] established differ-
ent point predictors and prediction intervals for future records based on observed record val-
ues from two-parameter exponential distribution. Raqab and Balakrishnan [18] discussed
the problem of prediction of the future record values in nonparametric settings. Ahmadi
and Doosparast [2] investigated Bayesian estimation and prediction for some life distribu-
tions based on upper record values. MirMostafaee and Ahmadi [16] obtained several point
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predictors such as the best unbiased predictor, the best invariant predictor and maximum
likelihood predictor of future order statistics on the basis of observed record values from
two-parameter exponential distribution.

Recently, some works have been done on the reconstruction problem. Klimczak and
Rychlik [14] obtained upper bounds for the expectations of increments of past order statis-
tics and records based on observed order statistics and records, respectively. Balakrishnan
et al. [10] investigated the problem of reconstructing past upper records from the known
values of future records in exponential and Pareto distributions. Razmkhah et al. [19] ob-
tained some point and interval reconstructors for the missing order statistics in exponential
distribution. Asgharzadeh et al. [5] studied the reconstruction of the past failure times based
on left-censored samples for the proportional reversed hazard rate models. The main goal of
this paper is to investigate the best linear unbiased reconstructor (BLUR) and the best linear
invariant reconstructor (BLIR) based on observed future record data from two-parameter
exponential distribution. We also intend to present a comparison study of common recon-
structors of past records from exponential distribution. With this in mind, we consider
two criteria: mean squared reconstruction error (MSRE) and Pitman’s measure of close-
ness (PMC). In recent years, many problems involving ordered data and Pitman closeness
have been investigated. Pitman closeness of records to population quantiles was explored
in Ahmadi and Balakrishnan [1]. Some interesting results regarding the sample median and
Pitman closeness were provided by Iliopoulous and Balakrishnan [13]. Based on a Type-II
right censored sample from one-parameter exponential distribution, Balakrishnan et al. [9]
compared the best linear unbiased predictor (BLUP) and the best linear invariant predictor
(BLIP) of the censored order statistics in the one-sample case in terms of PMC.

The rest of this paper is organized as follows. Section 2 contains some preliminaries.
In Sections 3 and 4, the BLUR and BLIR of the past upper records from two-parameter
exponential distribution are investigated, respectively. These two reconstructors and two
others where obtained by Balakrishnan et al. [10] are compared in terms of MSRE and
PMC criteria in Section 5. A real example is given in Section 6.

2. Preliminaries

Let R1, ...,Rn be the first n upper record values coming from a X-sequence of iid continuous
random variables with cumulative distribution function (cdf) F(x;θ) and probability density
function (pdf) f (x;θ), where θ ∈ Θ may be a vector of parameters and Θ is the parameter
space. Suppose we have failed to observe the first m records, namely, we have observed
R = (Rm+1,Rm+2, ...,Rn), m + 1 < n. In this case, the joint pdf of R can be expressed as
follows (see, for example, Arnold et al. [4, pp. 10–11])

fR(r;θ) =

(
H(rm+1;θ)

)m

m!
f (rm+1;θ)

n−1

∏
i=m+1

f (ri+1;θ)
F̄(ri;θ)

, rm+1 < .. . < rn,(2.1)

where F̄(x;θ) = 1− F(x;θ) is the survival function of X , H(x;θ) = − log F̄(x;θ), r =
(rm+1, . . . ,rn) is the observed value of R. From (2.1) and using the Markovian property of
record values, it can be shown that the conditional pdf of Rl given the observed data set R
is just the conditional pdf of Rl given Rm+1 and is given by

fRl |R(rl |r;θ) = fRl |Rm+1(rl |rm+1;θ)
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=

(
H(rl ;θ)

)l−1(H(rm+1;θ)−H(rl ;θ)
)m−l

B(l,m− l +1)
(
H(rm+1;θ)

)m
f (rl ;θ)
F̄(rl ;θ)

, rl < rm+1,(2.2)

where B(., .) is the complete beta function. From (2.2), the unbiased reconstructor of Rl ,
l = 1, ...,m, is the conditional mean of Rl given Rm+1, i.e.,

(2.3) R∗l = E(Rl |R) = E(Rl |Rm+1),

and hence it depends only on Rm+1. If the parameters in (2.3) are unknown, they have to be
estimated in this conditional expectation.

A random variable X is said to have a two-parameter exponential distribution, denoted
by Exp(µ,σ), if its cdf is

(2.4) F(x;θ) = 1− e−
x−µ

σ , x≥ µ, σ > 0,

where θ = (µ,σ), µ and σ are the location and scale parameters, respectively. The ex-
ponential distribution is a very commonly used distribution in reliability engineering and
survival analysis. We refer the reader to Balakrishnan and Basu [7] for some research based
on exponential distribution. In what follows, we shall study the behavior of reconstructors
of the past records for Exp(µ,σ) in detail. The first result for the case of Exp(µ,σ) is that
the unbiased reconstructor of Rl based on R is given by

(2.5) R∗l (µ) = µ +
l

m+1
(Rm+1−µ),

it does not depend on the scale parameter. When µ is unknown, we can substitute it with its
estimator based on R = (Rm+1,Rm+2, ...,Rn).

3. The best linear unbiased reconstructor

In this section, first we focus our attention to derive the BLUR in general for the location–
scale families. Let X = (Xm+1, ...,Xn)′ be an observed (n−m)-dimensional random vec-
tor from the cdf F(x; µ,σ) = F0((x− µ)/σ), where µ and σ are the location and scale
parameters, respectively, and F0 does not depend on µ and σ . Also, let Y be an un-
known past observation from the same distribution. Reconstructing the outcome Y based
on the observed value of X is the main goal of this section. Toward this end, let us as-
sume that a0 = E((Y −µ)/σ),ai = E((Xi−µ)/σ),wi = Cov((Y −µ)/σ ,(Xi−µ)/σ) and
vi, j = Cov((Xi− µ)/σ ,(X j− µ)/σ), for i, j = m + 1, ...,n. Denote by 1 the vector of 1,s,
a = (am+1, ...,an)T , wT = (wm+1, ...,wn) and V = (vi, j), i, j = m + 1, ...,n. To obtain the
BLUR of Y based on X, we will have to minimize the variance of (Y − cXT ) subject to
the condition of unbiasedness where c = (cm+1, ...,cn) is an arbitrary vector of real values.
Then, following along the same lines as in the prediction problem, the BLUR of Y is given
by (see, Goldberger [12] in the context of prediction)

(3.1) Ŷ = µ̂(X)+ σ̂(X)a0 +wT V−1[XT − µ̂(X)1− σ̂(X)a],

where µ̂(X) and σ̂(X) are the BLUEs of µ and σ on the basis of X, respectively, and V−1

is the inverse matrix of V.
Now, assume that the observed data are the upper record values from the two-parameter

exponential distribution. Using (3.1), the BLUR of Rl based on R is given by

(3.2) R̂l = µ̂ + lσ̂ +ω
T

Σ
−1[RT − µ̂1− σ̂α],
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where µ̂ and σ̂ are the BLUEs of µ and σ based on R, respectively, α is the vector of means
of the corresponding record values taken from Exp(0,1), σ2Σ is the covariance matrix of R
and

ω
T = 1/σ

2(Cov(Rm+1,Rl),Cov(Rm+2,Rl), ...,Cov(Rn,Rl)).
By doing some algebraic calculations it can be shown that

ω
T = (l, l, ..., l)

and

(3.3) ω
T

Σ
−1 = (

l
m+1

,0,0, ...,0).

Substituting (3.3) into (3.2), we get

(3.4) R̂l = µ̂ + lσ̂ .

Furthermore, the BLUEs of µ and σ on the basis of R are given by

(3.5) µ̂ =
nRm+1− (m+1)Rn

n− (m+1)
and σ̂ =

Rn−Rm+1

n− (m+1)
,

respectively (see, Arnold et al. [4]). Therefore, by substituting (3.5) in (3.4), it is deduced
that

(3.6) R̂l =
(n− l)Rm+1− ((m+1)− l)Rn

n− (m+1)

is the BLUR of Rl on the basis of the data set R. The MSRE of R̂l is computed to be

(3.7) MSRE(R̂l) = E[R̂l−Rl ]2 = σ
2 (n− l)((m+1)− l)

n− (m+1)
.

It is easy to show that MSRE(R̂l) is increasing in m and decreasing with respect to n and
l, if the other arguments are fixed. Moreover, R̂l and MSRE(R̂l) converge to Rm+1− σ̂ and
σ2(n−m)/(n− (m+1)), respectively, when l tends to m.

Remark 3.1. It may be noted that by substituting the BLUE of µ into the unbiased recon-
structor of Rl in (2.5), the same result will be obtained for R̂l as in (3.6), i.e., R∗l (µ̂) = R̂l .

4. The best linear invariant reconstructor

Same as in previous section, first we present the results for BLIR in general for location–
scale families. Let X = (Xm+1, ...,Xn)′ and Y be as defined in Section 3. Then, follow the
results of Mann [15], in the context of prediction, the BLIR of Y based on the data set X can
be derived as

(4.1) Ỹ = Ŷ −
( c1

1+ c2

)
σ̂(X),

where Ŷ is the BLUR of Y , c2 = σ−2Var(σ̂(X)) and

c1 = 1/σ
2Cov(σ̂(X),(1−wT V−11)µ̂(X)+(a0−wT V−1a)σ̂(X)),

with V, w, a, µ̂(X), σ̂(X) and a0 being as defined in Section 3.
When the upper record statistics R = (Rm+1,Rm+2, ...,Rn) from the Exp(µ,σ) distribution
are observed, using (4.1), the BLIR of Rl on the basis of R is as follows

(4.2) R̃l = R̂l−
( V1

1+V2

)
σ̂ ,
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where V2 = σ−2Var(σ̂) and V1 = σ−2
[
Cov(σ̂ ,(1−ωT Σ−11)µ̂ +(l−ωT Σ−1α)σ̂)

]
in which

ω,Σ−1 and α are as defined in Section 3, µ̂ and σ̂ are the BLUEs of µ and σ , respectively,
and R̂l is the BLUR of Rl . By performing some algebraic calculations, we obtain

(4.3) R̃l =

(
n+1− l

)
Rm+1−

(
m+1− l

)
Rn

n−m
.

Moreover, it can be shown that the MSRE of R̃l is given by

(4.4) MSRE(R̃l) = E[R̃l−Rl ]2 = σ
2

(
n+1− l

)(
m+1− l

)
n−m

,

which is increasing with respect to m and decreasing with respect to n and l, if the other
arguments are fixed. Also, R̃l and MSRE(R̃l) converge to Rm+1− σ̃ and σ2(1+1/(n−m)),
respectively, when l tends to m.

Remark 4.1. It may be noted that the BLIEs of µ and σ for a two-parameter exponential
distribution are given by (see, Arnold et al. [4])

(4.5) µ̃ =
(n+1)Rm+1− (m+1)Rn

n−m
and σ̃ =

Rn−Rm+1

n−m
,

respectively. By plugging the BLIE of µ into (2.5), we arrive at the same result for R̃l as
given in (4.3), i.e., R∗l (µ̃) = R̃l .

5. Comparison results

In Sections 3 and 4, we obtained two reconstructors (BLUR and BLIR) for Rl based on R
from a two-parameter exponential distribution. Balakrishnan et al. [10] also considered the
same plan and obtained two other reconstructors for Rl namely maximum likelihood recon-
structor (MLR), denoted by R̂l,M , and conditional median reconstructor (CMR), denoted by
R̂l,C. For a comparison study, let us restate their results here. The MLR of Rl is

(5.1) R̂l,M =
(n− l +1)Rm+1− (m− l)Rn

n−m+1
with

(5.2) MSRE(R̂l,M) = σ
2
{

(n+1− l)(m+1− l)
n−m+1

+
(n+1+m−2l)(n+1− l)

(n−m+1)2

}
.

The CMR of Rl is

(5.3) R̂l,C =
m(Rn−Rm+1)Ml,m +nRm+1−mRn

n−m
with

MSRE(R̂l,C) = σ
2
{

(m+1− l)(m+2− l)+
(

m(1−Ml,m)
n−m

)2

(n−m−1)

× (n−m)−2
(

m(1−Ml,m)
n−m

)
(m+1− l)(n−m−1)

}
,(5.4)

where Ml,m stands for the median of beta distribution with parameters l and m− l +1.
In this section, we intend to compare the four reconstructors based on MSRE and PMC
criteria.
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5.1. Comparison based on MSRE

Using (3.7) and (4.4), we have

(5.5) MSRE(R̃l) = MSRE(R̂l)−σ
2

(
(m+1)− l

)2

(n− (m+1))(n−m)
.

From (5.5), it is obvious that BLIR is better than BLUR in the sense of MSRE. Moreover,
from (4.4) and (5.2), we have

(5.6) MSRE(R̃l) = MSRE(R̂l,M)−σ
2
(

n+1− l
n−m+1

)2

(1− 1
n−m

),

which implies that BLIR is better than MLR. Furthermore, using (3.7) and (5.2), we get

MSRE(R̂l) = MSRE(R̂l,M)−σ
2 n+1+m−2l
(n−m+1)2(n−m−1)

×
(

(n−m)2− (n+m−2(l−1))
)

.

(5.7)

Using (5.7) it is deduced that BLUR is better than MLR when (n−m)2 > (n+m−2(l−1)).
In order to complete the comparison study, we have computed the numerical values of

MSREs of four reconstructors for n = 10 and all selected values of l and m. The results are
presented in Table 1.

Table 1. Numerical values of MSREs for n = 10.

m
l 1 2 3 4 5 6 7 8
1 2.00001 3.5802 5.6250 8.3673 12.2222 18.0000 27.5000 45.5556

1.33332 2.6490 4.6140 7.0042 10.3351 15.3214 23.6237 40.2204
1.12503 2.5714 4.5000 7.2000 11.2500 18.0000 31.5000 72.0000
1.11114 2.5000 4.2857 6.6667 10.0000 15.0000 23.3333 40.0000

2 2.0000 3.6562 5.8776 9.0000 13.6800 21.3750 36.0000
1.1250 2.7857 4.7456 7.4591 11.5082 18.2395 31.6855
1.1429 2.6667 4.8000 8.0000 13.3333 24.0000 56.0000
1.1250 2.5714 4.5000 7.2000 11.2500 18.0000 31.5000

3 2.0000 3.7551 6.2222 9.9200 16.0000 27.5556
1.2673 2.8408 5.0000 8.2094 13.5341 24.1591
1.1667 2.8000 5.2500 9.3333 17.5000 42.0000
1.1429 2.6667 4.8000 8.0000 13.3333 24.0000

4 2.0000 3.8889 6.7200 11.3750 20.2222
1.2768 2.9486 5.4168 9.5000 17.6358
1.2000 3.0000 6.0000 12.0000 30.0000
1.1667 2.8000 5.2500 9.3333 17.5000

5 2.0000 4.0800 7.5000 14.0000
1.2995 3.1281 6.1357 12.1146
1.2500 3.3333 7.5000 20.0000
1.2000 3.0000 6.0000 12.0000

6 2.0000 4.3750 8.8889
1.3395 3.4403 7.5950
1.3333 4.0000 12.0000
1.2500 3.3333 7.5000

7 2.0000 4.8889
1.4104 4.0764
1.5000 6.0000
1.3333 4.0000

1,2,3, and 4 stand for the σ−2MSRE of R̂l,M , R̂l,C , R̂l and R̃l , respectively.

For n = 10 from Table 1, by empirical evidence, it is observed that in the sense of MSRE,
BLIR is more accurate reconstructor than others. Furthermore, in the most cases the MSRE
of R̂l,M is greater than others.
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5.2. Comparison based on PMC

Here, we use the PMC criterion to compare the reconstructors R̂l , R̃l , R̂l,M and R̂l,C. The
measure is based on the probabilities of the relative closeness of competing estimators to an
unknown parameter. First, we recall two definitions. If T1 and T2 are two estimators of a
common parameter θ , PMC of T1 relative to T2 is defined by

PMC(T1,T2|θ) = P(|T1−θ |< |T2−θ |), ∀ θ ∈Ω,(5.8)

where Ω is the parameter space. The estimator T1 is called Pitman–closer (with respect to
θ ) than T2 if and only if

PMC(T1,T2|θ)≥ 1/2, ∀ θ ∈Ω,

with strict inequality holding for at least one θ .
Based on a Type-II right censored sample (X1:n,X2:n, ....,Xr:n) from Exp(0,σ) distribution,
Balakrishnan et al. [8] compared BLUE and BLIE of σ in terms of PMC criterion. Also,
Balakrishnan et al. [9] compared BLUP and BLIP of future order statistics under Type-II
censoring for Exp(0,σ) distribution in terms of PMC criterion. Now, we compare each two
reconstructors of Rl based on PMC criterion.

(i) PMC of R̂l relative to R̃l (BLUR and BLIR): From (3.6), (4.3) and (5.8), we have

πR̂l ,R̃l
(l,m;n) = P(|R̂l−Rl |< |R̃l−Rl |)

= P
(∣∣Rm+1−

m+1− l
n−m−1

(Rn−Rm+1)−Rl
∣∣< ∣∣Rm+1−

m+1− l
n−m

× (Rn−Rm+1)−Rl
∣∣)

= P
(

m+1− l
(n−m−1)2 (Rn−Rm+1)−

2
n−m−1

(Rm+1−Rl) <
m+1− l
(n−m)2

× (Rn−Rm+1)−
2

n−m
(Rm+1−Rl)

)
= P

(
Rn−Rm+1

Rm+1−Rl
<

2
(m+1− l)

(
1

n−m−1
+

1
n−m

)−1)
.

It can be shown that (Rn−Rm+1)/(Rm+1−Rl) has the F-distribution with 2(n−m−1)
and 2(m+1− l) degrees of freedom. So, we express πR̂l ,R̃l

(l,m;n) as

(5.9) πR̂l ,R̃l
(l,m;n) = F2(n−m−1),2(m+1−l)

(
2(n−m)(n−m−1)

(m+1− l)(2n−2m−1)

)
,

where Fa,b(x) stands for the cdf of F-distribution with a and b degrees of freedom at x.

(ii) PMC of R̂l relative to R̂l,M (BLUR and MLR): From (3.6), (5.1) and (5.8), we have

πR̂l ,R̂l,M
(l,m;n) = P(|R̂l−Rl |< |R̂l,M−Rl |)

= P
(∣∣Rm+1−

m+1− l
n−m−1

(Rn−Rm+1)−Rl
∣∣< ∣∣Rm+1−

m− l
n−m+1

× (Rn−Rm+1)−Rl
∣∣)
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= F2(n−m−1),2(m+1−l)

(
2
(

m+1− l
n−m−1

+
m− l

n−m+1

)−1)
.(5.10)

(iii) PMC of R̂l relative to R̂l,C (BLUR and CMR): From (3.6), (5.3) and (5.8), we have

πR̂l ,R̂l,C
(l,m;n) = P(|R̂l−Rl |< |R̂l,C−Rl |)

= P
{

(
∣∣Rm+1−

m+1− l
n−m−1

(Rn−Rm+1)−Rl
∣∣

<
∣∣Rm+1−

m(1−Ml,m)
n−m

(Rn−Rm+1)−Rl
∣∣}

= F2(n−m−1),2(m+1−l)

(
2
(

m+1− l
n−m−1

+
m(1−Ml,m)

n−m

)−1)
.(5.11)

(iv) PMC of R̃l relative to R̂l,M (BLIR and MLR): Similarly, we have

πR̃l ,R̂l,M
(l,m;n) = P(|R̃l−Rl |< |R̂l,M−Rl |)

= P
(∣∣Rm+1−

m+1− l
n−m

(Rn−Rm+1)−Rl
∣∣< ∣∣Rm+1−

m− l
n−m+1

× (Rn−Rm+1)−Rl
∣∣)

= F2(n−m−1),2(m+1−l)

((
m+1− l

n−m
+

m− l
n−m+1

)−1)
.(5.12)

(v) PMC of R̃l relative to R̂l,C (BLIR and CMR):

πR̃l ,R̂l,C
(l,m;n) = F2(n−m−1),2(m+1−l)

(
2
(

m+1− l
n−m

+
m(1−Ml,m)

n−m

)−1)
.(5.13)

(vi) PMC of R̂l,M relative to R̂l,C (MLR and CMR):

πR̂l,C ,R̂l,M
(l,m;n) = F2(n−m−1),2(m+1−l)

(
2
(

m− l
n−m+1

+
m(1−Ml,m)

n−m

)−1)
.(5.14)

From the above results, one can examine the performance of any two reconstructors
in terms of PMC criterion by comparing the values of median of the F-distribution with
2(n−m−1) and 2(m+1− l) degrees of freedom and corresponding values in (5.9)–(5.14),
but, numerical computations are needed. We have computed the PMC probabilities in (5.9)–
(5.14) for n = 5,10,15,20 and all selected values of l and m. The results for n = 10 are
presented in Tables 2–7, respectively, which examine how much a reconstructor is better
than the other. The numerical results for n = 5,15 and 20 are available with the authors, and
will be sent on request to interested readers.
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Table 2. Values of πR̂l ,R̃l
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.8894 0.8938 0.8219 0.6631 0.4423 0.2539 0.1554 0.1521
2 0.8758 0.8661 0.7603 0.5574 0.3337 0.1950 0.1713
3 0.8583 0.8271 0.6749 0.4377 0.2498 0.1960
4 0.8352 0.7703 0.5623 0.3267 0.2288
5 0.8034 0.6868 0.4332 0.2740
6 0.7570 0.5680 0.3393
7 0.6849 0.4375
8 0.5714

Table 3. Values of πR̂l ,R̂l,M
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.9396 0.9351 0.8812 0.7492 0.5346 0.3215 0.1946 0.1741
2 0.9314 0.9167 0.8345 0.6531 0.4154 0.2434 0.1965
3 0.9206 0.8898 0.7646 0.5318 0.3104 0.2254
4 0.9057 0.8482 0.6620 0.4023 0.2638
5 0.8842 0.7811 0.5248 0.3170
6 0.8503 0.6700 0.3942
7 0.7901 0.5100
8 0.6667

Table 4. Values of πR̂l ,R̂l,C
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.9141 0.9097 0.8519 0.7012 0.4763 0.2739 0.1646 0.1560
2 0.8758 0.8893 0.7919 0.5924 0.3581 0.2064 0.1759
3 0.8814 0.8526 0.7081 0.4666 0.2646 0.2016
4 0.8601 0.7991 0.5943 0.3461 0.2358
5 0.8308 0.7184 0.4583 0.2832
6 0.7876 0.5985 0.3521
7 0.7182 0.4566
8 0.6002

Table 5. Values of πR̃l ,R̂l,M
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.9461 0.9447 0.9030 0.7974 0.6142 0.4118 0.2786 0.2663
2 0.9397 0.9305 0.8675 0.7218 0.5116 0.3402 0.2985
3 0.9315 0.9104 0.8157 0.6255 0.4199 0.3390
4 0.9207 0.8808 0.7410 0.5212 0.3912
5 0.9060 0.8356 0.6421 0.4602
6 0.8847 0.7658 0.5528
7 0.8521 0.6735
8 0.8000
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Table 6. Values of πR̃l ,R̂l,C
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.9204 0.9204 0.8752 0.7496 0.5487 0.3482 0.2290 0.2264
2 0.8835 0.9041 0.8264 0.6577 0.4394 0.2813 0.2536
3 0.8918 0.8745 0.7589 0.5491 0.3508 0.2882
4 0.8741 0.8326 0.6675 0.4422 0.3331
5 0.8509 0.7714 0.5572 0.3931
6 0.8187 0.6836 0.4750
7 0.7717 0.5860
8 0.7062

Table 7. Values of πR̂l,C ,R̂l,M
(l,m;n) for n = 10.

m
l 1 2 3 4 5 6 7 8
1 0.9727 0.9576 0.9278 0.8348 0.6584 0.4475 0.3002 0.2786
2 0.9397 0.9498 0.8957 0.7618 0.5508 0.3659 0.3125
3 0.9569 0.9326 0.8489 0.6663 0.4509 0.3557
4 0.9486 0.9077 0.7796 0.5578 0.4118
5 0.9378 0.8691 0.6829 0.4862
6 0.9224 0.8070 0.5863
7 0.8985 0.7167
8 0.8576

From our numerical results and by empirical evidence, we observe that:

(1) The BLIR (CMR) is Pitman-closer than BLUR (BLUR) for the following situa-
tions:
(i) when n = 10,20, m = n/2+a and l = 1,2, ...,2a+1,(a = 0,1, ...,n/2−2);
(ii) when n = 5,15, m = (n + 1)/2 + a and l = 1,2, ...,2a + 2,(a = 0,1, ...,(n +
1)/2−3);
otherwise, the BLUR (BLUR) is Pitman-closer than the BLIR (CMR) specially for
l = m. [See for example Table 2 (Table 4) when n = 10].

(2) The MLR (CMR) is Pitman–closer than BLUR (BLIR) in the following situations:
(i) when n = 10,20, m = n/2+a and l = 1,2, ...,2a,(a = 1, ...,n/2−2);
(ii) when n = 5,15, m = (n + 1)/2 + a and l = 1,2, ...,2a + 1,(a = 0,1, ...,(n +
1)/2−3);
otherwise, the BLUR (BLIR) is Pitman-closer than the MLR (CMR) specially for
l = m. [See for example Table 3 (Table 6) when n = 10].

(3) The MLR (MLR) is Pitman-closer than BLIR (CMR) for the following situations:
(i) when n = 10,20, m = n/2+a and l = 1,2, ...,2a−1,(a = 1, ...,n/2−2);
(ii) when n = 5,15, m = (n+1)/2+a and l = 1,2, ...,2a,(a = 1, ...,(n+1)/2−3);
otherwise, the BLIR (CMR) is Pitman-closer than the MLR (MLR) specially for
l = m. [See for example Table 5 (Table 7) when n = 10].
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6. A real example

To illustrate the performance of the proposed reconstructors, we use a real data set concern-
ing the times (in minutes) between 48 consecutive telephone calls to a company’s switch-
board which is presented by Castillo et al. [11] where the authors found that the exponential
distribution gave an adequate fit. Table 8 contains the corresponding data.

Table 8. Times (in minutes) between 48 consecutive calls.
1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33
2.20 0.62 3.20 1.38 0.96 0.28 0.44 0.59
0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09
2.18 0.07 0.02 0.64 0.28 0.68 1.07 3.25
0.59 2.39 0.27 0.34 2.18 0.41 1.08 0.57
0.35 0.69 0.25 0.57 1.90 0.56 0.09 0.28

From the data of Table 8, six upper records extracted which are 1.34, 1.68, 1.86, 2.20,
3.20 and 3.25. Assuming that only Rm+1, ...,R6 have been observed, we show that how one
can reconstruct the missing record values and compare the results with the exact values.
With this in mind, we compute different point reconstructors presented in the paper for the
lost record value Rl (1≤ l ≤m). Using (3.6), (4.3), (5.1) and (5.3) the values of the BLUR,
BLIR, MLR and CMR are obtained, respectively. The results are presented in Table 9 for
m = 3 and 4 and 1≤ l ≤ m.

Table 9. The numerical values of point reconstructors.

m l Exact value R̂l R̃l R̂l,M R̂l,C
3 1 1.34 0.625 1.150 1.675 1.366

2 1.68 1.150 1.500 1.938 1.675
3 1.86 1.675 1.850 2.200 1.983

4 1 1.34 3.000 3.100 3.150 3.116
2 1.68 3.050 3.125 3.167 3.139
3 1.86 3.100 3.150 3.183 3.161
4 2.20 3.150 3.175 3.200 3.184

For m = 3, the observed records are R4 = 2.20,R5 = 3.20 and R6 = 3.25. Based on these
observations we have reconstructed the first three records. From Table 9, it is observed that
for m = 3 the point reconstructors are reasonably close to the exact values. When m = 4, it
is assumed that two records R5 = 3.20 and R6 = 3.25 are observed. In this case, the point
reconstructors are not close to the exact values but not too far. It should be mentiond that
one example does not tell us much more.
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