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ABSTRACT. For a givenp-valent analytic functiong with positive coefficients in the open unit
disk∆, we study a class of functionsf(z) = zp +

∑∞
n=m anzn, an ≥ 0 satisfying

1
p
<
(

z(f ∗ g)′(z)
(f ∗ g)(z)

)
< α

(
z ∈ ∆; 1 < α <

m + p

2p

)
.

Coefficient inequalities, distortion and covering theorems, as well as closure theorems are deter-
mined. The results obtained extend several known results as special cases.
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1. I NTRODUCTION

LetA denote the class of all analytic functionsf(z) in the unit disk∆ := {z ∈ C : |z| < 1}
with f(0) = 0 = f ′(0)− 1. The classM(α) defined by

M(α) :=

{
f ∈ A : <

(
zf ′(z)

f(z)

)
< α

(
1 < α <

3

2
; z ∈ ∆

)}
was investigated by Uralegaddiet al.[6]. A subclass ofM(α) was recently investigated by Owa
and Srivastava [3]. Motivated byM(α), we introduce a more general classPMg(p, m, α) of
analytic functions with positive coefficients. For two analytic functions

f(z) = zp +
∞∑

n=m

anz
n and g(z) = zp +

∞∑
n=m

bnz
n,

the convolution (or Hadamard product) off andg, denoted byf ∗ g or (f ∗ g)(z), is defined by

(f ∗ g)(z) := zp +
∞∑

n=m

anbnz
n.

Let T (p, m) be the class of all analyticp-valent functionsf(z) = zp −
∑∞

n=m anz
n (an ≥ 0),

defined on the unit disk∆ and letT := T (1, 2). A function f(z) ∈ T (p, m) is called a
function with negative coefficients. The subclass ofT consisting of starlike functions of order
α, denoted byTS∗(α), was studied by Silverman [5]. Several other classes of starlike functions
with negative coefficients were studied; for e.g. see [2].

Let P (p, m) be the class of all analytic functions

(1.1) f(z) = zp +
∞∑

n=m

anz
n (an ≥ 0)

andP := P (1, 2).

Definition 1.1. Let

(1.2) g(z) = zp +
∞∑

n=m

bnz
n (bn > 0)

be a fixed analytic function in∆. Define the classPMg(p, m, α) by

PMg(p, m, α) :=

{
f ∈ P (p, m) :

1

p
<
(

z(f ∗ g)′(z)

(f ∗ g)(z)

)
< α,

(
1 < α <

m + p

2p
; z ∈ ∆

)}
.

Wheng(z) = z/(1 − z), p = 1 andm = 2, the classPMg(p, m, α) reduces to the subclass
PM(α) := P ∩M(α). Wheng(z) = z/(1− z)λ+1, p = 1 andm = 2, the classPMg(p, m, α)
reduces to the class:

Pλ(α) =

{
f ∈ P : <

(
z(Dλf(z))′

Dλf(z)

)
< α,

(
λ > −1, 1 < α <

3

2
; z ∈ ∆

)}
,

whereDλ denotes the Ruscheweyh derivative of orderλ. When

g(z) = z +
∞∑

n=2

nlzn,

the class of functionsPMg(1, 2, α) reduces to the classPMl(α) where

PMl(α) =

{
f ∈ P : <

(
z(Dlf(z))′

Dlf(z)

)
< α,

(
1 < α <

3

2
; l ≥ 0; z ∈ ∆

)}
,

J. Inequal. Pure and Appl. Math., 6(1) Art. 22, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


FUNCTIONS WITH POSITIVE COEFFICIENTS 3

whereDl denotes the Salagean derivative of orderl. Also we have

PM(α) ≡ P0(α) ≡ PM0(α).

A functionf ∈ A(p, m) is in PPC(p, m, α, β) if

1

p
<

(
(1− β)zf ′(z) + β

p
z(zf ′)′(z)

(1− β)f(z) + β
p
zf ′(z)

)
< α

(
β ≥ 0; 0 ≤ α <

m + p

2p

)
This class is similar to the class ofβ-Pascu convex functions of orderα and it unifies the class
of PM(α) and the corresponding convex class.

For the newly defined classPMg(p, m, α), we obtain coefficient inequalities, distortion and
covering theorems, as well as closure theorems. As special cases, we obtain results for the
classesPλ(α), andPMl(α). Similar results for the classPPC(p, m, α, β) also follow from our
results, the details of which are omitted here.

2. COEFFICIENT I NEQUALITIES

Throughout the paper, we assume that the functionf(z) is given by the equation (1.1) and
g(z) is given by by (1.2). We first prove a necessary and sufficient condition for functions to be
in the classPMg(p, m, α) in the following:

Theorem 2.1.A functionf ∈ PMg(p, m, α) if and only if

(2.1)
∞∑

n=m

(n− pα)anbn ≤ p(α− 1)

(
1 < α <

m + p

2p

)
.

Proof. If f ∈ PMg(p, m, α), then (2.1) follows from

1

p
<
(

z(f ∗ g)′(z)

(f ∗ g)(z)

)
< α

by lettingz → 1− through real values. To prove the converse, assume that (2.1) holds. Then
by making use of (2.1), we obtain∣∣∣∣ z(f ∗ g)′(z)− p(f ∗ g)(z)

z(f ∗ g)′(z)− (2α− 1)p(f ∗ g)(z)

∣∣∣∣ ≤ ∑∞
n=m(n− p)anbn

2(α− 1)p−
∑∞

n=m[n− (2α− 1)p]anbn

≤ 1

or equivalentlyf ∈ PMg(p, m, α). �

Corollary 2.2. A functionf ∈ Pλ(α) if and only if
∞∑

n=2

(n− α)anBn(λ) ≤ α− 1

(
1 < α <

3

2

)
,

where

(2.2) Bn(λ) =
(λ + 1)(λ + 2) · · · (λ + n− 1)

(n− 1)!
.

Corollary 2.3. A functionf ∈ PMm(α) if and only if
∞∑

n=2

(n− α)ann
m ≤ α− 1

(
1 < α <

3

2

)
.

Our next theorem gives an estimate for the coefficient of functions in the classPMg(p, m, α).
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Theorem 2.4. If f ∈ PMg(p, m, α), then

an ≤
p(α− 1)

(n− pα)bn

with equality only for functions of the form

fn(z) = zp +
p(α− 1)

(n− pα)bn

zn.

Proof. Let f ∈ PMg(p, m, α). By making use of the inequality (2.1), we have

(n− pα)anbn ≤
∞∑

n=m

(n− pα)anbn ≤ p(α− 1)

or

an ≤
p(α− 1)

(n− pα)bn

.

Clearly for

fn(z) = zp +
p(α− 1)

(n− pα)bn

zn ∈ PMg(p, m, α),

we have

an =
p(α− 1)

(n− pα)bn

.

�

Corollary 2.5. If f ∈ Pλ(α), then

an ≤
α− 1

(n− α)Bn(λ)

with equality only for functions of the form

fn(z) = z +
α− 1

(n− α)Bn(λ)
zn,

whereBn(λ) is given by (2.2).

Corollary 2.6. If f ∈ PMm(α), then

an ≤
α− 1

(n− α)nm

with equality only for functions of the form

fn(z) = z +
α− 1

(n− α)nm
zn.

3. GROWTH AND DISTORTION THEOREMS

We now prove the growth theorem for the functions in the classPMg(p, m, α).

Theorem 3.1. If f ∈ PMg(p, m, α), then

rp − p(α− 1)

(m− pα)bm

rm ≤ |f(z)| ≤ rp +
p(α− 1)

(m− pα)bm

rm, |z| = r < 1,

providedbn ≥ bm ≥ 1. The result is sharp for

(3.1) f(z) = zp +
p(α− 1)

(m− pα)bm

zm.
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Proof. By making use of the inequality (2.1) forf ∈ PMg(p, m, α) together with

(m− pα)bm ≤ (n− pα)bn,

we obtain

bm(m− pα)
∞∑

n=m

an ≤
∞∑

n=m

(n− pα)anbn ≤ p(α− 1)

or

(3.2)
∞∑

n=m

an ≤
p(α− 1)

(m− pα)bm

.

By using (3.2) for the functionf(z) = zp +
∑∞

n=m anz
n ∈ PMg(p, m, α), we have for|z| = r,

|f(z)| ≤ rp +
∞∑

n=m

anr
n

≤ rp + rm

∞∑
n=m

an

≤ rp +
p(α− 1)

(m− pα)bm

rm,

and similarly,

|f(z)| ≥ rp − p(α− 1)

(m− pα)bm

rm.

�

Theorem 3.1 also shows thatf(∆) for everyf ∈ PMg(p, m, α) contains the disk of radius
1− p(α−1)

(m−pα)bm
.

Corollary 3.2. If f ∈ Pλ(α), then

r − α− 1

(2− α)(λ + 1)
r2 ≤ |f(z)| ≤ r +

α− 1

(2− α)(λ + 1)
r2 (|z| = r).

The result is sharp for

(3.3) f(z) = z +
α− 1

(2− α)(λ + 1)
z2.

Corollary 3.3. If f ∈ PMm(α), then

r − α− 1

(2− α)2m
r2 ≤ |f(z)| ≤ r +

α− 1

(2− α)2m
r2 (|z| = r).

The result is sharp for

(3.4) f(z) = z +
α− 1

(2− α)2m
z2.

The distortion estimates for the functions in the classPMg(p, m, α) is given in the following:

Theorem 3.4. If f ∈ PMg(p, m, α), then

prp−1 − mp(α− 1)

(m− pα)bm

rm−1 ≤ |f ′(z)| ≤ prp−1 +
mp(α− 1)

(m− pα)bm

rm−1, |z| = r < 1,

providedbn ≥ bm. The result is sharp for the function given by (3.1).
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Proof. By making use of the inequality (2.1) forf ∈ PMg(p, m, α), we obtain
∞∑

n=m

anbn ≤
p(α− 1)

(m− pα)

and therefore, again using the inequality (2.1), we get
∞∑

n=m

nan ≤
mp(α− 1)

(m− pα)bm

.

For the functionf(z) = zp +
∑∞

n=m anz
n ∈ PMg(p, m, α), we now have

|f ′(z)| ≤ prp−1 +
∞∑

n=m

nanr
n−1 (|z| = r)

≤ prp−1 + rm−1

∞∑
n=m

nan

≤ prp−1 +
mp(α− 1)

(m− pα)bm

rm−1

and similarly we have

|f ′(z)| ≥ prp−1 − mp(α− 1)

(m− pα)bm

rm−1.

�

Corollary 3.5. If f ∈ Pλ(α), then

1− 2(α− 1)

(2− α)(λ + 1)
r ≤ |f ′(z)| ≤ 1 +

2(α− 1)

(2− α)(λ + 1)
r (|z| = r).

The result is sharp for the function given by (3.3)

Corollary 3.6. If f ∈ PMm(α), then

1− 2(α− 1)

(2− α)2m
r ≤ |f(z)| ≤ 1 +

2(α− 1)

(2− α)2m
r (|z| = r).

The result is sharp for the function given by (3.4)

4. CLOSURE THEOREMS

We shall now prove the following closure theorems for the classPMg(p, m, α). Let the
functionsFk(z) be given by

(4.1) Fk(z) = zp +
∞∑

n=m

fn,kz
n, (k = 1, 2, . . . ,M).

Theorem 4.1. Let λk ≥ 0 for k = 1, 2, . . . ,M and
∑M

k=1 λk ≤ 1. Let the functionFk(z)
defined by (4.1) be in the classPMg(p, m, α) for everyk = 1, 2, . . . ,M . Then the function
f(z) defined by

f(z) = zp +
∞∑

n=m

(
M∑

k=1

λkfn,k

)
zn

belongs to the classPMg(p, m, α).
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Proof. SinceFk(z) ∈ PMg(p, m, α), it follows from Theorem 2.1 that

(4.2)
∞∑

n=m

(n− pα)bnfn,k ≤ p(α− 1)

for everyk = 1, 2, . . . ,M. Hence
∞∑

n=m

(n− pα)bn

(
M∑

k=1

λkfn,k

)
=

M∑
k=1

λk

(
∞∑

n=m

(n− pα)bnfn,k

)

≤
M∑

k=1

λkp(α− 1)

≤ p(α− 1).

By Theorem 2.1, it follows thatf(z) ∈ PMg(p, m, α). �

Corollary 4.2. The classPMg(p, m, α) is closed under convex linear combinations.

Theorem 4.3.Let

Fp(z) = zp andFn(z) = zp +
p(α− 1)

(n− pα)bn

zn

for n = m, m + 1, . . .. Thenf(z) ∈ PMg(p, m, α) if and only iff(z) can be expressed in the
form

(4.3) f(z) = λpz
p +

∞∑
n=m

λnFn(z),

where eachλj ≥ 0 andλp +
∑∞

n=m λn = 1.

Proof. Let f(z) be of the form (4.3). Then

f(z) = zp +
∞∑

n=m

λnp(α− 1)

(n− pα)bn

zn

and therefore
∞∑

n=m

λnp(α− 1)

(n− pα)bn

(n− pα)bn

p(α− 1)
=

∞∑
n=m

λn = 1− λp ≤ 1.

By Theorem 2.1, we havef(z) ∈ PMg(p, m, α).
Conversely, letf(z) ∈ PMg(p, m, α). From Theorem 2.4, we have

an ≤
p(α− 1)

(n− pα)bn

for n = m, m + 1, . . . .

Therefore we may take

λn =
(n− pα)bnan

p(α− 1)
for n = m,m + 1, . . .

and

λp = 1−
∞∑

n=m

λn.

Then

f(z) = λpz
p +

∞∑
n=m

λnFn(z).

�
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We now prove that the classPMg(p, m, α) is closed under convolution with certain functions
and give an application of this result to show that the classPMg(p, m, α) is closed under the
familiar Bernardi integral operator.

Theorem 4.4. Let h(z) = zp +
∑∞

n=m hnz
n be analytic in∆ with 0 ≤ hn ≤ 1. If f(z) ∈

PMg(p, m, α), then(f ∗ h)(z) ∈ PMg(p, m, α).

Proof. The result follows directly from Theorem 2.1. �

The generalized Bernardi integral operator is defined by the following integral:

(4.4) F (z) =
c + p

zc

∫ z

0

tc−1f(t)dt (c > −1; z ∈ ∆).

Since

F (z) = f(z) ∗

(
zp +

∞∑
n=m

c + p

c + n
zn

)
,

we have the following:

Corollary 4.5. If f(z) ∈ PMg(p, m, α), thenF (z) given by (4.4) is also inPMg(p, m, α).

5. ORDER AND RADIUS RESULTS

Let PS∗h(p, m, β) be the subclass ofP (m, p) consisting of functionsf for which f ∗ h is
starlike of orderβ.

Theorem 5.1. Let h(z) = zp +
∑∞

n=m hnz
n with hn > 0. Let (α − 1)nhn ≤ (n − pα)bn. If

f ∈ PMg(p, m, α), thenf ∈ PS∗h(p, m, β), where

β := inf
n≥m

[
(n− pα)bn − (α− 1)nhn

(n− pα)bn − (α− 1)phn

]
.

Proof. Let us first note that the condition(α− 1)nhn ≤ (n− pα)bn impliesf ∈ PS∗h(p, m, 0).
From the definition ofβ, it follows that

β ≤ (n− pα)bn − (α− 1)nhn

(n− pα)bn − (α− 1)phn

or
(n− pβ)hn

1− β
≤ (n− pα)bn

α− 1
and therefore, in view of (2.1),

∞∑
n=m

(n− pβ)

p(1− β)
anhn ≤

∞∑
n=m

(n− pα)

p(α− 1)
anbn ≤ 1.

Thus ∣∣∣∣1p · z(f ∗ h)′(z)

(f ∗ h)(z)
− 1

∣∣∣∣ ≤ ∑∞
n=m(n/p− 1)anhn

1−
∑∞

n=m anhn

≤ 1− β

and thereforef ∈ PS∗h(p, m, β). �

Similarly we can prove the following:

Theorem 5.2. If f ∈ PMg(p, m, α), thenf ∈ PMh(p, m, β) in |z| < r(α, β) where

r(α, β) := min

{
1; inf

n≥m

[
(n− pα)

(n− pα)

(β − 1)

(α− 1)

bn

hn

] 1
n−p

}
.
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